The numerical filtering function configurable for every input channel is a low pass first order. The mathematic formula used is:

 $Meas_n = K * Meas_{n-1} + (1 - K) * Val_n$

With: **K** is the filter efficiency,

Meas_n is the filtered measure at time n,
Meas_{n-1} is the filtered measure at time n-1,
Val_n is the actual input value measured at time n.

The sample time (from time n-1 to time n) is about 10ms.

Filter efficiency	Filter Level	Corresponding K value
No filtering	0	0
Smooth filtering	1 2	0,750 0,875
Average filtering	3 4	0,937 0,969
High filtering	5 6	0,984 0,992

Example 1: The input value makes a jump from 10 to 12. The diagram displays the filtered measure value with different filter levels:

We can see Filter1 takes shortest time to follow the jump, and Filter6 takes longest time to follow the jump.

Normally, Filter1 or Filter2 is enough.

Example 2: A disturbance is imposed on the input value. The diagram displays the filtered measure value with different filter levels: