Altivar Machine ATV320
 Variable Speed Drives
 for Asynchronous and Synchronous Motors

Programming Manual

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.
No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric.
All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.
When devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results.
Failure to observe this information can result in injury or equipment damage.
© 2016 Schneider Electric. All rights reserved.

Table of Contents

Safety Information 7
About the Book. 11
General Overview 15
Chapter 1 Overview 17
Factory configuration 18
Application functions 19
Basic functions 23
Graphic display terminal option 24
Powering up the drive for the first time 27
Remote display terminal option 30
Structure of the parameter tables 31
Finding a parameter in this document 32
Description of the HMI 33
Structure of the menus 35
Chapter 2 Setup 37
Steps for setting-up the drive 38
Initial steps 39
Programming 41
Chapter $3 \quad$ Reference Mode (rEF) 43
Introduction 44
Organization tree 45
Menu 46
Chapter 4 Monitoring Mode (MOn) 47
Introduction 48
Organization tree 49
Menu 50
[MONIT. MOTOR] 50
[//O MAP] 51
[MONIT. SAFETY] 54
[MONIT. FUN. BLOCKS] 55
[COMMUNICATION MAP] 56
[MONIT. PI] 62
[MONIT. POWER TIME] 62
[ALARMS] 63
[OTHER STATE] 64
[DIAGNOSTICS] 64
[PASSWORD] 75
Chapter 5 Configuration Mode (ConF) 77
Introduction 78
Organization tree 79
My Menu 80
Factory Settings 81
Macro Configuration 82
Full 85
[SIMPLY START] 85
[SETTINGS] 89
[MOTOR CONTROL] 105
[INPUTS / OUTPUTS CFG] 125
[COMMAND] 154
[FUNCTION BLOCKS] 158
[APPLICATION FUNCT.] (FUn-) 162
REFERENCE SWITCHING 167
REFERENCE OPERATIONS 168
RAMP. 170
STOP CONFIGURATION 173
AUTO DC INJECTION. 176
JOG 178
PRESET SPEEDS 180
+/- SPEED 184
+/- SPEED AROUND A REFERENCE 186
REFERENCE MEMORIZING 188
FLUXING BY LOGIC INPUT 189
BRAKE LOGIC CONTROL 191
EXTERNAL WEIGHT MEASUREMENT 199
HIGH SPEED HOISTING 201
PID REGULATOR 206
PID PRESET REFERENCES 214
TORQUE LIMITATION 215
2ND CURRENT LIMITATION. 218
DYN CURRENT LIMIT 219
LINE CONTACTOR COMMAND 220
OUTPUT CONTACTOR COMMAND 222
POSITIONING BY SENSORS 224
PARAMETER SET SWITCHING 229
MULTIMOTORS / MULTICONFIGURATIONS 232
AUTO TUNING BY LOGIC INPUT 236
TRAVERSE CONTROL 237
[COMMUNICATION] 275
Access Level 278
Chapter 6 Interface (ItF) 279
Access Level (LAC) 280
Language (LnG) 282
Monitoring Configuration (MCF) 283
Display configuration (dCF) 287
Chapter 7 Open / Save as (trA) 295
Chapter 8 Password (COd) 299
Chapter 9 Multipoint Screen 301
Maintenance and Diagnostics 303
Chapter 10 Maintenance 305
Chapter 11 Diagnostics and Troubleshooting. 307
Error code 308
Clearing the detected fault 308
Fault detection codes which require a power reset after the detected fault is cleared 309
Fault detection codes that can be cleared with the automatic restart function after the cause has disappeared 311
Fault detection codes that are cleared as soon as their cause disappears 314
Option card changed or removed 314
Control block changed 314
Fault detection codes displayed on the remote display terminal 315
Annex 317
Chapter 12 Index of Functions 319
Chapter 13 Index of Parameter Codes 321
Chapter 14 Glossary 341

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

! DANGER

DANGER indicates a hazardous situation, which, if not avoided, will result in death or serious injury.

A WARNING

WARNING indicates a hazardous situation, which, if not avoided, could result in death, serious injury, or equipment damage.

CAUTION
CAUTION indicates a potentially hazardous situation, which, if not avoided, could result in minor or moderate injury, or equipment damage.

NOTICE

NOTICE is used to address practices not related to physical injury.

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.
A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

Qualification Of Personnel

Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation are authorized to work on and with this product. In addition, these persons must have received safety training to recognize and avoid hazards involved. These persons must have sufficient technical training, knowledge and experience and be able to foresee and detect potential hazards that may be caused by using the product, by changing the settings and by the mechanical, electrical and electronic equipment of the entire system in which the product is used. All persons working on and with the product must be fully familiar with all applicable standards, directives, and accident prevention regulations when performing such work.

Intended Use

This product is a drive for three-phase synchronous and asynchronous motors and intended for industrial use according to this manual. The product may only be used in compliance with all applicable safety regulations and directives, the specified requirements and the technical data.Prior to using the product, you must perform a risk assessment in view of the planned application. Based on the results, the appropriate safety measures must be implemented. Since the product is used as a component in an entire system, you must ensure the safety of persons by means of the design of this entire system (for example, machine design). Any use other than the use explicitly permitted is prohibited and can result in hazards. Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel.

Product related information

Read and understand these instructions before performing any procedure with this drive.

A ADANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation and who have received safety training to recognize and avoid hazards involved are authorized to work on and with this drive system. Installation, adjustment, repair and maintenance must be performed by qualified personnel.
- The system integrator is responsible for compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of all equipment.
- Many components of the product, including the printed circuit boards, operate with mains voltage. Do not touch. Use only electrically insulated tools.
- Do not touch unshielded components or terminals with voltage present.
- Motors can generate voltage when the shaft is rotated. Prior to performing any type of work on the drive system, block the motor shaft to prevent rotation.
- AC voltage can couple voltage to unused conductors in the motor cable. Insulate both ends of unused conductors of the motor cable.
- Do not short across the DC bus terminals or the DC bus capacitors or the braking resistor terminals.
- Before performing work on the drive system:
- Disconnect all power, including external control power that may be present.
- Place a "Do Not Turn On" label on all power switches.
- Lock all power switches in the open position.
- Wait 15 minutes to allow the DC bus capacitors to discharge. The DC bus LED is not an indicator of the absence of DC bus voltage that can exceed 800 Vdc . Measure the voltage on the DC bus between the DC bus terminals (PA/+ and PC/-) using a properly rated voltmeter to verify that the voltage is $<42 \mathrm{Vdc}$.
- If the DC bus capacitors do not discharge properly, contact your local Schneider Electric representative. Do not repair or operate the product.
- Install and close all covers before applying voltage.

Failure to follow these instructions will result in death or serious injury.

Drive systems may perform unexpected movements because of incorrect wiring, incorrect settings, incorrect data or other errors.

UNEXPECTED EQUIPMENT OPERATION
- Carefully install the wiring in accordance with the EMC requirements.
- Do not operate the product with unknown or unsuitable settings or data.
- Perform a comprehensive commissioning test.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Damaged products or accessories may cause electric shock or unanticipated equipment operation.

A ADANGER

ELECTRIC SHOCK OR UNANTICIPATED EQUIPMENT OPERATION

Do not use damaged products or accesssories.
Failure to follow these instructions will result in death or serious injury.
Contact your local Schneider Electric sales office if you detect any damage whatsoever.

A WARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop, overtravel stop, power outage and restart.
- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link.
- Observe all accident prevention regulations and local safety guidelines. ${ }^{1}$
- Each implementation of the product must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

1. For USA: Additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems".

NOTICE

DESTRUCTION DUE TO INCORRECT MAINS VOLTAGE

- Before switching on and configuring the product, verify that it is approved for the mains voltage. Failure to follow these instructions can result in equipment damage.

A WARNING

HOT SURFACES

- Ensure that any contact with hot surfaces is avoided.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.
- Verify that the product has sufficiently cooled down before handling it.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions Failure to follow these instructions can result in death, serious injury, or equipment damage.

A WARNING

EXPLOSION HAZARD

Only use this device outside of hazardous areas (explosive atmospheres).
Failure to follow these instructions can result in death, serious injury, or equipment damage.

About the Book

At a Glance

Document scope

The purpose of this document is to:

- help you to set-up the drive,
- show you how to program the drive,
- show you the different menus, modes and parameters,
- help you in maintenance and diagnostics.

Validity note

NOTE: The products listed in the document are not all available at the time of publication of this document online. The data, illustrations and product specifications listed in the guide will be completed and updated as the product availabilities evolve. Updates to the guide will be available for download once products are released on the market.

This documentation is valid for the Altivar Machine drive.
The technical characteristics of the devices described in this document also appear online. To access this information online:

Step	Action
1	Go to the Schneider Electric home page www.schneider-electric.com.
2	In the Search box type the reference of a product or the name of a product range. - Do not include blank spaces in the reference or product range. - To get information on grouping similar modules, use asterisks (*).
3	If you entered a reference, go to the Product Datasheets search results and click on the reference that interests you. If you entered the name of a product range, go to the Product Ranges search results and click on the product range that interests you.
4	If more than one reference appears in the Products search results, click on the reference that interests you.
5	Depending on the size of your screen, you may need to scroll down to see the data sheet.
6	To save or print a data sheet as a .pdf file, click Download XXX product datasheet.

The characteristics that are presented in this manual should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If you see a difference between the manual and online information, use the online information as your reference.

Related documents

Use your tablet or your PC to quickly access detailed and comprehensive information on all our products on www.schneider-electric.com.

The internet site provides the information you need for products and solutions

- The whole catalog for detailed characteristics and selection guides
- The CAD files to help design your installation, available in over 20 different file formats
- All software and firmware to maintain your installation up to date
- A large quantity of White Papers, Environment documents, Application solutions, Specifications... to gain a better understanding of our electrical systems and equipment or automation
- And finally all the User Guides related to your drive, listed below:

Title of Documentation	Reference Number
ATV320 Getting Started	NVE21763 (English), NVE21771 (French), NVE21772 (German), NVE21773 (Spanish), NVE21774 (Italian), NVE21776 (Chinese)
ATV320 Getting Started Annex (SCCR)	NVE21777 (English)
ATV320 Installation manual	NVE41289 (English), NVE41290 (French), NVE41291 (German), NVE41292 (Spanish), NVE41293 (Italian), NVE41294 (Chinese)
ATV320 Programming manual	NVE41295 (English), NVE41296 (French), NVE41297 (German), NVE41298 (Spanish), NVE41299 (Italian), NVE41300 (Chinese)
ATV320 Modbus Serial Link manual	NVE41308 (English)
ATV320 Ethernet IP/Modbus TCP manual	NVE41313 (English)
ATV320 PROFIBUS DP manual (VW3A3607)	NVE41310 (English)
ATV320 DeviceNet manual (VW3A3609)	NVE41314 (English)
ATV320 CANopen manual (VW3A3608, 618, 628)	NVE41309 (English)
ATV320 EtherCAT manual (VW3A3601)	NVE41315 (English)
ATV320 Communication Parameters	NVE41316 (English)
ATV320 Safety Functions manual	NVE50467 (English), NVE50468 (French), NVE50469 (German), NVE50470 (Spanish), NVE50472 (Italian), NVE50473 (Chinese)

You can download these technical publications and other technical information from our website at http://download.schneider-electric.com

Terminology

The technical terms, terminology, and the corresponding descriptions in this manual normally use the terms or definitions in the relevant standards.

In the area of drive systems this includes, but is not limited to, terms such as error, error message, failure, fault, fault reset, protection, safe state, safety function, warning, warning message, and so on.
Among others, these standards include:

- IEC 61800 series: Adjustable speed electrical power drive systems
- IEC 61508 Ed. 2 series: Functional safety of electrical/electronic/programmable electronic safety-related
- EN 954-1 Safety of machinery - Safety related parts of control systems
- EN ISO 13849-1 \& 2 Safety of machinery - Safety related parts of control systems.
- IEC 61158 series: Industrial communication networks - Fieldbus specifications
- IEC 61784 series: Industrial communication networks - Profiles
- IEC 60204-1: Safety of machinery - Electrical equipment of machines - Part 1: General requirements

In addition, the term zone of operation is used in conjunction with the description of specific hazards, and is defined as it is for a hazard zone or danger zone in the EC Machinery Directive (2006/42/EC) and in ISO 12100-1.
Also see the glossary at the end of this manual.

General Overview

What's in this Part?
This part contains the following chapters:

Chapter	Chapter Name	Page
1	Overview	17
2	Setup	$\underline{37}$

Overview

What's in this Chapter?

This chapter contains the following topics:

Topic	Page
Factory configuration	$\underline{18}$
Application functions	$\underline{19}$
Basic functions	$\underline{23}$
Graphic display terminal option	$\underline{24}$
Graphic display terminal option	$\underline{24}$
Powering up the drive for the first time	$\underline{27}$
Remote display terminal option	$\underline{30}$
Structure of the parameter tables	$\underline{31}$
Finding a parameter in this document	$\underline{32}$
Description of the HMI	$\underline{33}$
Structure of the menus	$\underline{35}$

Factory configuration

Factory settings

The Altivar 320 is factory－set for common operating conditions：
－Display：drive ready［Ready］（ $r d y$ ）when motor is ready to run and the output frequency when motor is running．
－The LI3 to LI6 logic inputs，AI2 and AI3 analog inputs，LO1 logic output，AO1 analog output，and R2 relay are unassigned．
－Stop mode if error is detected：freewheel．

Code	Description	Factory settings values	Page
b Fr	［Standard mot．freq］	［50Hz IEC］	86
t［［	［2／3 wire control］	［2 wire］（ 2 ［）： 2 －wire control	85
Lt	［Motor control type］	［Standard］（ 5 t d）：standard motor law	105
A［［	［Acceleration］	3.0 seconds	87
d E［	［Deceleration］	3.0 seconds	87
LSP	［Low speed］	0 Hz	87
H5P	［High speed］	50 Hz	87
，t H	［Mot．therm．current］	Nominal motor current（value depending on drive rating）	$\underline{87}$
5d［1	［Auto DC inj．level 1］	$0.7 \times$ nominal drive current，for 0.5 seconds	$\underline{93}$
5 Fr	［Switching freq．］	4 kHz	94
Frd	［Forward］	［LI1］（L ，I）：Logic input LI1	126
rrs	［Reverse assign．］	［LI2］（ L ，己）：Logic input LI2	126
Fr I	［Ref． 1 channel］	［AI1］（ $~$ ，$/$ ）：Analog input Al1	154
r 1	［R1 Assignment］	［No drive fit］（ $F L t$ ）：The contact opens when a fault is detected or when the drive has been switched off	138
brA	［Dec ramp adapt．］	［Yes］（ $Ч E 5$ ）：Function active（automatic adaptation of deceleration ramp）	172
Atr	［Automatic restart］	［ No ］（ $\%$ 口）：：Function inactive	$\underline{252}$
5tt	［Type of stop］	［Ramp stop］（ \quad ПP）：On ramp	173
［ F G	［Macro configuration］	［Start／Stop］（ 5 上 5）	$\underline{82}$

Note：If you want to keep the drive presettings to a minimum，select the macro configuration
［Macro configuration］（［FG）＝［Start／stop］（5 L 5）followed by
［Restore config．］（ $F[5$ ）＝［Config．CFG］（ 1 п ו）．For more information，see page 82.

Check whether the values above are compatible with the application．

Application functions

The tables on the following pages show the combinations of functions and applications, in order to guide your selection.

The applications in these tables relate to the following machines, in particular:

- Hoisting: cranes, overhead cranes, gantries (vertical hoisting, translation, slewing), lifting platforms
- Handling: palletizers/depalletizers, conveyors, roller tables
- Packing: carton packers, labeling machines
- Textiles: weaving looms, carding frames, washing machines, spinners, drawing frames
- Wood: automatic lathes, saws, milling
- Process

Each machine has its own special features, and the combinations listed here are neither mandatory nor exhaustive.

Some functions are designed specifically for a particular application. In this case, the application is identified by a tab in the margin on the relevant programming pages.

Motor control functions

Functions	Page	Applications					
			(1)			$\begin{aligned} & 0 \\ & 0 \\ & 3 \end{aligned}$	发
V/f ratio	105		\square			\square	
Sensorless flux vector control	105		\square			\square	
2-point vector control	105	-			-		
Open-loop synchronous motor	105				\square		
Output frequency up to 599 Hz	105						
Motor overvoltage limiting	120					\square	
DC bus connection (see Installation manual)	-				-		
Motor fluxing using a logic input	189		-				
Switching frequency of up to 16 kHz	$\underline{94}$				\square	-	
Auto-tuning	87	\square	\square	-	\square	-	\square

Functions on speed references

Functions	Page	Applications					
		은		을	$\xrightarrow{\text { ® }}$	\square 0 \vdots	¢00
Differential bipolar reference	129						
Reference delinearization (magnifying glass effect)	131						
Frequency control input	154				\square		\square
Reference switching	167						
Reference summing	168						
Reference subtraction	168						
Reference multiplication	168						
Adjustable profile ramp	170						
Jog operation	178				\square		\square
Preset speeds	180						
+ speed / - speed using single action pushbuttons (1 step)	184						\square
+ speed / - speed using double action pushbuttons (2 steps)	184	\square					
+/- speed around a reference	187				\square		\square
Save reference	188						\square

Application-Specific functions

Functions	Page	Applications					
		(\%)				\% 0 3	告
Fast stop	173					\square	
Brake control	191						
Load measurement	199	\square					
High-speed hoisting	$\underline{201}$						
Rope slack	$\underline{204}$						
PID regulator	$\underline{206}$						
Motor/generator torque limit	$\underline{215}$						
Load sharing	122						
Line contactor control	$\underline{220}$		\square			\square	
Output contactor control	$\underline{223}$						
Positioning by limit switches or sensors	$\underline{224}$						
Stop at distance calculated after deceleration limit switch	$\underline{226}$						
Parameter switching	$\underline{229}$					\square	
Motor or configuration switching	$\underline{232}$						
Traverse control	$\underline{237}$						
Stop configuration	173		\square			\square	

Safety functions/Fault management

Functions	Page	Applications					
				掝		7 0 3 3	
Safe Torque Off (STO) (Safety function, see dedicated document)	-						
Deferred stop on thermal alarm	$\underline{\underline{258}}$						
Alarm handling	145						
Fault management	$\underline{250}$						
IGBT tests	$\underline{\underline{260}}$						
Catch a spinning load	$\underline{\underline{253}}$						
Motor protection with PTC probes	$\underline{250}$						
Undervoltage management	$\underline{\underline{259}}$						
4-20 mA loss	$\underline{260}$						
Uncontrolled output cut (output phase loss)	$\underline{256}$						
Automatic restart	$\underline{252}$						
Use of the "Pulse input" input to measure the speed of rotation of the motor	$\underline{\underline{265}}$						
Load variation detection	$\underline{267}$						
Underload detection	$\underline{270}$						
Overload detection	$\underline{272}$						
Safety Integrated functions (see related documents page 12)							

Basic functions

Drive ventilation
The fan starts automatically when the drive thermal state reaches 70% of the maximum thermal state and if the [Fan Mode] (F F П) is set to [Standard] (5 t d).

Graphic display terminal option

Description of the graphic display terminal

With the graphic display terminal, which works with FLASH V1.1IE26 or higher, it is possible to display more detailed information than can be shown on the integrated display terminal.

Note: Keys 3, 4, 5 and 6 can be used to control the drive directly, if control via the graphic display terminal is activated.

To activate the keys on the remote display terminal, you first have to configure [Ref. 1 channel] $\left(F_{r} /\right)=[\mathrm{HMI}]$ (L [[) . For more information, see page 154.

Example configuration windows:

Single selection

LANGUAGE	
English	
Français Deutsch Italiano Español	
Chinese	
Pyсский	
Türkçe	

When powering up the graphic display terminal for the first time, the user has to select the required language.

When only one selection is possible, the selection made is indicated by \checkmark. Example: Only one language can be chosen.

Multiple selection

PARAMETER SELECTION	
SETTINGS	
Ramp increment	\checkmark
Acceleration--	\checkmark
Deceleration--	
Acceleration 2-	
Deceleration 2	
	Edit

When multiple selection is possible, the selections made are indicated by \checkmark. Example: A number of parameters can be chosen to form the [USER MENU].

Example configuration window for one value:

The << and >> arrows (keys F2 and F3) are used to select the digit to be modified, and the jog dial is rotated to increase or decrease this number.

Example visualization of function blocks state:

RDY (\otimes Term	. 0	0.0 A
Acceleration			
Min $=0.00$			
		Max $=99.99$	
	<<	>>	Quick

Q OFF light: A valid function blocks program is in the ATV320 in stop mode.
(ON light: A valid function blocks program is in the ATV320 in run mode. The drive is considered as being in running state and configuration parameters cannot be modified.

Powering up the drive with Graphic display terminal for the first time
When powering up the graphic display terminal for the first time, the user has to select the required language.

Display after the graphic display terminal has been powered up for the first time. Select the language and press ENT.

The drive's rating details will now appear.
$\downarrow \quad 3$ seconds

ENT

RDY	Term 0.0 Hz	0.0 A	
1 DRIVE MENU			
1.1 SPEED REFERENCE			
1.2 MONITORING			
1.3 CONFIGURATION			
Code	\ll	\gg	Quick

Powering up the drive for the first time

With the integrated display terminal, when powering up the drive for the first time, the user immediately accesses to [Standard mot. freq] (b F r) (see page 86) in the menu (COnF > FULL > SIM).

Display after the drive has been powered up for the first time.

RDY	Term	0.0 Hz
ACCESS LEVEL		
Basic		
Standard		
Advanced		
Expert		

The [ACCESS LEVEL] screen follows automatically.

RDY	Term 0.0 Hz	0.0 A	
1 DRIVE MENU			
1.1 SPEED REFERENCE			
1.2 MONITORING			
1.3 CONFIGURATION			
Code	\ll	\gg	Quick

Automatically switches to the [1 DRIVE MENU] menu after 3 seconds. Select the menu and press ENT.

MAIN MENU
1 DRIVE MENU
2 IDENTIFICATION
3 INTERFACE
4 OPEN / SAVE AS
5 PASSWORD

The MAIN MENU appears on the graphic display terminal if you press the ESC key.

Subsequent power-ups

With the integrated display terminal, at subsequent power-ups of the drive for the first time, the user immediately accesses to the drive state (Same liste than [Drive state] (H5 /) page 65). Example : Ready (rdY).

\downarrow
 3 seconds

RDY	Term	0.0 Hz		
1 DRIVE MENU				
1.1 SPEED REFERENCE				
1.2 MONITORING				
1.3 CONFIGURATION				
Code	\ll	\gg	Quick	
:---				

Automatically switches to the [1 DRIVE MENU] menu after 3 seconds. Select the menu and press ENT.

Automatically switches to the monitoring screen after 10 seconds.

Identification menu
The [IDENTIFICATION] (a, d^{-}) menu can only be accessed on the graphic display terminal.
This is a read-only menu that cannot be configured. It enables the following information to be displayed:

- Drive reference, power rating and voltage
- Drive software version
- Drive serial number
- Safety function status and checksum
- Function blocks program and catalogue version
- Type of options present, with their software version
- Graphic display terminal type and version

Remote display terminal option

Description of the remote display terminal

This remote display terminal is a local control unit which can be mounted on the door of the wall-mounted or floor-standing enclosure. It has a cable with connectors, which is connected to the drive serial link (see the documentation supplied with the remote display terminal). With this remote display terminal, up and down arrows are used for navigation rather than a jog dial.

(1) If the drive is locked by a code ([PIN code 1] ([a d) page 300), pressing the MODE key enables you to switch from the [1.2 MONITORING] (Π ロп -) menu to the [1.1 SPEED REFERENCE] ($r E F-$) menu and vice versa.

To activate the keys on the remote display terminal, you first have to configure [Ref.1 channel] $\left(F_{r} \quad I\right)=$ [HMI] (L [[). For more information, see page 154.

Structure of the parameter tables

The parameter tables contained in the descriptions of the various menus are organized as follows.
Example:

1. Way to access the parameters described in this page
2. Name of submenu on graphic display terminal
3. Submenu code on 4-digit 7-segment display
4. Parameter code on 4-digit 7-segment display
5. Parameter value on 4-digit 7-segment display
6. Name of parameter on graphic display terminal
7. Value of parameter on graphic display terminal

Note: The text in square brackets [] indicates what you will see on the graphic display terminal.

A menu followed by the mention "(continued)" appears sometimes to locate you in the structure.
Example:

$F \mathrm{un}^{-}$	[APPLICATION FUNCT.] (continued)
$P, d-$	[PID REGULATOR] Note: This function cannot be used with certain other functions. Follow the instructions on page 162.

In this case, the mention "(continued)" indicates that the [APPLICATION FUNCT.] submenu is above the [PID REGULATOR] submenu in the structure.

A parameter can contain some pictograms. Each pictogram has its legend at the end of the table. Main mictograms:

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Parameter that can be modified during operation or when stopped.

To change the assignment of this parameter, press the ENT key for 2 s .

Finding a parameter in this document

The following assistance with finding explanations on a parameter is provided:

- With the integrated display terminal and the remote display terminal: Direct use of the parameter code index, page 321, to find the page giving details of the displayed parameter.
- With the graphic display terminal: Select the required parameter and press F1 F1 : [Code]. The parameter code is displayed instead of its name while the key is held down.

Example: ACC

RDY	Term	+0.0 Hz	0.0 A
SETTINGS			
Ramp increment	$:$	0.1	
Acceleration	$:$	9.51 s	
Deceleration	$:$	9.67 s	
Low speed	$:$	0.0 Hz	
High speed	$:$	50.0 Hz	
Code	\ll	\gg	Quick

$\xrightarrow{\text { Code }}$| RDY | Term | +0.0 Hz | 0.0 A |
| :--- | :--- | :--- | ---: |
| SETTINGS | | | |
| | Ramp increment | $:$ | 0.1 |
| ACC | | $:$ | 9.51 s |
| Deceleration | $:$ | 9.67 s | |
| Low speed | $:$ | 0.0 Hz | |
| High speed | $:$ | 50.0 Hz | |
| Code | \ll | \gg | Quick |

- Then use the parameter code index, page $\underline{321}$, to find the page giving details of the displayed parameter.

Description of the HMI

Functions of the Display and the Keys

1 The ESC key is used for menu navigation (backward) and parameters adjustment (cancel)
2 The Jog dial is used for menu navigation (up or down) and parameters adjustment (increase/decrease value or element choice). It can be used as Virtual analogic input 1 for drive frequency reference.
3 The ENT key (push on the Jog dial) is used for menu navigation (forward) and parameters adjustment (validate)

A	REF mode selected $(r E F-)$	E	Dot used to display parameter value $(1 / 10$ unit $)$	
B	MON mode selected $(\Pi \square \cap-)$	F	Current display is parameter value	
C	CONF mode selected $([\square \cap F)$	G	Current display is parameter unit	
D	Dot used to display parameter value $(1 / 100$ unit $)$			

Normal display, with no error code displayed and no startup:
Displays the parameter selected in the [1.2 MONITORING] (Π - ח $^{-}$) menu (default:
[Frequency ref.] ($F r H)$).

- $\quad 1 n, t$: Initialization sequence (only on remote display terminal)
- tun: AutoTuning
- d[b:Injection braking
- rdy: Drive ready
- \quad 5t: Freewheel stop control
- [L $:$: Current limit
- F5t: Fast stop
- FL \quad : Fluxing function is activated
- $n L P$: Control is powered on but the DC bus is not loaded
- \quad L L : Controlled stop
－abr：Adapted deceleration
－ $5 \square$［：Stand by output cut
－ 5 月：Undervoltage alarm
－ 55 I：Safety function SS1
－ 5 L 5：Safety function SLS
－5上ロ：Safety function STO
－ 5Π ：：Safety function SMS
－$\quad \square d L$ ：Safety function GDL

In the event of a detected error，the display will flash to notify the user accordingly．If a graphic display terminal is connected，the name of the detected error will be displayed．

Structure of the menus

Powering up		Parameter selection
$E S C=E S C$	This parameter is only visible when the drive is powered up for the first time. The setting can be amended subsequently in the menu [MOTOR CONTROL] ($d r$ [-) for [Standard mot. freq] (b F r) [1.1 SPEED REFERENCE] (r E F -) [1.2 MONITORING] (Пロп-) [1.3 CONFIGURATION] ([םпF)	

On the 7-segment display, a dash after menu and submenu codes is used to differentiate them from parameter codes.

Example: [APPLICATION FUNCT.] (F $\mathrm{F} \mathrm{n}^{-}$) menu, [Acceleration] (A [[) parameter

Selection of multiple assignments for one parameter

Example: List of group 1 alarms in [INPUTS I OUTPUTS CFG] (1 - - -) menu
A number of alarms can be selected by "checking" them as follows.
The digit on the right indicates:

The same principle is used for all multiple selections.

Setup

What's in this Chapter?

This chapter contains the following topics:

Topic	Page
Steps for setting-up the drive	$\underline{38}$
Initial steps	$\underline{39}$

Steps for setting-up the drive

PROGRAMMING

Tips:

- Before beginning programming, complete the customer setting tables, page 321 .
- Use the [Restore config.] (F [5) parameter, page 81, to return to the factory settings at any time.
- To locate the description of a function quickly, use the index of functions page 319 .
- Before configuring a function, read carefully the "Function compatibility" section page 165.

Note: The following operations must be performed for optimum drive performance in terms of accuracy and response time:

- Enter the values indicated on the motor rating plate in the [MOTOR CONTROL] ($d r$ [-) menu, page 105.
- Perform auto-tuning with the motor cold and connected using the [Auto-tuning] (| L |
| :--- | :--- |) parameter, page 87.

2. Apply input power to the drive, but do not give a run command.

3. Configure:

- The nominal frequency of the motor [Standard mot. freq] ($\llcorner\mathrm{F}$ r) page 86 if this is not 50 Hz .
- The motor parameters in the [MOTOR CONTROL] ($d r-$ -) menu, page 105 , only if the factory configuration of the drive is not suitable.
- The application functions in the [INPUTS / OUTPUTS CFG] ($1-a^{-}$) menu, page 125, the [COMMAND] ($[E L-)$ menu, page 154, and the [APPLICATION FUNCT.] ($F \mathrm{H}_{\mathrm{n}}-$) menu, page 167, only if the factory configuration of the drive is not suitable.

4. In the [SETTINGS] ($5 E t-$) menu, adjust the following parameters:

- [Acceleration] (A[[), page 87 and [Deceleration] (\downarrow E [), page 87 .
- [Low speed] (L5P), page 87 and [High speed] (H5P), page 89.
- [Mot. therm. current] (, ヒ H), page 87.

5. Start the drive.

Initial steps

If the drive was not connected to mains for an extended period of time, the capacitors must be restored to their full performance before the motor is started.

REDUCED CAPACITOR PERFORMANCE
- Apply mains voltage to the drive for one hour before starting the motor if the drive has not been connected
to mains for the following periods of time:
- 12 months at a maximum storage temperature of $+50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right)$.
-24 months at a maximum storage temperature of $+45^{\circ} \mathrm{C}\left(+113^{\circ} \mathrm{F}\right)$
- 36 months at a maximum storage temperature of $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$.
- Verify that no Run command can be applied before the period of one hour has elapsed.
- Verify the date of manufacture if the drive is commissioned for the first time and run the specified
procedure if the date of manufacture is more than 12 months in the past.
Failure to follow these instructions can result in equipment damage.

If the specified procedure cannot be performed without a Run command because of internal mains contactor control, perform this procedure with the power stage enabled, but the motor being at a standstill so that there is no appreciable mains current in the capacitors.

Before powering up the drive

NWRNING
UNANTICIPATED EQUIPMENT OPERATION
Before switching on the device, verify that no unintended signals can be applied to the digital inputs that could
cause unintended movements.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Drive locked
If a Run command such as Run forward, Run reverse, DC injection is still active during:

- I A product reset to the factory settings,
- I A manual "Fault Reset" using [Fault Reset] ($\quad 5$ F),
- I A manual "Fault reset" by applying a product switched off and on again,
- I A stop command given by a channel that is not the active channel command (such as Stop key of the display terminal in $2 / 3$ wires control).
The drive is in a blocking state and displays [Freewheel stop] ($n 5 t$). It will be necessary to deactivate all active Run commands prior to authorizing a new Run command.

Mains contactor

NOTICE

RISK OF DAMAGE TO THE DRIVE

Do not switch on the drive at intervals of less than 60 s .
Failure to follow these instructions can result in equipment damage.

Using a motor with a lower rating or dispensing with a motor altogether
With the factory settings, motor output phase loss detection is active ([Output Phase Loss] ($\square P L$) = [Yes] ($4 E 5$), page 256). To avoid having to use a motor with the same rating as the drive when testing the drive or during a maintenance phase, deactivate the motor output phase loss detection
([Output Phase Loss] ($\square P L$) $=[\mathrm{No}](\square \square)$). This can prove particularly useful if very large drives are being tested with a small motor.

Set [Motor control type] ($[t \in$), page 105, to [Standard] (5td) in [Motor control menu] (dr [-).

NOTICE

MOTOR OVERHEATING

Install external thermal monitoring equipment under the following conditions:

- If a motor with a nominal current of less than 20% of the nominal current of the drive is connected.
- If you use the function Motor Switching.

Failure to follow these instructions can result in equipment damage.

A 1 DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

If output phase monitoring is disabled, phase loss and, by implication, accidental disconnection of cables, are not detected.

- Verify that the setting of this parameter does not result in unsafe conditions.

Failure to follow these instructions will result in death or serious injury.

Programming

What's in this Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
4	Reference Mode (rEF)	$\underline{43}$
5	Monitoring Mode (MOn)	$\underline{47}$
6	Configuration Mode (ConF)	$\underline{77}$
7	Interface (ItF)	$\underline{279}$
8	Open / Save as (trA)	$\underline{295}$
9	Password (COd)	$\underline{299}$
10	Multipoint Screen	$\underline{301}$

Incorrect wiring, unsuitable settings or unsuitable data may trigger unanticipated movements, trigger signals or damage parts and disable monitoring functions.

	NWARNING
UNANTICIPATED EQUIPMENT OPERATION	
- Do not operate the drive system with unknown settings or data.	
- Never modify a parameter unless you fully understand the parameter and all effects of the modification.	
- When commissioning the product, carefully run tests for all operating states and potential error situations.	
- Verify that a functioning emergency stop push-button is within reach of all persons involved in running	
tests.	
- Verify the functions after replacing the product and also after making changes to the settings or data.	
- Anticipate movements in unintended directions or oscillation of the motor.	
- Only operate the system if there are no persons or obstructions in the zone of operation.	
Failure to follow these instructions can result in death, serious injury, or equipment damage.	

If the power stage is disabled unintentionally, for example as a result of power outage, errors or functions, the motor is no longer decelerated in a controlled way.

A WARNING

MOVEMENT WITHOUT BRAKING EFFECT

Verify that movements without braking effect cannot cause injuries or equipment damage
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Reference Mode (rEF)

What's in this Chapter?
This chapter contains the following topics:

Topic	Page
Introduction	$\underline{44}$
Organization tree	$\underline{45}$
Menu	$\underline{46}$

Introduction

Use the reference mode to monitor and, if the reference channel is the analog input 1 ([Ref. 1 channel] ($F_{r} \quad /$) page 154 set to [AI virtual 1] ($\mathrm{A} \mid \stackrel{\prime}{ }$)), adjust the actual reference value by modifying the analog input voltage value.

If local control is enabled ([Ref. 1 channel] ($F_{r} \quad$ I) page 154 set to [HMI] ($L[\Sigma)$), the jog dial on the remote display terminal or the Up/Down Navigation keys on the remote display terminal acts as a potentiometer to change the reference value up and down within the limits preset by other parameters ([Low speed] (L5P) or [High speed] (H5P)).
There is no need to press the ENT key to confirm the change of the reference.

Organization tree

(1) Depending on the active reference channel

Possible values:

($\mathrm{L} \mathrm{Fr}_{\mathrm{r}}$)
(\quad Fr)
($\stackrel{\text { P }}{ }$)
(FrH)
(\quad PC)
(2) 2 s or ESC

Displayed parameter value and unit of the diagram are given as examples.

Menu

Code	Name / Description	Adjustment range	Factory setting
dr , -	[1 DRIVE MENU]		
$r E F-$	[1.1 SPEED REFERENCE] Displayed parameters depend on drive settings.		
A ا 1	[Image input AIV1]	0 to 100\% of HSP-LSP	0\%

(2) This parameter allows to modify the frequency reference with the embedded jog dial.
(1)

LFr	[HMI Frequency ref.]	-599 to +599 Hz	0 Hz
	HMI frequency reference (signed value). This parameter allows to modify the frequency reference with the remote HMI.		
П Fr	[Multiplying coeff.]	0 to 100\%	100\%
	Multiply frequency variable. Multiplying coefficient, can be accessed if [Multiplier ref.-] (ПА己, ПА) page 169 has been assigned to the graphic terminal.		
$r P$,	[Internal PID ref.]	0 to 32,767	150

This parameter allows to modify the PID internal reference with the jog dial.
C Internal PID reference is visible if [PID feedback] (P, F) is not set to [No] ($n \square$).
(1)

(1) It is not necessary to press the ENT key to confirm the modification of the reference.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Parameter that can be modified during operation or when stopped.

Monitoring Mode (MOn)

What's in this Chapter?
This chapter contains the following topics:

Topic	Page
Introduction	$\underline{48}$
Organization tree	$\underline{49}$
Menu	$\underline{50}$

Introduction

The parameters can be accessed when the drive is running or stopped.
Some functions have numerous parameters. In order to clarify programming and avoid having to scroll through endless parameters, these functions have been grouped in submenus. Like menus, submenus are identified by a dash after their code.

When the drive is running, the value displayed is one of the monitoring parameters. By default, the value displayed is the input frequency reference ([Frequency ref.] (FrH) parameter page 50).
While the value of the new monitoring parameter required is being displayed, press a second time on the jog dial key to display the units or press and hold down the jog dial (ENT) again (for 2 seconds) to confirm the change of monitoring parameter and store it. From then on, it is the value of this parameter that will be displayed during operation (even after powering down).

Unless the new choice is confirmed by pressing and holding down ENT again, the display will revert to the previous parameter after powering down.

Note: After the drive has been turned off or following a loss of supply mains, the parameter displayed is the drive status (example: [Ready] $\binom{r}{d}$). The selected parameter is displayed following a run command.

Organization tree

Displayed parameters of the diagram are given as examples.

(1) Visible only with graphic display terminal

Menu

Code	Name／Description Unit
Пロп－	［1．2 MONITORING］（continued）
ППロ－	［MONIT．MOTOR］
っこヒワ	［ ${ }^{2}$ t overload level］ Monitoring of $I^{2 t}$ overload level This parameter can be accessed if［ 1^{2} t model activation］（ 1 己 \mathcal{H} ）is set to［Yes］（ $4 E 5$ ）see page $\underline{219}$
1ロП－	［I／O MAP］
L ，月－	［LOGIC INPUT CONF．］ Logic input functions．
L ，月	［LI1 assignment］ Read－only parameters，cannot be configured． It displays all the functions that are assigned to the logic input in order to check for multiple assignments． If no functions have been assigned，$[\mathrm{No}](\mathrm{n})$ ）is displayed．Use the jog dial to scroll through the functions． The use of graphic display terminal allows to see the delay［LII On Delay］（ L / d ）．Possible values are the same than in configuration menu page 127.
$\text { to } \begin{aligned} & \text { L己A } \\ & \angle \text { EA } \\ & L A I A \\ & L A 己 A \end{aligned}$	［L－－assignment］ All the logic inputs available on the drive are processed as in the example for LI1 above．
L ，5 1	［State of logic inputs LI1 to LI6］ Can be used to visualize the state of logic inputs LI1 to LI6（display segment assignment：high $=1$ ，low $=0$ ）． Example above：LI1 and LI6 are at 1 ；LI2 to LI5 are at 0 ．
L ，52	［State of Safe Torque Off］ Can be used to visualize the state of LA1，LA2 and STO（Safe Torque Off）（display segment assignment：high $=1$ ，low $=0$ ）． Example above：LA1 and LA2 are at 0 ；STO（Safe Torque Off）is at 1.

Code	Name／Description	Unit
A ，月－	［ANALOG INPUTS IMAGE］ Analog input functions．	
A ，IL	［AI1］ Al1 customer image：Value of analog input 1.	V
A ，1月	［AI1 assignment］ Al1 functions assignment．If no functions have been assigned，$[\mathrm{No}]$（ n ）is displayed． Following parameters are visible on the graphic display terminal by pressing the ENT key on the parameter． ［No］（na）：Not assigned ［Ref． 1 channel］（ $F_{r} /$ ）：Reference source 1 ［Ref． 2 channel］$\left(F_{r}\right.$ 己）：Reference source 2 ［Summing ref．2］（ 5 A 己）：Summing reference 2 ［PID feedback］（ P ，F）：PI feedback（PI control） ［Torque limitation］（ \angle A A ）：Torque limitation：Activation by an analog value ［Subtract．ref．2］（ $\triangle A$ 己）：Subtracting reference 2 ［Manual PID ref．］（ P, Π ）：Manual speed reference of the $\mathrm{PI}(\mathrm{D})$ regulator（auto－man） ［PID speed ref．］$\left(F P_{1}\right)$ ：Speed reference of the $\mathrm{PI}(\mathrm{D})$ regulator（predictive reference） ［Summing ref．3］（ 5 月 3 ）：Summing reference 3 ［Ref．1B channel］（ F_{r} / b ）：Reference source 1B ［Subtract．ref．3］（ \ddagger 月 \exists ）：Subtracting reference 3 ［Forced local］（FLם［）：Forced local reference source ［Ref． 2 multiplier］（ПА ᄅ）：Multiplying reference 2 ［Ref． 3 multiplier］（ ПА ヨ）：Multiplying reference 3 ［Weight input］（PE5）：External weight measurement function ［IA01］（ ，AB I）：Functions blocks：Analog Input 01 ［IA10］（ ，A I（ ）：Functions blocks：Analog Input 10	
－M I	［AI1 min value］ Voltage scaling parameter of 0% ．	V
－H I	［AI1 max value］ Voltage scaling parameter of 100% ．	V
A ，IF	［Al1 filter］ Interference filtering cut－off time of the low－filter．	s
AL A－	［ANALOG INPUTS IMAGE］（continued） Analog input functions．	
月 ，こ［	［AI2］ AI2 customer image：Value of analog input 2.	V
月，己月	［Al2 assignment］ Al2 functions assignment．If no functions have been assigned，$[\mathrm{No}]$（ n ）is displayed． Following parameters are visible on the graphic display terminal by pressing the ENT key on the parameter． Identical to［Al1 assignment］（ A ，｜A ）page $\underline{52}$ ．	
－1 L 己	［AI2 min value］ Voltage scaling parameter of 0% ．	V
－，H己	［AI2 max value］ Voltage scaling parameter of 100% ．	V
F ，こF	［AI2 filter］ Interference filtering cutoff time of the low－filter．	s

Code	Name／Description	Unit
月 ，月－	［ANALOG INPUTS IMAGE］（continued） Analog input functions．	
A ，ヨ［	［AI3］ AI3 customer image：Value of analog input 3.	V
A ，ヨ A	［Al3 assignment］ Al3 functions assignment．If no functions have been assigned，$[\mathrm{No}]$（ n ）is displayed． Following parameters are visible on the graphic display terminal by pressing the ENT key on the parameter． Identical to［Al1 assignment］（A ，｜ ）page 52.	
［rL	［AI3 min value］ Current scaling parameter of 0\％．	mA
［rHヨ	［AI3 max value］ Current scaling parameter of 100% ．	mA
A ，ヨF	［Al3 filter］ Interference filtering cutoff time of the low－filter．	s
1ロП－	［I／O MAP］（continued）	
月ロ ${ }^{\text {－}}$	［ANALOG OUTPUTS IMAGE］ Analog output functions． Following parameters are visible on the graphic display terminal by pressing the ENT key on the parameter．	
$\begin{gathered} \text { Aロ } 1[\\ (1) \end{gathered}$	［AO1C］ AO1 customer image：Value of analog output 1.	
月ロ1	［AO1 assignment］ AO1 functions assignment．If no functions have been assigned，$[\mathrm{No}]\left(\begin{array}{l}\text { 口 })\end{array}\right.$ is displayed． Identical to［AO1 assignment］（ A a ，）page 144.	
पロL 1	［AO1 min Output］ Voltage scaling parameter of 0% ．Can be accessed if［AO1 Type］（ $\mathrm{Ha}_{\square} / t$ ）is set to［Voltage］（ $\mid \square_{u}$ ）．	V
■－H	［AO1 max Output］ Voltage scaling parameter of 100% ．Can be accessed if［AO1 Type］（月口 It）is set to［Voltage］（Iロッ）．	V
$\text { A口L } 1$	［AO1 min output］ Current scaling parameter of 0\％．Can be accessed if［AO1 Type］（Rロ｜t）is set to［Current］（ロA）．	mA
AロH I	［AO1 max output］ Current scaling parameter of 100\％．Can be accessed if［AO1 Type］（Aロ It ）is set to［Current］（ \square A）．	mA
A 5 \％	［Scaling AO1 max］ Minimum scaling value for AO1．	\％
A5 H 1	［Scaling AO1 min］ Maximum scaling value for AO1．	\％
A口 IF	［AO1 filter］ Cutoff time of the low－filter．	s

Code	Name／Description	Unit
1ロП－	［I／O MAP］（continued）	
F 5 ，－	［FREQ．SIGNAL IMAGE］ Frequency signal image． This menu is visible only on graphic display terminal．	
PFr	［RP input］ Filtered customer pulse input frequency reference． Following parameters are visible on the graphic display terminal by pressing the ENT key on the parameter．	Hz
P ，月	［RP assignment］ Pulse input assignment．If no functions have been assigned，$[\mathrm{No}]$（ n 口）is displayed． Identical to［Al1 assignment］（ A ，／ A ）page $\underline{52}$ ．	
P，L	［RP min value］ RP minimum value．Pulse input scaling parameter of 0% ．	kHz
PFr	［RP max value］ RP maximum value Pulse input scaling parameter of 100% ．	kHz
PF ，	［RP filter］ Interference filtering pulse input cutoff time of the low－filter．	ms
Пロп－	［1．2 MONITORING］（continued）	
5月F－	［MONIT．SAFETY］ For more details on Integrated Safety Functions，please refer to dedicated Safety manual．	
$5 t-5$ 1dLE 5ヒロ FLE	［STO status］ Status of the Safe Torque Off safety function． ［Idle］（ ，dLE）：STO not in progress ［Safe stop］（5 5 a）：STO in progress ［Fault］（ $F L t$ ）：STO error detected	
5L55 $\begin{aligned} & n a \\ & 1 d L E \\ & W H, t \\ & 5 E r t \\ & 551 \\ & 5 L 5 \\ & 5 E \square \\ & F L E \end{aligned}$	［SLS status］ Status of the Safely－limited speed safety function． ［Not config．］（ n 口）：SLS not configured ［Idle］（ ，dLE）：SLS not in progress ［SLS wait time］（WAL $)$ ：SLS waiting for activation ［SLS start］（ 5 tr t ）：SLS in transient state ［Safe ramp］（ 55 I）：SLS ramp in progress ［Spd limited］（5L5）：SLS speed limitation in progress ［Safe stop］（ 5 ta）：SLS safe torque off request in progress ［Fault］（ $F L t$ ）：SLS error detected	
5515 $\begin{aligned} & \text { na } \\ & \text { ILE } \\ & 551 \\ & 5 E \square \\ & F L E \end{aligned}$	［SS1 status］ Status of the Safe Stop 1 safety function． ［Not config．］（ n 口）：SS1 not configured ［Idle］（ ，dLE）：SS1 not in progress ［Safe ramp］（ 55 l ）：SS1 ramp in progress ［Safe stop］（5 5 a）：SS1 safe torque off request in progress ［Fault］（FLt）：SS1 error detected	
$5 \Pi 55$ $\begin{aligned} & \text { no } \\ & \text { oFF } \\ & \text { FE, } \\ & \text { FE } \end{aligned}$	［SMS status］ Status of the Safe Maximum Speed safety function． ［Not Set］（ \cap 口）：SMS not set ［Active］（aFF）：SMS active ［Internal Err．］（ $F E_{1}$ ）：SMS internal error ［Max Speed］（FEם）：Maximum Speed reached	

Code	Name／Description	Unit
$\square d L 5$ $\begin{aligned} & \text { חa } \\ & \text { oFF } \\ & 5 t d \\ & \text { LEd } \\ & \text { on } \\ & \text { LFt } \end{aligned}$	［GDL status］ Status of the Guard Door Locking safety function． ［Not Set］（ n 口）：GDL not set ［Inactive］（ $a F F$ ）：GDL inactive ［Short Delay］（ 5 t d）：Short Delay In Progress ［Long Delay］（ L L d）：Long Delay In Progress ［Active］（ $L[d$ ）：GDL active ［Internal Err．］（ $L \leftarrow d$ ）：GDL internal error	
5 FFE	［Safety fault reg．］ Safety function error register． Bit0 $=1$ ：Logic inputs debounce time－out（verify value of debounce time LIDT according to the application） Bit1 Reserved Bit2 $=1$ ：Motor speed sign has changed during SS1 ramp Bit3 $=1$ ：Motor speed has reached the frequency limit threshold during SS1 ramp． Bit4：Reserved Bit5：Reserved Bit6＝1：Motor speed sign has changed during SLS limitation Bit7＝1：Motor speed has reached the frequency limit threshold during SS1 ramp． Bit8：Reserved Bit9：Reserved Bit10：Reserved Bit11：Reserved Bit12：Reserved Bit13＝1：Not possible to measure the motor speed（verify the motor wiring connection） Bit14＝1：Motor ground short－circuit detected（verify the motor wiring connection） Bit15＝1：Motor phase to phase short－circuit detected（verify the motor wiring connection）	
Пロп－	［1．2 MONITORING］（continued）	
ПFb－	［MONIT．FUN．BLOCKS］ For more details on Function Blocks，please refer to dedicated Function Blocks manual．	
$\text { Fb } 5 \text { t }$ ，dLE ［HEC 5ヒロ P －ローヒ run Err	［FB status］ Function Block Status． ［Idle］（ ，$d L E$ ）：Idle state ［Check prog．］（［ H E［）：Check program state ［Stop］（5 $5 \mathrm{\square}$ ）：STOP state ［Init］（ $1 \cap, t$ ）：Initialization state ［Run］（ $\mathrm{r} \boldsymbol{\mathrm { L }} \mathrm{n}$ ）：：RUN state ［Error］（Err）：Error state	
FBFE	［FB fault］ Status of the function blocks execution． ［ No ］（ n 口）：：No error detected ［Internal］（,$\cap t$ ）：Internal error detected ［Binary file］（ b, \square ）：Binary error detected ［Intern para．］（,$\cap P$ ）：Internal parameter error detected ［Para．RW］（ $\mathrm{P}_{\mathrm{Fr}}^{\mathrm{r}}$ ）：Parameter access error detected ［Calculation］（［ A L ）：Calculation error detected ［TO synch］（ $t \square P P$ ）：TimeOut in PRE／POST task ［Bad ADLC］（ $A d L$ ）：ADLC with bad parameter ［Input assign．］（ in）：Input not configured	
Fb，－	［FB IDENTIFICATION］	
buEr	［Program version］ Program user version．Can be accessed if［FB status］（Fb5t）is not set to［Idle］（,$d L E)$ ．	
$b \cap 5$	［Program size］ Program file size．Can be accessed if［FB status］（Fレ5ヒ）is not set to［Idle］（,$~ d L E$ ）．	

Code	Name／Description	Unit	
ロாu	［Prg．format version］ Binary format version of the drive．Can be accessed if［FB status］（Fb5t）is not set to［Idle］（,$d L E)$ ．		
［	［Catalogue version］ Catalog version of the drive．		
Пロп－	［1．2 MONITORING］（continued）		
ГПП－	［COMMUNICATION MAP］ This menu is visible only on graphic display terminal，except for［COM．SCANNER INPUT MAP］．（ 5 月－）and MAP］．（a 5 A－）menus．		
$[\Pi d[$ ヒモーா НП， пыь 「月п tud nEt P 5	［Command channel］ Active command channel． ［Terminals］（ $\in \in\ulcorner\Pi$ ）：Terminals ［HMI］（ $\mathrm{H} \Pi_{1}$ ）：Graphic display terminal or remote display terminal ［Modbus］（ $\cap \downarrow b)$ ：Integrated Modbus ［CANopen］（ $\left[A_{n}\right.$ ）：Integrated CANopen® ［＋／－speed］$\left(\begin{array}{lll}L & \sim & d\end{array}\right)$ ：＋／－speed command ［Com．card］（ $n \in \in$ ）：Communication card（if inserted） ［PC tool］（P 5）：PC software		
［П】	［Cmd value］ DRIVECOM command register value． ［Profile］（［ H［ F ）is not set to［I／O profile］（ 1 口），see page 154. Possible values in CiA402 profile，separate or not separate mode． Bit 0：＂Switch on＂／Contactor command Bit 1：＂Disable voltage＂／Authorization to supply AC power Bit 2：＂Quick stop＂／Emergency stop Bit 3：＂Enable operation＂／Run command Bit 4 to Bit 6：Reserved（set to 0） Bit 7：＂Fault reset＂／error acknowledgment active on 0 to 1 rising edge Bit 8：Halt Stop according to the［Type of stop］（ $5 t t$ ）parameter without leaving the Operation enabled state Bit 9：Reserved（set to 0） Bit 10：Reserved（set to 0） Bit 11 to Bit 15：Can be assigned to a command Possible values in the I／O profile． On state command［2 wire］（ 2 ［）． Bit 0：Forward（on state）command $=0$ ：No forward command ＝1：Forward command The assignment of bit 0 cannot be modified．It corresponds to the assignment of the terminals．It can be switched is only active if the channel of this control word is active． Bit 1 to Bit 15：Can be assigned to commands． On edge command［3 wire］（ $\exists[$ ）． Bit 0：Stop（run authorization）． ＝0：Stop ＝1：Run is authorized on a forward or reverse command Bit 1：Forward（on 0 to 1 rising edge）command The assignment of bits 0 and 1 cannot be modified．It corresponds to the assignment of the terminals．It can be （ $[d \square \square$ ）and 1 （ $[d \square \\|$ ）are only active if the channel of this control word is active． Bit 2 to Bit 15：Can be assigned to commands	Bit $0\left(\left[\begin{array}{l}\text {（ }\end{array}\right)\right.$ witched．Bits 0	
$r F[C$ ヒErワ Loc НП， пыь 「月п tud nEt P 5	［Active ref．channel］ HMI reference channel． ［Terminals］（ $\in \in\ulcorner\Pi$ ）：Terminals ［Local］（L a［ ）：Jog dial ［HMI］（HП ）：Graphic display terminal or remote display terminal ［Modbus］（ $\cap \downarrow b)$ ：Integrated Modbus ［CANopen］$\left(\left[\begin{array}{l}\text { R }\end{array}\right)\right.$ ：Integrated CANopen® ［tUd］$(t \sim d):+/-$ speed command ［Com．card］（ $n E \in$ ）：Communication card（if inserted） ［PC tool］（ P 5）：PC software		
	［Frequency ref．］	Hz	

Code	Name / Description ${ }^{\text {a }}$
	Frequency reference before ramp.
EヒA	[ETA state word]
	DRIVECOM status word.
	Possible values in CiA402 profile, separate or not separate mode.
	Bit 0: "Ready to switch on", awaiting power section supply mains
	Bit 1: "Switched on", ready
	Bit 2: "Operation enabled", running
	Bit 3: "Fault" $=0$: No fault
	= 1: Fault
	Bit 4: "Voltage enabled", power section supply mains present = 0: Power section supply mains absent
	= 1: Power section supply mains present
	When the drive is powered by the power section only, this bit is always at 1 .
	Bit 5: Quick stop/Emergency stop Bit 6: "Switched on disabled", power section supply mains locked
	Bit 7: Alarm
	=0: No alarm
	Bit 8: Reserved (=0)
	Bit 9: Remote: command or reference via the network
	$=0$: Command or reference via the graphic display terminal or the remote display terminal = 1: Command or reference via the network
	Bit 10: Target reference reached
	= 0 : The reference is not reached
	= 1: The reference has been reached
	When the drive is in speed mode, this is the speed reference.
	Bit 11: "Internal limit active", reference outside limits
	$=0$: The reference is within the limits $=1$: The reference is not within the limits
	When the drive is in speed mode, the limits are defined by the [Low speed] ($L 5 P$) and [High speed] (H5P) parameters. Bit 12 and Bit 13: Reserved ($=0$)
	Bit 14: "Stop key", STOP via stop key
	$=0$: STOP key not pressed $=1 \cdot$ Stop trige
	$=1$: Stop triggered by the STOP key on the graphic display terminal or the remote display terminal Bit 15: "Direction", direction of rotation
	= 0: Forward rotation at output
	$=1$: Reverse rotation at output
	The combination of bits $0,1,2,4,5$ and 6 defines the state in the DSP 402 state chart (see the Communication manuals).
	Possible values in the I/O profile.
	Note: The value is identical in the CiA402 profile and the I/O profile. In the I/O profile, the description of the values is simplified and does not refer to the CiA402 (Drivecom) state chart.
	Bit 0: Reserved ($=0$ or 1)
	Bit 1: Ready
	= 0: Not ready $=1$: Ready
	Bit 2: Running
	= 0 : The drive will not start if a reference other than zero is applied.
	$=1$: Running, if a reference other than zero is applied, the drive can start. Bit 3: Fault
	Bit 3: Fault = 0: No fault
	= 1: Fault
	Bit 4: Power section supply mains present
	$=0$: Power section supply mains absent
	= 1: Power section supply mains present
	Bit 5: Reserved ($=1$)
	Bit 6: Reserved ($=0$ or 1)
	Bit 7: Alarm = 0: No alarm
	= 1: Alarm
	Bit 8: Reserved (=0)
	Bit 9: Command via a network
	$=0$: Command via the terminals or the graphic display terminal = 1. Command via a network
	$=1$: Command via a network

Code	Name／Description	Unit
	Bit 10：Reference reached $=0$ ：The reference is not reached ＝1：The reference has been reached Bit 11：Reference outside limits $=0$ ：The reference is within the limits $=1$ ：The reference is not within the limits When the drive is in speed mode，the limits are defined by LSP and HSP parameters． Bit 12 and Bit 13：Reserved（ $=0$ ） Bit 14：Stop via STOP key ＝0：STOP key not pressed ＝1：Stop triggered by the STOP key on the graphic display terminal or the remote display terminal Bit 15：Direction of rotation $=0$ ：Forward rotation at output ＝1：Reverse rotation at output	
Ппd－	［MODBUS NETWORK DIAG］ Modbus network diagnostic．	
Пdь I	［COM LED］ View of the Modbus Communication．	
П ILt	［Mb NET frames nb．］ Modbus network frame counter：Number of processed frames．	
П IE［	［Mb NET CRC errors］ Modbus network CRC error counter：Number of CRC errors．	
С ПП－	［COMMUNICATION MAP］（continued）	
，5月－	［COM．SCANNER INPUT MAP］ Used for CANopen® and Modbus Network．	
пП I	［Com Scan In1 val．］ Value of the 1st input word．	
ロワ己	［Com Scan In2 val．］ Value of the 2nd input word．	
пПヨ	［Com Scan In3 val．］ Value of the 3rd input word．	
п 14	［Com Scan In4 val．］ Value of the 4th input word．	
пП 5	［Com Scan In5 val．］ Value of the 5th input word．	
пПБ	［Com Scan In6 val．］ Value of the 6th input word．	
п $ワ 7$	［Com Scan In7 val．］ Value of the 7 th input word．	
п П日	［Com Scan In8 val．］ Value of the 8th input word．	
СПП－	［COMMUNICATION MAP］（continued）	
－5月－	［COM SCAN MAP］	
п［ I	［Com Scan Out1 val．］ Value of the 1st output word．	
n［ 2	［Com Scan Out2 val．］ Value of the 2nd output word．	
$\square[\exists$	［Com Scan Out3 val．］ Value of the 3rd output word．	
n［ 4	［Com Scan Out4 val．］ Value of the 4th output word．	
п［ 5	［Com Scan Out5 val．］ Value of the 5th output word．	

Code	Name／Description	Unit
п［ b	［Com Scan Out6 val．］ Value of the 6th output word．	
п［ 7	［Com Scan Out7 val．］ Value of the 7th output word．	
п［日	［Com Scan Out8 val．］ Value of the 8th output word．	
Г ПП－	［COMMUNICATION MAP］（continued）	
［ ，－	［CMD．WORD IMAGE］ Command word image：Only accessible via graphic display terminal．	
［пd I	［Modbus cmd．］ Modbus command word image．	
¢Пd己	［CANopen cmd．］ CANopen® command word image．	
［П】ヨ	［COM．card cmd．］ Communication card command word image．	
Г ПП－	［COMMUNICATION MAP］（continued）	
r ，－	［FREQ．REF．WORD MAP］ Frequency reference image：Only accessible via graphic display terminal．	
LFrI	［Modbus ref．］ Modbus frequency reference image．	Hz
LFre	［CANopen ref．］ CANopen® frequency reference image．	Hz
LFrヨ	［Com．card ref．］ Communication card frequency reference image．	Hz
Г ПП－	［COMMUNICATION MAP］（continued）	
［пП－	［CANopen MAP］ CANopen® image：Only accessible via graphic display terminal．	
［םп	［RUN LED］ View of the CANopen® RUN Led Status．	
L AnE	［ERR LED］ View of the CANopen® Error Led Status．	
Pロ1－	［PDO1 IMAGE］ View of the RPDO1 and TPDO1．	
	［Received PDO1－1］ First frame of the received PDO1．	
rPI己	［Received PDO1－2］ Second frame of the received PDO1．	
$r P / \exists$	［Received PDO1－3］ Third frame of the received PDO1．	
	［Received PDO1－4］ Fourth frame of the received PDO1．	
EP I I	［Transmit PDO1－1］ First frame of the transmit PDO1．	

Code	Name／Description	Unit
EPI己	［Transmit PDO1－2］ Second frame of the transmit PDO1．	
ヒP I ヨ	［Transmit PDO1－3］ Third frame of the transmit PDO1．	
$t P 14$	［Transmit PDO1－4］ Fourth frame of the transmit PDO1．	
［пП－	［CANopen MAP］（continued） CANopen® image：Only accessible via graphic display terminal．	
Pロコ－	［PDO2 IMAGE］ View of the RPDO2 and TPDO2：Same structure as［PDO1 IMAGE］（ $P_{\square} /-$ ）．	
$r P 己 1$	［Received PDO2－1］ First frame of the received PDO2．	
$r P 己 己$	［Received PDO2－2］ Second frame of the received PDO2．	
rPコヨ	［Received PDO2－3］ Third frame of the received PDO2．	
	［Received PDO2－4］ Fourth frame of the received PDO2．	
$\text { EP己 } 1$	［Transmit PDO2－1］ First frame of the transmit PDO2．	
ヒP己己	［Transmit PDO2－2］ Second frame of the transmit PDO2．	
ヒP己ヨ	［Transmit PDO2－3］ Third frame of the transmit PDO2．	
EPこ4	［Transmit PDO2－4］ Fourth frame of the transmit PDO2．	
［ п П－	［CANopen MAP］（continued） CANopen® image：Only accessible via graphic display terminal．	
Pロヨ－	［PDO3 IMAGE］ View of the RPDO3 and TPDO3：Same structure as［PDO1 IMAGE］（ $P_{\square} /-$ ）．	
$r P \exists I$	［Received PDO3－1］ First frame of the received PDO3．	
$r P \exists 己$	［Received PDO3－2］ Second frame of the received PDO3．	
$r P \exists \exists$	［Received PDO3－3］ Third frame of the received PDO3．	
$r P \exists 4$	［Received PDO3－4］ Fourth frame of the received PDO3．	

Code	Name／Description	Unit
ヒPヨI	［Transmit PDO3－1］ First frame of the transmit PDO3．	
ヒPヨ己	［Transmit PDO3－2］ Second frame of the transmit PDO3．	
ヒPヨヨ	［Transmit PDO3－3］ Third frame of the transmit PDO3．	
EPヨ4	［Transmit PDO3－4］ Fourth frame of the transmit PDO3．	
［пП－	［CANopen MAP］（continued） CANopen® image：Only accessible via graphic display terminal．	
$\begin{aligned} & \text { nПt } 5 \\ & \\ & \text { boat } \\ & 5 \text { taP } \\ & \text { वPE } \\ & P 口 P E \end{aligned}$	［Canopen NMT state］ Drive NMT State of the CANopen® slave． ［Boot］（ $\mathrm{b} \circ \square \mathrm{\square}$ ）：Bootup ［Stopped］（ 5 tロ P ）：Stopped ［Operation］（ $\square P E$ ）：Operational ［Pre－op］（ $P \square P E$ ）：Pre－Operational	
пレヒP	［Number of TX PDO］ Number of transmit PDO．	
nbrP	［Number of RX PDO］ Number of receive PDO．	
Er［	［Error code］ CANopen® error register（from 1 to 5）．	
$r E[1$	［RX Error Counter］ Controller Rx error counter（not stored at power off）．	
t E［ I	［TX error counter］ Controller Tx error counter（not stored at power off）．	

Code	Name／Description	Unit
Пロп－	［1．2 MONITORING］（continued）	
	［MONIT．PI］ PID management．Visible if［PID feedback ass．］（ P ，F）is not set to［No］（ \cap 口）．	
	［Internal PID ref．］ Internal PID reference：As a process value．	
$r P E$	［PID error］ PID error value．	
$r P F$	［PID feedback］ PID feedback value．	
$\begin{gathered} r P[\\ \star \end{gathered}$	［PID reference］ PID setpoint value via graphic display terminal．	
$r P$ ロ	［PID Output］ PID output value with limitation．	Hz
Пロп－	［1．2 MONITORING］（continued）	
PEt－	［MONIT．POWER TIME］	
APH	［Consumption］ Energy consumption in Wh，kWh or MWh（accumulated consumption）．	Wh，kWh，MWh
r H	［Run time］ Run elapsed time display（resetable）in seconds，minutes or hours（length of time the motor has been switch	s，min，h on）．
Pt H	［Power on time］ Power elapsed time display in seconds，minutes or hours（length of time the drive has been switched on）．	s，min，h
$r P_{r}$ （） $\begin{aligned} & n \mathrm{~B} \\ & \text { RPH } \\ & \text { rEH } \\ & \text { PEH } \end{aligned}$	［Operating t．reset］ Reset of run elapsed time． ［No］（ n 口）：Reset operation not in progress ［Reset kWh］（APH）：Clear［Reset kWh］（APH） ［rst．runtime］$(r \in H)$ ：Clear［rst．runtime］$(r t H)$ ［rst．P On t．］$(P \in H)$ ：Clear［rst．P On t．］$(P \in H)$	
Пロп－	［1．2 MONITORING］（continued）	
$[\cap F 5$	［Config．active］ View of the active configuration． ［In progress］（ ［Config． $\mathbf{n}^{\circ} \mathbf{0}$ ］（ $[\cap F \square)$ ：Configuration 0 active ［Config． $\left.\mathbf{n}^{\circ} 1\right]([\cap F \quad /)$ ：Configuration 1 active ［Config． \boldsymbol{n}° 2］（ $[\cap F$ 己）：Configuration 2 active	
	［Utilised param．set］ Configuration parameter status（can be accessed if parameter switching has been enabled，see page 229）． ［None］（ \quad 口 a ）：Not assigned ［Set No¹］（ L F P I）：Parameter set 1 active ［Set N ${ }^{\circ}$ 2］（ $[F P$ 己）：Parameter set 2 active ［Set $\mathrm{N}^{\circ} 3$ ］（ $[$ F P $⿻ コ 一 𠃌$ ）：Parameter set 3 active	

Code	Name／Description	Unit	
AL G r $\begin{gathered} --- \\ 1-2- \\ -2- \\ 12- \\ 1-3 \\ 1-3 \\ -2 \exists \\ 12 \exists \end{gathered}$	［Alarm groups］ Current impacted alarm group numbers． Group of alarms could be user defined in［INPUTS／OUTPUTS CFG］（ 1 －－－）page 125. ［－－－］（－－－）：No alarm group impacted ［1－－］（ I－－）：Alarm group 1 ［－2－］（－ᄅ－）：Alarm group 2 ［12－］（ $/$ 己－）：Alarm group 1 and 2 ［－－3］（－－ヨ）：Alarm group 3 ［1－3］（ $1-\exists$ ）：Alarm group 1 and 3 ［－23］（－ᄅ ヨ）：Alarm group 2 and 3 ［123］（ I ᄅ ヨ）：Alarm group 1， 2 and 3		
$\begin{gathered} 5 P d 1 \\ \text { or } \\ 5 P d 己 \\ \text { or } \\ 95 P \exists \end{gathered}$	［Cust．output value］ ［Cust．output value］（ 5 PdI），［Cust．output value］（ $5 P d$ ）or［Cust．output value］（ $5 P d \exists$ ）depending on the［Scale factor display］（ 5 d 5 ）parameter，page 104 （［Cust．output value］（ 5 P C ）in the factory setting）		
ALr－	［ALARMS］ List of current alarms． If an alarm is present，a \checkmark appears on the graphic display terminal．		
	［No alarm］（nロ月L） ［PTC alarm］$(P \in[L)$ ［External fault］$(E \in F)$ ［UnderV．al．］（ $~ 5 ~$ A） ［I attained］（［ ヒ A） ［Freq．Th．attain．］（F \in ） ［Freq．Th． 2 attained］（F ᄅA） ［Freq．ref．att］（5r月） ［Th．mot．att．］（ 15 A） ［Th．mot2 att．］（ ち 2 ） ［Th．mot3 att．］（ L $5 \exists)$ ［Underv．prev．］（ $~ \\| P$ F） ［HSP attain．］（FLA） ［Al．${ }^{\circ} \mathrm{C}$ drv］（ E H A） ［Alarm group 1］（ $\mathrm{A}[$ I） ［Alarm group 2］（ （［ 己） ［Alarm group 3］（ ㄷ ヨ） ［PID error al］（PEE） ［PID fdbk al．］（PF A） ［AI3 AI．4－20mA］（AP ヨ） ［Lim T／I att．］（5 5 A） ［Th．drv．att．］（ 1 月 d） ［IGBT alarm］（ L 」A） ［Brake R．al．］（ $\quad \square \mathrm{A}$ ） ［Underload．Proc．Al．］（ $~ / ~ L$ A） ［Overload．Proc．AI．］（ $~$ L A） ［Rope slack alarm］（ r 5 d ） ［High torque alarm］（ $1 \in$ H A ） ［Low torque alarm］（ $t \in L A$ ） ［Dynamic load alarm］（ $d L d A$ ） ［Freq．meter Alarm］（F q L A）		

Code	Name／Description	Unit
$55 t-$	［OTHER STATE］ List of secondary states． This menu is visible only on graphic display terminal．	
	［In motor fluxing］（FL ［PTC Alarm］（ $P \in[L$ ） ［Fast stop in prog．］（F5t） ［Current Th．attained］（［ ヒ 月） ［Freq．Th．attained］（F E A） ［Freq．Th． 2 attained］（F 己 A） ［Frequency ref．att．］（ 5 r A） ［Motor th．state att．］（L5 A） ［External fault alarm］（ $E \in F$ ） ［Auto restart］（ A$\lrcorner \mathrm{L}$ ロ） ［Remote］ ［Auto－tuning］（ t u ） ［Undervoltage］（ L S月） ［Config． 1 act．］（［ $\cap F I)$ ［Config． 2 act．］（ $[\cap F$ C） ［HSP attained］（ $F L$ A） ［Set 1 active］（ $[$ F P I） ［Set $\mathbf{2}$ active］（ $[F P$ C） ［Set 3 active］（ $[$ FP \exists ） ［In braking］（br 5） ［DC bus loading］（ \ddagger bL） ［High torque alarm］（ t L HA） ［Low torque alarm］（ $t \in L A$ ） ［Forward］（ $\Pi \mathrm{Frd}$ ） ［Reverse］（ $\mathrm{H}_{\mathrm{L}} \mathrm{r} 5$ 5） ［Freq．metre Alarm］（F q L A）	
dLE－	［DIAGNOSTICS］ This menu is visible only on graphic display terminal．	
PF H－	［FAULT HISTORY］ Shows the 8 last detected faults．	
dP I nof A5 F bLF brF CFF ［F，己 ［ $n \mathrm{~F}$ C口F LrF ［5 F dLF EEF। EEF 己 EPF। EPF 2 FbE FbES FLF 1 FLF 2 HLF HdF ，L F ，ח F 1 inF 3 inF \exists inF 4 InF inFg	［Past fault 1］ Fault record 1 （ 1 is last）． ［No fault］（ $n \circ F$ ）：No detected fault stored ［Angle error］（AS F ）：Angle setting detected fault ［Brake control］（ $\llcorner\llcorner F$ ）：Brake＇s motor 3－phases loss ［Brake feedback］（ b r F ）：Brake contactor detected error ［Incorrect config．］（［ F F ）：Invalid configuration at power on ［Bad conf］（ $[F, ~ ᄅ)$ ：Configuration transfer detected error ［Com．network］（ $[\cap F)$ ：NET option communication interruption ［CAN com．］（［ a F ）：CANopen® communication interruption ［Capa．charg］（ $[r F$ ）：Load relay detected fault ［Ch．sw．fault］（L 5F）：Channel switching detected error ［Load fault］（dL F）：Dynamic load detected error ［Control EEprom］（E E F I）：Control EEprom detected error ［Power Eeprom］（ $E \in F$ 己）：Power EEprom detected error ［External fault LI／Bit］（ E PF I）：External detected fault from LI or local link ［External fault com．］（ $E P F$ 己）：External interruption from communication board ［FB fault］（ $F\llcorner E$ ）：Function block detected error ［FB stop fly．］（ F b E 5）：Function block stop detected error ［Out．contact．stuck］（F［ F I）：Output contactor：closed contactor ［Out．contact．open．］$\left(F\left[F \sum\right)\right.$ ：Output contactor：opened contactor ［Cards pairing］（H［ F ）：Hardware configuration detected error ［IGBT desaturation］$(H d F)$ ：Hardware detected error ［Option int link］（ ，L F ）：Option internal link interruption ［Rating error］（ $1 \cap F /)$ ：Unknown drive rating ［PWR Calib．］（ $1 \cap$ F 己）：Unknown or incompatible power board ［Int．serial link］（,$\cap F \exists)$ ：Internal serial link communication interruption ［Int．Mfg area］（ $\cap \cap$ F 4）：Invalid industrialization zone ［Internal－option］（ $1 \cap F$ E）：Unknown or incompatible option board ［Internal－I measure］（ inF9）：Current measurement circuit detected error	

Code	Name／Description	Unit	
וnF月	［Internal－mains circuit］（ \cap F A）：Input phase loss circuit detected error		
InFb	［Internal－th．sensor］（ \cap F b ）：Thermal sensor detected error（OC or SC）		
InFE	［Internal－CPU］（ ，пFE）：CPU detected fault（ram，flash，task ．．．）		
L［ F	［Input contactor］（L［ F ）：Line contactor detected error		
LFFヨ	［A13 4－20mA loss］（ LFF 3 ）：Al3 4－20 mA loss		
－bF	［Overbraking］（abF）：Overbraking		
\square－F	［Overcurrent］（ \square［F）：Overcurrent		
－HF	［Drive overheat］（ OHF ）：Drive overheating		
－L［	［Proc．Overload FIt］（ a L［ ）：Torque overload		
－LF	［Motor overload］（ L L F ）：Motor overload		
$\square \mathrm{PF} 1$	［1 output phase loss］（aPF I）：Motor 1－phase loss		
$\square P F 己$	［3out ph loss］（ $\square P F$ 己）：Motor 3－phases loss		
$\square 5 F$	［Mains overvoltage］（ $\square 5 \mathrm{~F}$ ）：Oversupply detected fault		
－ 6 F L	［PTC fault］（ at F ）：Motor overheating detected error from PTCL：standard product		
PHF	［Input phase loss］（ $P H F$ ）：Main input 1－phase loss		
PtFL	［LI6＝PTC probe］（ $P \in F L$ ）：PTCL detected error（OC or SC）		
5 AFF	［Safety］（ 5 A F F）：Safety function		
$5[\mathrm{~F}$ ।	［Motor short circuit］（ $5[\mathrm{~F} /$ ）：Motor short circuit（hard detection）		
$5[F \exists$	［Ground short circuit］（ $5[\mathrm{~F} \exists$ ）：Direct ground short－circuit（hard detection）		
5 CF 4	［IGBT short circuit］（ 5 ［ F 4）：IGBT short－circuit（hard detection）		
5［F5	［Motor short circuit］（［ F 5 ）：Load short－circuit during Igon load sequence（hard detection）		
5LF 1	［Modbus com．］（ 5 LF／）：Modbus local serial communication interruption		
$5 L F 2$	［PC com．］（ 5 L F e）：PC Software communication interruption		
$5 L F \exists$	［HMI com．］（ 5 LF $⿻$ ］）：Remote terminal communication interruption		
$5 \square F$	［Overspeed］（ $5 \square F$ ）：Overspeed		
5 PF	［Speed fdback loss］（ $5 P F$ ）：Speed feedback loss		
55 F	［Torque／current lim］（55F）：Torque current limitation detected fault		
$t J F$	［IGBT overheat］$(t\lrcorner F)$ ：IGBT overheating		
$t \cap F$	［Auto－tuning］（ $E \cap F$ ）：Tune detected fault		
u LF	［Pr．Underload FIt］（ $u L F$ ）：Torque underload		
$\triangle 5 \mathrm{~F}$	［Undervoltage］（ 45 F ）：Undervoltage		
H 51	［Drive state］		
	HMI Status of the detected fault record 1.		
tun	［Auto－tuning］（ $\begin{aligned} & \mathrm{L} \sim \mathrm{r}) \text { ）：Auto－tuning }\end{aligned}$		
d［b	［In DC inject．］（ d［ b b）：Injection braking		
rdy	［Ready］（ rctl^{4} ）：Drive ready		
n5t	［Freewheel］（ $n 5 t$ ）：Freewheel stop control		
「un	［Drv running］（ \upharpoonright r $\sim \boldsymbol{r})$ ）：Motor in steady state or run command present and zero reference		
H［ 5	［In accel．］（ $\mathrm{A}[\mathrm{C}$ ）：Acceleration		
dE［	［In decel．］（ d E［ ）：Deceleration		
［ L ，	［Current lim．］（［ L ，）：Current limit （in case of using a synchronous motor，if the motor does not start，follow the procedure page 112）		
F5t	［Fast stop］（ $F 5 t$ ）：Fast stop		
FLu	［Mot．fluxing］（FLu）：Fluxing function is activated		
nLP	［no mains V．］（ $\cap \perp P$ ）：Control is powered on but the DC bus is not loaded		
ᄃ 1 L	［control．stop］（ $[1 L)$ ：Controlled stop		
abr	［Dec．adapt．］（abr）：Adapted deceleration		
$5 \square 5$	［Output cut］（ $5 \square[$ ）：Stand by output cut		
－ 5 A	［UnderV．al．］（ ~ 5 A）：Undervoltage alarm		
t［	［In mfg．test］（ $\llcorner[$ ）：TC indus mode activated		
51	［in autotest］（ $5 t$ ）：Self test in progress		
F H	［autotest err］（ $F A$ ）：Self test detected error ［Autotest OK］（ $4 \in 5$ ）：Self test OK		
YE 5			
EP	［eeprom test］（ $E P$ ）：Self test Eeprom detected error		
FLt	［In fault］（ $F L E$ ）：Product has detected a fault		
551	［SS1 active］（ 551 ）：Safety function SS1		
5L5	［SLS active］（ $5<5$ ）：Safety function SLS		
5to	［STO active］（ 5 L 口 ）：Safety function STO		
$5 \Pi 5$	［SMS active］（ $5 \square 5$ ）：Safety function SMS［GdL active］（ $¢ \\| L)$ ：Safety function GdL		
$\square d L$			
EP I	［ETA state word］		
	DRIVECOM status register of detected fault record 1 （same as［ETA state word］（EヒA）page 57）．		
，P 1	［ETI state word］		
	Extended status register of detected fault record 1 （see the communication parameters file）．		

Code	Name / Description	Unit
ГПР I	[Cmd word] Command register of detected fault record 1 (same as [Cmd word] ($[\Pi \downarrow$) page 56).	
L [P I	[Motor current] Estimated motor current of detected fault record 1 (same as [Motor current] (L [r) page 50).	A
rFP I	[Output frequency] Estimated motor frequency of detected fault record 1 (same as [Output frequency] ($\stackrel{r}{ } \mathrm{~F}_{\mathrm{r}}$) page 50).	Hz
r P 1	[Elapsed time] Elapsed run time of detected fault record 1 (same as [Elapsed time] (r t H) page 62).	h
uLP I	[Mains voltage] Main voltage of detected fault record 1 (same as [Mains voltage] ($u \mathrm{~L} \cap$) page $\underline{\text { 50 }}$).	V
EHP I	[Motor thermal state] Motor thermal state of detected fault record 1 (same as [Motor thermal state] (t H г) page 50).	\%
$d[[1$	[Command Channel] Command channel of detected fault record 1 (same as [Command channel] ($[\Pi \square[$) page 56).	
$d r[1$	[Channel ref. active] Reference channel of detected fault record 1 (same as [Channel ref. active] ($r F[\Sigma)$ page $\underline{56}$).	
$5 r 11$	[Saf01 Reg n-1] SAF1 Register x (1 is last)	
5 rel	[Saf02 Reg n-1] SAF2 Register x (1 is last)	
5 r月1	[SF00 Reg n -1] SF00 Register x (1 is last)	
5 rbl	[SF01 Reg n -1] SF01 Register x (1 is last)	
$5 r[1$	[SF02 Reg n -1] SF02 Register x (1 is last)	
$5 r d 1$	[SF03 Reg n -1] SF03 Register x (1 is last)	
$5 r E 1$	[SF04 Reg n-1] SF04 Register x (1 is last)	
$5 r$ F 1	[SF05 Reg n -1] SF05 Register x (1 is last)	
$5 r \square 1$	[SF06 Reg n -1] SF06 Register x (1 is last)	
5 r H 1	[SF07 Reg n-1] SF07 Register x (1 is last)	
$5 r 11$	[SF08 Reg $\mathbf{n - 1}$] SF08 Register x (1 is last)	
$5 r$ 」 1	[SF09 Reg n-1] SF09 Register x (1 is last)	
$5 r$ K 1	[SF10 Reg n -1] SF10 Register x (1 is last)	
$5 r$ L 1	[SF11 Reg n -1] SF11 Register x (1 is last)	

Code	Name／Description	Unit
P F H－	［FAULT HISTORY］（continued） Shows the 8 last detected faults．	
dP己	［Past fault 2］ and［SF02 Reg n－2］（ $5 r[$ 己 ）to［SF11 Reg n－2］（ $5 r L$ e）may be visible with this parameter． Identical to［Past fault 1］（ $d P /$ ）page 64.	
$\pm P \exists$	［Past fault 3］ and［SF02 Reg n－3］（ $5 \sim[\exists)$ to［SF11 Reg n－3］（ $5 r L \exists$ ）may be visible with this parameter． Identical to［Past fault 1］（ $\quad \mathrm{AP} /$ ）page 64.	
dP4	［Past fault 4］ ［Saf1 Regn－4］（5r 14），［Saf2 Regn－4］（5 r ᄅ 4），［SF00 Regn－4］（5 r 月 4），［SF01 Regn－4］（5 г ம 4）， and［SF02 Reg n－4］（ $5 r[4)$ to［SF11 Reg n－4］（ $5 r / 4$ ）may be visible with this parameter． Identical to［Past fault 1］（ $\ddagger P /$ ）page 64 ．	
dP5	［Past fault 5］ ［Saf1 Regn－5］（5r｜5），［Saf2 Reg n－5］（5re 5），［SF00 Reg n－5］（5r－月5），［SF01 Regn－5］（5rb5）， and［SF02 Reg n－5］（5 r［5）to［SF11 Reg n－5］（ $5 r / 5$ ）may be visible with this parameter． Identical to［Past fault 1］（ $\quad \mathrm{P} / \mathrm{I}$ ）page 64 ．	
$\pm P G$	［Past fault 6］ Identical to［Past fault 1］（ ΔP ）page 64.	
$d P 7$	［Past fault 7］ ［Saf1 Regn－7］（5r｜7），［Saf2 Regn－7］（5 r ᄅ 7），［SF00 Regn－7］（5 r 月 7），［SF01 Regn－7］（5 r b 7）， and［SF02 Reg n－7］（ $5 r[7$ ）to［SF11 Reg n－7］（ $5 r L 7$ ）may be visible with this parameter． Identical to［Past fault 1］（ $\quad \mathrm{f} \mid$ ）page 64 ．	
dP日	［Past fault 8］ and［SF02 Reg n－8］（ $5 r[\theta$ ）to［SF11 Reg n－8］（ $5 r L$ 日）may be visible with this parameter． Identical to［Past fault 1］（ $d P /$ ）page 64 ．	

Code	Name／Description	Unit
d L－	［DIAGNOSTICS］（continued）	
PFL－	［CURRENT FAULT LIST］	
nof	［No fault］（ $\cap \square F$ ）：No detected fault stored	
月 5 F	［Angle error］（ $⿻$ S F ）：Angle setting detected fault	
bLF	［Brake control］（ $~ L ~ L ~ F ~): ~ B r a k e ' s ~ m o t o r ~ 3-p h a s e s ~ l o s s ~$	
brF	［Brake feedback］（brF）：Brake contactor detected error	
［ F F	［Incorrect config．］（ $/ F F$ ）：Invalid configuration at power on	
［F，己	［Bad conf］（［ F ，己）：Configuration transfer detected error	
$[\cap F$	［Com．network］（ $[\cap F)$ ：NET option communication interruption	
［口F	［CAN com．］（［םF）：CANopen® communication interruption	
［rF	［Capa．charg］（ $[r F)$ ：Load relay detected fault	
［5F	［Ch．sw．fault］（ 5 F ）：Channel switching detected error	
dLF	［Load fault］（ d L F ）：Dynamic load detected error	
EEFI	［Control EEprom］（EEF I）：Control EEprom detected error	
EEF 己	［Power Eeprom］（E E F 己）：Power EEprom detected error	
EPFI	［External fault LI／Bit］（EPF I）：External detected fault from LI or local link	
EPF己	［External fault com．］（EPF ）：External interruption from communication board	
FbE	［FB fault］（FbE）：Function block detected error	
FbE 5	［FB stop fly．］（F b E 5 ）：Function block stop detected error	
F［FI	［Out．contact．stuck］（ F［ F I）：Output contactor：closed contactor	
F［F ᄅ	［Out．contact．open．］（F［ F 己）：Output contactor：opened contactor	
H［ F	［Cards pairing］（HLF）：Hardware configuration detected error	
HdF	［IGBT desaturation］$(H \triangleleft F)$ ：Hardware detected error	
，LF	［Option int link］（ ，LF ）：Option internal link interruption	
，nF I	［Rating error］（ $\cap \cap F 1)$ ：Unknown drive rating	
$1 \cap F 己$	［PWR Calib．］（ $1 \cap F 己$ ）：Unknown or incompatible power board	
$1 \sim F \exists$	［Int．serial link］（ $1 \cap F \exists)$ ：Internal serial link communication interruption	
inF 4	［Int．Mfg area］（ \cap F 4）：Invalid industrialization zone	
$1 \rightarrow F E$	［Internal－option］（ inF $)$ ：Unknown or incompatible option board	
$1 \sim F 9$	［Internal－I measure］（ n F 9）：Current measurement circuit detected error	
$1 \rightarrow F A$	［Internal－mains circuit］（ $1 \cap$ F A）：Input phase loss circuit detected error	
1 nFb	［Internal－th．sensor］（ $1 \cap F b$ ）：Thermal sensor detected error（OC or SC）	
$1 \cap F E$	［Internal－CPU］（ inF E ）：CPU detected fault（ram，flash，task ．．．）	
$L[F$	［Input contactor］（ L F ）：Line contactor detected error	
LFFヨ	［AI3 4－20mA loss］（LFF 3）：Al3 4－20 mA loss	
－bF	［Overbraking］（ロロF）：Overbraking	
\square－F	［Overcurrent］（ \square［ F ）：Overcurrent	
－HF	［Drive overheat］（ $\square H F$ ）：Drive overheating	
－L［	［Proc．Overload Flt］（ \square L［ ）：Torque overload	
－LF	［Motor overload］（aLF）：Motor overload	
－PF I	［1 output phase loss］（םPF I）：Motor 1－phase loss	
$\square P F 2$	［3out ph loss］（ $\square P F \mathcal{C}$ ）：Motor 3－phases loss	
－5 F	［Mains overvoltage］（a5F）：Oversupply detected fault	
－tFL	［PTC fault］（ $\square, F L$ ）：Motor overheating detected error from PTCL：standard product	
PHF	［Input phase loss］（ P HF）：Main input 1－phase loss	
PEFL	［LI6＝PTC probe］（ $P \in F L$ ）：PTCL detected error（OC or SC）	
5 AFF	［Safety］（ 5 A F F ）：Safety function	
$5[F I$	［Motor short circuit］（ $5\left[\begin{array}{l}\text { F }\end{array}\right.$ ）：Motor short circuit（hard detection）	
$5[F \exists$	［Ground short circuit］（ $5[F \exists$ ）：Direct ground short－circuit（hard detection）	
$5[F 4$	［IGBT short circuit］（ 5 ［ F 4）：IGBT short－circuit（hard detection）	
$5[F 5$	［Motor short circuit］（ 5 ［ F 5）：Load short－circuit during Igon load sequence（hard detection）	
$5 L F I$	［Modbus com．］（5LFI）：Modbus local serial communication interruption	
$5 L F 己$	［PC com．］（5LF $)$ ）PC Software communication interruption	
$5 L F \exists$	［HMI com．］（ $5 / F \exists)$ ：Remote terminal communication interruption	
$5 \square F$	［Overspeed］（ $5 \square F$ ）：Overspeed	
$5 P F$	［Speed fdback loss］（ $5 P F$ ）：Speed feedback loss	
55 F	［Torque／current lim］（ 55 F ）：Torque current limitation detected fault	
$t\lrcorner F$	［IGBT overheat］$(t\lrcorner F)$ ：IGBT overheating	
$t \cap F$	［Auto－tuning］$(E \cap F)$ ：Tune detected fault	
$\because L F$	［Pr．Underload FIt］（ $\lrcorner L \mathcal{F}$ ）：Torque underload	
$\because 5 \mathrm{~F}$	［Undervoltage］（ 45 F）：Undervoltage	

Code	Name / Description ${ }^{\text {a }}$ (Unit
AF , -	[MORE FAULT INFO] Additional detected fault information.
$\square \cap F$	[Network fault] Communication option card fault code. This parameter is read-only. The fault code remains saved in the parameter, even if the cause disappears. The parameter is reset after the drive is disconnected and then reconnected. The values of this parameter depend on the network card. Consult the manual for the corresponding card.
, LF	[Internal link fault 1] Communication interruption between option card 1 and drive. This parameter is read-only. The fault code remains saved in the parameter, even if the cause disappears. The parameter is reset after the drive is disconnected and then reconnected.
5 FFE	[Safety fault reg.] (1) Safety function fault error register. Bit0 = 1: Logic inputs debounce time-out (verify value of debounce time LIDT according to the application) Bit1 Reserved Bit2 = 1: Motor speed sign has changed during SS1 ramp Bit3 = 1: Motor speed has reached the frequency limit threshold during SS1 ramp. Bit4: Reserved Bit5: Reserved Bit6 = 1: Motor speed sign has changed during SLS limitation Bit7 = 1: Motor speed has reached the frequency limit threshold during SS1 ramp. Bit8: Reserved Bit9: Reserved Bit10: Reserved Bit11: Reserved Bit12: Reserved Bit13 = 1: Not possible to measure the motor speed (verify the motor wiring connection) Bit14 = 1: Motor ground short-circuit detected (verify the motor wiring connection) Bit15 = 1: Motor phase to phase short-circuit detected (verify the motor wiring connection)
5 F F I	[Safety fault Reg1] (1) Safety fault register 1. Application control error register. Bit0 = 1: PWRM consistency detected error Bit1 = 1: Safety functions parameters detected error Bit2 = 1: Application auto test has detected an error Bit3 = 1: Diagnostic verification of safety function has detected an error Bit4 = 1: Logical input diagnostic has detected an error Bit5 = 1: SMS or GDL safety functions detected error (Details in [SAFF Subcode 4] 5F $\square 4$ register page 71) Bit6 = 1: Application watchdog management active Bit7 = 1: Motor control detected error Bit8 = 1: Internal serial link core detected error Bit9 = 1: Logical input activation detected error Bit10 = 1: Safe Torque Off function has triggered an error Bit11 = 1: Application interface has detected an error of the safety functions Bit12 = 1: Safe Stop 1 function has detected an error of the safety functions Bit13 = 1: Safely Limited Speed function has triggered an error Bit14 = 1: Motor data is corrupted Bit15 = 1: Internal serial link data flow detected error

[^0]| Code | Name / Description | Unit |
| :---: | :---: | :---: |
| 5 月 F | [Safety fault Reg2] (1)
 Safety fault register 2
 Motor Control error register
 Bit0 = 1 : Consistency stator frequency verification has detected an error
 Bit1 = 1 : Stator frequency estimation detected error
 Bit2 = 1: Motor control watchdog management is active
 Bit3 = 1 : Motor control hardware watchdog is active
 Bit4 = 1 : Motor control auto test has detected an error
 Bit5 = 1 : Chain testing detected error
 Bit6 = 1 : Internal serial link core detected error
 Bit7 = 1 : Direct short-circuit detected error
 Bit8 = 1 : PWM driver detected error
 Bit9 = 1: GDL internal detected error
 Bit10 : Reserved
 Bit11 = 1 : Application interface has detected an error of the safety functions
 Bit12 = 1: Reserved
 Bit13: Reserved
 Bit14 = 1 : Motor data is corrupted
 Bit15 = 1 : Internal serial link data flow detected error | |
| $5 F \square \square$ | [SAFF Subcode 0] (1)
 Safety fault subregister 00
 Appplication auto test error register
 Bit0 : Reserved
 Bit1 = 1 : Ram stack overflow
 Bit2 = 1 : Ram address integrity error
 Bit3 = 1 : Ram data access error
 Bit4 = 1 : Flash Checksum Error
 Bit5 : Reserved
 Bit6 : Reserved
 Bit7 : Reserved
 Bit8 : Reserved
 Bit9 = 1 : Fast task overflow
 Bit10 = 1 : Slow task overflow
 Bit11 = 1 : Application task overflow
 Bit12 : Reserved
 Bit13 : Reserved
 Bit14 = 1 : PWRM line is not activated during initialization phase
 Bit15 = 1 : Application hardware Watch Dog is not running after initialization | |
| $5 F \square 1$ | [SAFF Subcode 1] (1)
 Safety fault subregister 01
 Logical input diagnostics error register
 Bit0 = 1 : Management - state machine error
 Bit1 = 1 : Data required for test management are corrupted
 Bit2 = 1 : Channel selection detected error
 Bit3 = 1 : Testing - state machine detected error
 Bit4 $=1$: Test request is corrupted
 Bit5 = 1 : Pointer to test method is corrupted
 Bit6 = 1 : Incorrect test action provided
 Bit7 = 1 : Detected Error in results collecting
 Bit8 = $1:$ LI3 detected error. Cannot activate safe function
 Bit9 = 1 : LI4 detected error. Cannot activate safe function
 Bit10 = 1 : LI5 detected error. Cannot activate safe function
 Bit11 = 1 : LI6 detected error. Cannot activate safe function
 Bit12 = 1 : Test sequence updated while a diagnostic is in progress
 Bit13 = 1 : Detected error in test pattern management
 Bit14 : Reserved
 Bit15 : Reserved | |

(1) Hexadecimal values are displayed on the Graphic display terminal

Example:
SFFE $=0 \times 0008$ in Hexadecimal
SFFE $=$ Bit 3

Code	Name／Description	Unit
5 Fロ己	［SAFF Subcode 2］（1） Safety fault subregister 02 Application Watchdog Management detected error register Bit0＝ 1 ：Fast task detected error Bit1＝ 1 ：Slow task detected error Bit2 $=1$ ：Application task detected error Bit3＝ 1 ：Background task detected error Bit4＝ 1 ：Safety fast task／input detected error Bit5＝ 1 ：Safety slow task／input detected error Bit6＝ 1 ：Safety app task／input detected error Bit7＝ 1 ：Safety app task／treatment detected error Bit8＝ 1 ：Safety background task detected error Bit9 ：Reserved Bit10 ：Reserved Bit11 ：Reserved Bit12 ：Reserved Bit13 ：Reserved Bit14 ：Reserved Bit15 ：Reserved	
5Fロヨ	［SAFF Subcode 3］（1） Safety fault subregister 03 Bit0 $=1$ ：Debounce time out Bit1 $=1$ ：Input not consistent Bit2 $=1$ ：Consistency check －state machine detected error Bit3 $=1$ ：Consistency check－debounce timeout corrupted Bit4＝1：Response time data detected error Bit5 $=1$ ：Response time corrupted Bit6 $=1$ ：Undefined consumer queried Bit7 $=1$ ：Configuration detected error Bit8 $=1$ ：Inputs are not in nominal mode Bit9 ：Reserved Bit10 ：Reserved Bit11 ：Reserved Bit12 ：Reserved Bit13 ：Reserved Bit14 ：Reserved Bit15 ：Reserved	
	［SAFF Subcode 4］（1） Safety fault subregister 04 ［Safe Torque Off］5t a detected error register Bit0＝ 1 ：No signal configured Bit1＝ 1 ：State machine detected error Bit2＝ 1 ：Internal data detected error Bit3 ：Reserved Bit4 ：Reserved Bit5 ：Reserved Bit6 ：Reserved Bit7 ：Reserved Bit8＝ 1 ：SMS overspeed detected error Bit9 $=1$ ：SMS internal detected error Bit10 ：Reserved Bit11＝ 1 ：GDL internal detected error 1 Bit12＝ 1 ：GDL internal detected error 2 Bit13 ：Reserved Bit14 ：Reserved Bit15 ：Reserved	

（1）Hexadecimal values are displayed on the Graphic display terminal
Example：
SFFE $=0 \times 0008$ in Hexadecimal
SFFE $=$ Bit 3

Code	Name / Description	Unit
SFO5	[SAFF Subcode 5] (1) Safety fault subregister 05 [Safe Stop 1] 55 / detected error register Bit0 = 1 : State machine detected error Bit1 = 1: Motor speed sign changed during stop Bit2 $=1$: Motor speed reached trigger area Bit3 = 1 : Theoretical motor speed corrupted Bit4 = 1 : Unauthorized configuration Bit5 = 1 : Theoretical motor speed computation detected error Bit6 : Reserved Bit7 = 1 : Speed sign check: consistency detected error Bit8 = 1 : Internal SS1 request corrupted Bit9 : Reserved Bit10 : Reserved Bit11 : Reserved Bit12 : Reserved Bit13 : Reserved Bit14 : Reserved Bit15 : Reserved	
5 Fロロ	[SAFF Subcode 6] (1) Safety fault subregister 06 [Safely Limited Speed] S L S detected error register Bit0 $=1$: State machine error register Bit1 = 1 : Motor speed sign changed during limitation Bit2 = 1 : Motor speed has reached the frequency limit threshold Bit3 = 1 : Data corruption Bit4 : Reserved Bit5 : Reserved Bit6 : Reserved Bit7 : Reserved Bit8 : Reserved Bit9 : Reserved Bit10 : Reserved Bit11 : Reserved Bit12 : Reserved Bit13 : Reserved Bit14 : Reserved Bit15 : Reserved	
5FO7	[SAFF Subcode 7] (1) Safety fault subregister 07 Application Watchdog Management detected error register Bit0 : Reserved Bit1 : Reserved Bit2 : Reserved Bit3 : Reserved Bit4 : Reserved Bit5 : Reserved Bit6 : Reserved Bit7 : Reserved Bit8 : Reserved Bit9 : Reserved Bit10 : Reserved Bit11 : Reserved Bit12 : Reserved Bit13 : Reserved Bit14 : Reserved Bit15 : Reserved	

(1) Hexadecimal values are displayed on the Graphic display terminal

Example:
SFFE $=0 \times 0008$ in Hexadecimal
SFFE = Bit 3

Code	Name / Description	Unit
5 Fロ日	[SAFF Subcode 8] (1) Safety fault subregister 08 Application Watchdog Management detected error register Bit0 = 1: PWM task detected error Bit1 = 1 : Fixed task detected error Bit2 $=1$: ATMC watchdog detected error Bit3 = 1 : DYNFCT watchdog detected error Bit4 : Reserved Bit5 : Reserved Bit6 : Reserved Bit7 : Reserved Bit8 : Reserved Bit9 : Reserved Bit10 : Reserved Bit11 : Reserved Bit12 : Reserved Bit13 : Reserved Bit14 : Reserved Bit15 : Reserved	
5 F-9	[SAFF Subcode 9] (1) Safety fault subregister 09 Motor control Auto Test detected error register Bit0 : Reserved Bit1 = 1 : Ram stack overflow Bit2 = 1 : Ram address integrity detected error Bit3 = 1 : Ram data access detected error Bit4 = 1 : Flash Checksum detected error Bit5 : Reserved Bit6 : Reserved Bit7 : Reserved Bit8 : Reserved Bit9 = 1: 1ms task overflow Bit10 = 1 : PWM task overflow Bit11 = 1 : Fixed task overflow Bit12 : Reserved Bit13 : Reserved Bit14 = 1 : Unwanted interruption Bit15 = 1 : Hardware WD is not running after initialization	
5 F ID	[SAFF Subcode 10] (1) Safety fault subregister 10 Motor control direct short-circuit detected error register Bit0 = 1: Ground short circuit - Configuration detected error Bit1 = 1 : Phase to phase short circuit - Configuration detected error Bit2 = 1 : Ground short circuit Bit3 $=1$: Phase to phase short circuit Bit4 : Reserved Bit5 : Reserved Bit6 : Reserved Bit7 : Reserved Bit8 : Reserved Bit9 : Reserved Bit10 : Reserved Bit11 : Reserved Bit12 : Reserved Bit13 : Reserved Bit14 : Reserved Bit15 : Reserved	

(1) Hexadecimal values are displayed on the Graphic display terminal

Example:
SFFE $=0 \times 0008$ in Hexadecimal
SFFE = Bit 3

Code	Name／Description	Unit
5 F 11	［SAFF Subcode 11］（1） Safety fault subregister 11 Motor Control dynamic check of activity detected error register Bit0 $=1$ ：Application requested a diagnostic of direct short circuit Bit1＝ 1 ：Application requested consistency verification of stator frequency estimation（voltage and current） Bit2＝ 1 ：Application requested diagnostic of SpdStat provided by Motor Control Bit3 ：Reserved Bit4 ：Reserved Bit5 ：Reserved Bit6 ：Reserved Bit7 ：Reserved Bit8＝ 1 ：Motor Control safe diagnostic of direct short circuit is enabled Bit9＝ 1 ：Motor Control consistency check of stator frequency estimation is enabled Bit10＝ 1 ：Motor Control diagnostic of SpdStat provided by Motor Control is enabled Bit11 ：Reserved Bit12 ：Reserved Bit13 ：Reserved Bit14 ：Reserved Bit15 ：Reserved	
d［t－	［DIAGNOSTICS］（continued）	
t $\boldsymbol{\text {［ }}$	［IGBT alarm counter］ Transistor alarm time counter（length of time the＂IGBT temperature＂alarm has been active）．	
ヒ月［	［Min．freq time］ Transistor alarm time counter at minimum switching frequency（length of time the＂IGBT temperature＂alarm has the drive has automatically reduced the switching frequency to the minimum value）．	en active after
$n t\lrcorner$	［IGBT alarm Nb］ Transistor alarm counter：number detected during lifecycle． Visible if［3．1 ACCESS LEVEL］（L AL ）is set to［Expert］（EPr ）．	
5 Er－	［SERVICE MESSAGE］ See page 289 ．	
$r F L E$ $\begin{array}{r} \text { חロ } \\ \text { YES } \end{array}$	［Reset past faults］ Reset all resetable previous detected faults． ［No］（ n 口）：Reset not active ［YES］（ $y \in 5$ ）：Reset in progress	

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．
（1）Hexadecimal values are displayed on the Graphic display terminal
Example：
SFFE＝0x0008 in Hexadecimal
SFFE $=$ Bit 3

Code	Name／Description ${ }^{\text {a }}$
Пロп－	［1．2 MONITORING］（continued）
［ad－	［PASSWORD］ HMI Password． If you have lost your code，please contact Schneider Electric．
$\begin{aligned} & \text { [5t } \\ & \\ & \\ & \quad L[\\ & u L[\end{aligned}$	［State］ Status of the drive（lock／unlock）．Information parameter，cannot be modified． ［Locked］（ $L[$ ）：The drive is locked by a password ［Unlocked］（ $\sim L[$ ）：The drive is not locked by a password
［ad －F F ロп	［PIN code 1］ Confidential code． Enables the drive configuration to be protected using an access code． When access is locked by means of a code，only the parameters in the［1．2 MONITORING］（ $\Pi_{\square} \cap^{-}$）and ［1．1 SPEED REFERENCE］（ $r E F-$ ）menus can be accessed．The MODE key can be used to switch between menus． Note：Before entering a code，do not forget to make a careful note of it． ［OFF］（ $\square F F$ ）：No access locking codes． －To lock access，enter a code（2 to 9，999）．The display can be incremented using the jog dial．Then press ENT．［ON］（a n） appears on the screen to indicate that access has been locked． ［ON］（ $\circ \cap$ ）：A code is locking access（2 to 9，999）． －To unlock access，enter the code（incrementing the display using the jog dial）and press ENT．The code remains on the display and access is unlocked until the next time the drive is turned off．Access will be locked again the next time the drive is turned on． －If an incorrect code is entered，the display changes to［ON］（ an ），and access remains locked． Access is unlocked（the code remains on the screen）． －To reactivate locking with the same code when access has been unlocked，return to［ON］（ $\square n$ ）using the jog dial and then press ENT．［ON］（ an ）remains on the screen to indicate that access has been locked． －To lock access with a new code when access has been unlocked，enter the new code（increment the display using the jog dial）and then press ENT．［ON］（ $\square n$ ）appears on the screen to indicate that access has been locked． －To clear locking when access has been unlocked，return to［OFF］（aFF）using the jog dial and then press ENT． ［OFF］（ $\square F F$ ）remains on the display．Access is unlocked and will remain so until the next restart．
「ロ 己 －F F ロா 日旦日	［PIN code 2］ Confidential code 2．Visible if［3．1 ACCESS LEVEL］（LAL）is set to［Expert］（E Pr ）． The value［OFF］（ $\square F F$ ）indicates that no password has been set［Unlocked］（ $u L[$ ）． The value［ON］（ $\square n$ ）indicates that the drive configuration is protected and an access code must be entered in order to unlock it． Once the correct code has been entered，it remains on the display and the drive is unlocked until the next time the power supply is disconnected． PIN code 2 is an unlock code known only to Schneider Electric Product Support．
$\begin{aligned} & \hline u L r \\ & u L r \square \\ & u L r l \end{aligned}$	［Upload rights］ ［Permitted］（ $\sim L\ulcorner\square)$ ：Means that SoMove or the graphic display terminal can save the whole configuration（password， protections，configuration）．When the configuration is edited，only the non protected parameters will be accessible． ［Not allowed］（ $4\llcorner\ulcorner/$ ）：Means that SoMove or the graphic display terminal cannot save the configuration
$\begin{aligned} & d L r \\ & d L r \square \\ & d L r I \\ & d L r 己 \\ & d L r \exists \end{aligned}$	［Download rights］ ［Locked drv］（ $\quad \underset{L}{ } \stackrel{\square}{ })$ ：Locked drive：means that the configuration can be downloaded only in a locked drive which configuration has the same password．If the passwords are different，download is not permitted． ［Unlock．drv］（ $d L\ulcorner/)$ ：Unlocked drive：means that the configuration can be downloaded only in a drive without active password ［Not allowed］（ $d L \stackrel{L}{ })$ ：Not allowed：the configuration cannot be downloaded ［Lock／unlock］$(d L r \exists)$ ：Lock．＋Not：download is permitted following case 0 or case 1

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

Parameter that can be modified during operation or when stopped．

Configuration Mode (ConF)

What's in this Chapter?
This chapter contains the following topics:

Topic	Page
Introduction	$\underline{78}$
Organization tree	$\underline{79}$
My Menu	$\underline{80}$
Factory Settings	$\underline{81}$
Macro Configuration	$\underline{82}$
Full	$\underline{85}$

Introduction

Configuration mode includes 4 parts:

1. "My Menu" menu includes up to 25 parameters available for user customization using the graphic display terminal or SoMove software.
2. Store/recall parameter set: These 2 functions are used to store and recall customer settings.
3. [Macro configuration] ($[F G$) parameter which allows to load predefined values for applications (see page 82).
4. FULL: This menu provides access to all other parameters. It includes 10 sub-menus:

- [SIMPLY START] (5 , П -) page 85
-[SETTINGS] (5Et -) page 89
- [MOTOR CONTROL] (d r [-) page 105
- [INPUTS I OUTPUTS CFG] ($1-$ - $^{-}$) page 125
- [COMMAND] ([$\llcorner L-$) page 154
- [FUNCTION BLOCK] (F ட Π-) page 158
- [APPLICATION FUNCT.] ($F_{u n-}$) page 167
- [FAULT MANAGEMENT] ($F L t-$) page $\underline{250}$
- [COMMUNICATION] ($[$ ם П -) page 275
- [ACCESS LEVEL] (L A [) page $\underline{280}$

Organization tree

Displayed parameter values are given as examples.

My Menu

Code	Name / Description
$[\square \sqcap F$	$[1.3$ CONFIGURATION $]$
$П Ч П \sqcap$	$[\mathrm{MY}$ MENU $]$
	This menu contains the parameters selected in the [3.4 DISPLAY CONFIG.] ($\quad[$ [F -) menu on page 287.

Factory Settings

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

2 s To change the assignment of this parameter, press the ENT key for 2 s .

Macro Configuration

Code	Name / Description	Factory setting
LanF	[1.3 CONFIGURATION] (continued)	
[F G	[Macro configuration]	[Start/Stop] (5 t 5)
*		
- 2 s	UNANTICIPATED EQUIPMENT OP Verify that the selected macro config Failure to follow these instruction	damage.
5t 5 Hd[H5t [En P, nEt	[Start/Stop] (5 t 5): Start/stop [M. handling] $(\mathrm{Hd} \mathrm{L})$: Handling [Hoisting] (H5t): Hoisting [Gen. Use] ($\subset E_{\square}$): General use [PID regul.] (P, d) : PID regulation [Network C.] $(\cap E t)$: Communication bus	

[^1]
Example of total return to factory settings

- [Config. Source] $(F[5$,$) is set to [Macro-Conf] (1$ п 1)
- [PARAMETER GROUP LIST] $(F r y-)$ is set to [AII] ($F L L$)
- [Goto FACTORY SETTINGS] ($\boxed{F} 5$) is set to [Yes] ($4 E 5$)

Assignment of the inputs/outputs

Input/ output	[Start/Stop]	[M. handling]	[Gen. Use]	[Hoisting]	[PID regul.]	[Network C.]
[AI1]	[Ref. 1 channel] (PID reference)	[Ref. 2 channel] ([Ref. 1 channel] = integrated Modbus) (1)				
[AI2]	[No]	[Summing ref. 2]	[Summing ref. 2]	[No]	[PID feedback]	[No]
[AI3]	[No]	[No]	[No]	[No]	[No]	[No]
[AO1]	[No]	[No]	[No]	[No]	[No]	[No]
[R1]	[No drive flt]	[No drive flt]	[No drive flt]	[No drive fit]	[No drive fit]	[No drive fit]
[R2]	[No]	[No]	[No]	[Brk control]	[No]	[No]
[LI1] (2-wire)	[Forward]	[Forward]	[Forward]	[Forward]	[Forward]	[Forward]
[LI2] (2-wire)	[Reverse]	[Reverse]	[Reverse]	[Reverse]	[Reverse]	[Reverse]
[LI3] (2-wire)	[No]	[2 preset speeds]	[Jog]	[Fault reset]	[PID integral reset]	[Ref. 2 switching]
[LI4] (2-wire)	[No]	[4 preset speeds]	[Fault reset]	[External fault]	[2 preset PID ref.]	[Fault reset]
[LI5] (2-wire)	[No]	[8 preset speeds]	[Torque limitation]	[No]	[4 preset PID ref.]	[No]
[LI6] (2-wire)	[No]	[Fault reset]	[No]	[No]	[No]	[No]
[LI1] (3-wire)	[Drive running]					
[LI2] (3-wire)	[Forward]	[Forward]	[Forward]	[Forward]	[Forward]	[Forward]
[LI3] (3-wire)	[Reverse]	[Reverse]	[Reverse]	[Reverse]	[Reverse]	[Reverse]
[LI4] (3-wire)	[No]	[2 preset speeds]	[Jog]	[Fault reset]	[PID integral reset]	[Ref. 2 switching]
[LI5] (3-wire)	[No]	[4 preset speeds]	[Fault reset]	[External fault]	[2 preset PID ref.]	[Fault reset]
[LI6] (3-wire)	[No]	[8 preset speeds]	[Torque limitation]	[No]	[4 preset PID ref.]	[No]
[LO1]	[No]	[No]	[No]	[No]	[No]	[No]
Graphic display terminal keys						
F1 key	[No]	[No]	[No]	[No]	[No]	Control via graphic display terminal
$\begin{array}{\|l} \hline \begin{array}{l} \text { F2, F3, F4 } \\ \text { keys } \end{array} \\ \hline \end{array}$	[No]	[No]	[No]	[No]	[No]	[No]

[^2](1) To start with, integrated Modbus [Modbus Address] (Add) must first be configured, page 276.

Note: These assignments are reinitialized every time the macro configuration changes.

Other configurations and settings

In addition to the assignment of inputs/outputs, other parameters are assigned only in the Hoisting macro configuration.

Hoisting:

- [Movement type] ($\llcorner 5$) is set to [Hoisting] ($~(~ E r$) page 194

- [Brake impulse] (\llcorner, P) is set to [Yes] ($4 E 5$) page 194
- [Brake release I FW] (1 b r) is set to 0 A page 194
- [Brake Release time] ($b r t$) is set to 0 s page 194

- [Brake engage time] ($\llcorner E \in$) is set to 0 s page 195
- [Engage at reversal] (\llcorner E d) is set to [No] ($n \square$) page 195

- [Time to restart] (ℓ ヒ r) is set to 0 s page 196
- [Current ramp time] (brr) is set to 0 s page 198
- [Low speed] ($L 5 P$) is set to Rated motor slip calculated by the drive, page $\underline{87}$
- [Output Phase Loss] ($\square P L$) is set to [Yes] ($4 E 5$) page 256 No further modifications can be made to this parameter.
- [Catch on the fly] ($F L_{r}$) is set to [No] (n 口) page 253 No further modifications can be made to this parameter.

Return to factory settings:

Returning to factory settings with [Config. Source] (F[5) is set to [Macro-Conf] (in i) page 81 will return the drive to the selected macro configuration. The [Macro configuration] ($[F G$) parameter does not change, although [Customized macro] ([[F L) disappears.

Note: The factory settings that appear in the parameter tables correspond to
[Macro configuration] ($[F \square)=[$ Start/Stop] (5t 5). This is the macro configuration set at the factory.

Example diagrams for use with the macro configurations

(1) Whithout integrated safety function, a contact on the Preventa module must be inserted in the brake control circuit to engage it when the "Safe Torque Off" safety function is activated (see connection diagrams in the Installation manual).

Full

Code	Name / Description	Adjustment range	actory setting
	[Customized macro] Read-only parameter, only visible if at least one macro configuration parameter has been modified. $\begin{aligned} & [\mathrm{No}] \text { (} n \mathrm{a}) \text { : No } \\ & {[\mathrm{Yes}] \text { (YE S): Yes }} \end{aligned}$		
bFr	[Standard mot. freq] This parameter modifies the presets of the following parameters: [Rated mo 87, [Freq. threshold] $(F \in d)$ page 102, [Rated motor freq.] $\left(F_{r} 5\right)$ and [50Hz IEC] (5ロ): Drive 50 Hz [60Hz NEMA] (ㄷ): Drive 60 Hz	tor volt.] ($u \cap 5$) bel [Max frequency] (t	$\text { [50Hz IEC] (} 5 \square)$ w, [High speed] (H5P) page r).
, PL	This parameter is only accessible in this menu on 3-phase drives. If one phase disappears, the drive switches to fault mode [Input phase loss] ($P H F$), but if 2 or 3 phases disappear, the drive continues to operate until it trips on an undervoltage detected fault (the drive trips in [Input phase loss] ($P \mathrm{HF}$) if there is an input phase loss and if this leads to performance decrease). See [Input phase loss] (, PL) page 256.		
	Rated motor power given on the nameplate, in kW if [Standard mot. freq] (b Fr) is set to [50Hz IEC] (5 ロ), in HP if [Standard mot. freq] (b F r) is set to [60Hz NEMA] ($\bar{\square}$). See [Rated motor power] ($n \mathrm{P}$ r) page 107.		
ப 5	Rated motor voltage given on the nameplate. ATV320eeeM2e: 100 to 240 V - ATV320eeeN4e: 200 to 480 V . See [Rated motor volt.] ($u \cap 5$) page 107.		
$\square \square$	Rated motor current given on the nameplate. See [Rated mot. current] ($n[r$) page 107.		
Fr 5	Rated motor frequency given on the nameplate. The factory setting is 50 Hz , or preset to 60 Hz if [Standard mot. freq] ($b \mathrm{~F}_{\mathrm{r}}$) is set to 60 Hz . This parameter is not visible if [Motor control type] ($[t \in$) page 105 is set to [Sync. mot.] (5 4 n). See [Rated motor freq.] ($F_{r} 5$) page 107.		
$\square 5 P$	Rated motor speed given on the nameplate. This parameter is not visible if [Motor control type] ($[t \in$) page 105 is set to [Sync. mot.] ($54 n$). See [Rated motor speed] ($n 5 P$) page 107. 0 to $9,999 \mathrm{rpm}$ then 10.00 to 60.00 krpm on the integrated display terminal. If, rather than the rated speed, the nameplate indicates the synchronous speed and the slip in Hz or as a \%, calculate the rated speed as follows: Nominal speed $=$ Synchronous speed $\times \frac{100-\text { slip as a \% }}{100}$ or Nominal speed $=$ Synchronous speed $\times \frac{50-\text { slip in } \mathrm{Hz}}{50}$ (50 Hz motors $)$ or Nominal speed $=$ Synchronous speed $x \quad \frac{60-\text { slip in Hz }}{60} \quad(60 \mathrm{~Hz}$ motors $)$		

(1) In corresponds to the rated drive current indicated in the Installation manual and on the drive nameplate.
(2) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to $6,000 \mathrm{~s}$ according to [Ramp increment] (i n r) page 170 .

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Parameter that can be modified during operation or when stopped.

Settings

With integrated display terminal

It is recommend to stop the motor before modifying any of the settings.
From [aпF menu

The adjustment parameters can be modified with the drive running or stopped.

(1) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to $6,000 \mathrm{~s}$ according to [Ramp increment] (in r) page $\underline{170}$.
(2) In corresponds to the rated drive current indicated in the Installation manual or on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
() Parameter that can be modified during operation or when stopped.

Parameter settings for [K speed loop filter] (5 F [), [Speed prop. gain] ($5 P \square$) and [Speed time integral] (5 ,,)
 [Sync. mot.] (54 n) or [Energy Sav.] ($n \mathrm{~L} d$).

General Case: Setting for [K speed loop filter] (5 F [) = $\mathbf{0}$
The regulator is an "IP" type with filtering of the speed reference, for applications requiring flexibility and stability (hoisting or high inertia, for example).

- [Speed prop. gain] ($5 P G$) affects excessive speed.
- [Speed time integral] ($5, t$) affects the passband and response time.

Initial response	Reduction in SIT	Reduction in SIT
Reference division	Reference division	Reference division
Initial response	Increase in SPG	Increase in SPG
Reference division	Reference division	Reference division

Special case: Parameter [K speed loop filter] (5 F [) is not $\mathbf{0}$

This parameter must be reserved for specific applications that require a short response time (trajectory positioning or servo control).

- When set to 100 as described above, the regulator is a "Pl" type, without filtering of the speed reference.
- Settings between 0 and 100 will obtain an intermediate function between the settings below and those on the previous page.

Example: Setting for [K speed loop filter] (5 F [) = 100

- [Speed prop. gain] ($5 P-5$) affects the passband and response time.
- [Speed time integral] ($5, t$) affects excessive speed.

Initial response	Reduction in SIT	Reduction in SIT
Reference division	Reference division	Reference division
Initial response	Increase in SPG	Increase in SPG
Reference division	Reference division	Reference division

Code	Name／Description	Adjustment range	Factory setting
$d[F$	［Ramp divider］	0 to 10	4
\star	Deceleration ramp time reduction．See［Ramp divider］（ \downarrow［ F F ）page 173.		
（）			
，d［	［DC inject．level 1］	0.1 to 1.41 ln （1）	0.64 In（1）
\star	Level of DC injection braking current activated via logic input or selected as stop mode．See［DC inject．level 1］（ $\quad d[$ ）page 174.		
td，	［DC injection time 1］	0.1 to 30 s	0.5 s
	Maximum current injection time［DC inject．level 1］（,$d[$ ）．After this time，the injection current becomes ［DC inject．level 2］（,$d[$ 己）．See［DC injection time 1］（ $\operatorname{tdl)\text {page}174.}$		
，d［ 己	［DC inject．level 2］	0.1 In to $1.41 \ln (1)$	$0.5 \ln (1)$
\star (1)	Injection current activated by logic input or selected as stop mode，once period of time［DC injection time 1］（ $t d$ ，has elapsed． See［DC inject．level 2］（,$d[$ 己）page 175.		
$t d[$	［DC injection time 2］	0.1 to 30 s	0.5 s
	Maximum injection time［DC inject．level 2］（ ，d［ 己）for injection selected as stop mode only． See［DC injection time 2］（ $\operatorname{td[})$ page 175 ．		
$5 d[1$	［Auto DC inj．level 1］	0 to $1.2 \ln (1)$	$0.7 \ln (1)$
$\begin{aligned} & \star \\ & \vdots \end{aligned}$	OVERHEATING AND DAMAGE TO THE MOTOR Verify that the connected motor is properly rated for the DC injection current to be applied in terms of amount and time in order to avoid overheating and damage to the motor． Failure to follow these instructions can result in equipment damage．		
	Level of standstill DC injection current［Auto DC injection］（ $\operatorname{Hd}[$ ）is not［ No ］（ n 口） ）． See page 176.		
$t d[1$	［Auto DC inj．time 1］	0.1 to 30 s	0.5 s
	OVERHEATING AND DAMAGE TO THE MOTOR Verify that the connected motor is properly rated for the DC injection current to be applied in terms of amount and time in order to avoid overheating and damage to the motor． Failure to follow these instructions can result in equipment damage．		
	Standstill injection time．This parameter can be accessed if［Auto DC injection］（ $A \quad d[$ ）is not set to［No］（ n 口）． If［Motor control type］（ $[t t)$ page 105 is set to［Sync．mot．］（ $54 n$ ），this time corresponds to the zero speed maintenance time． See page 176.		

This applies to the following drive versions: ATV320eeeM2•
Switching frequency setting. See page 119.
Adjustment range: The maximum value is limited to 4 kHz if [Motor surge limit] (5 LL) parameter, page 120 is configured. Note: In the event of excessive temperature rise, the drive will automatically reduce the switching frequency and reset it once the temperature returns to normal.

$[L$,	CCurrent Limitation]	0 to $1.5 \ln (1)$	$1.5 \ln (1)$

NOT/CE
OVERHEATING AND DAMAGE TO THE MOTOR
- Verify that the motor is properly rated for the maximum current to be applied to the motor.
- Consider the duty cycle of the motor and all factors of your application including derating requirements in
determining the current limit.
Failure to follow these instructions can result in equipment damage.

Used to limit the motor current. See page 218.
Note: If the setting is less than 0.25 In, the drive may lock in [Output Phase Loss] ($a P L$) fault mode if this has been enabled (see page 256). If it is less than the no-load motor current, the motor cannot run.

Code	Name / Description	Adjustment range	Factory setting
	[Jog delay]	0 to 2.0 s	0.5 s
*	Anti-repeat delay between 2 consecutive jog operations. See page 179.		
()			

Code	Name / Description	Adjustment range	Factory setting
5 P己	[Preset speed 2]	0 to 599 Hz	10 Hz
*	Preset speed 2. See [Preset speed 2] (5 P 2) page 181.		
()			
$5 Р \exists$	[Preset speed 3]	0 to 599 Hz	15 Hz
*	Preset speed 3. See [Preset speed 3] (5 P 3) page 181.		
()			
$5 P 4$	[Preset speed 4]	0 to 599 Hz	20 Hz
*	Preset speed 4. See [Preset speed 4] ($5 P 4$) page 181.		
()			
5 P5	[Preset speed 5]	0 to 599 Hz	25 Hz
*	Preset speed 5. See [Preset speed 5] (5 P 5) page 181.		
()			
5 P6	[Preset speed 6]	0 to 599 Hz	30 Hz
*	Preset speed 6. See [Preset speed 6] (5PБ) page 181.		
$)$			
$5 P 7$	[Preset speed 7]	0 to 599 Hz	35 Hz
*	Preset speed 7. See [Preset speed 7] (5 P 7) page 181.		
()			
5 P日	[Preset speed 8]	0 to 599 Hz	40 Hz
t	Preset speed 8. See [Preset speed 8] (5 P () page 182.		
()			
5 P9	[Preset speed 9]	0 to 599 Hz	45 Hz
+	Preset speed 9. See [Preset speed 9] (5P9) page 182.		
()			
5 P 10	[Preset speed 10]	0 to 599 Hz	50 Hz
*	Preset speed 10. See [Preset speed 10] (5P/G) page 182.		
()			
5 P 11	[Preset speed 11]	0 to 599 Hz	55 Hz
\star	Preset speed 11. See [Preset speed 11] (5P\|l) page 182.		
$()$			
5 P1 ᄅ	[Preset speed 12]	0 to 599 Hz	60 Hz
*	Preset speed 12. See [Preset speed 12] (5 P / 2) page 182.		
0			

Code	Name / Description	Adjustment range	Factory setting
rPヨ	[Preset ref. PID 3]	See page 214 (2)	600
*	Preset PID reference. See page $\underline{214}$.		
()			
rP4	[Preset ref. PID 4]	See page $\underline{214}$ (2)	900
*	Preset PID reference. See page 214.		
()			

Code	Name／Description	Adjustment range	Factory setting
（2）	2nd skip frequency．This parameter helps to prevent prolonged operation within an adjustable range around the regulated frequency．This function can be used to help to prevent a speed，which would cause resonance，being reached．Setting the function to 0 renders it inactive．See page 183.		
$\lrcorner F \exists$	［3rd Skip Frequency］	0 to 599 Hz	0 Hz
（1）	3rd skip frequency．This parameter helps to prevent prolonged operation within an adjustable range around the regulated frequency．This function can be used to help to prevent a speed，which would cause resonance，being reached．Setting the function to 0 renders it inactive．See page 183.		
$\lrcorner F H$	［Skip．Freq．Hysteresis］	$0.1 \text { to } 10 \mathrm{~Hz}$	1 Hz
（	Parameter visible if at least one skip frequency［Skip Frequency］（ $\lrcorner P F$ ），［Skip Frequency 2］（ $\lrcorner F$ 己）or ［3rd Skip Frequency］（ $\lrcorner F \exists$ ）is different from 0 ． Skip frequency range：between $(\lrcorner P F-\lrcorner F H)$ and $(\lrcorner P F+\lrcorner F H)$ for example． This adjustment is common to the 3 frequencies $(\lrcorner P F,\lrcorner F 己\lrcorner , F \exists)$ ．See page 183.		
L ¢ п	［UnId．Thr．Nom．Speed］	20 to 100% of ［Rated mot．current］（ $n[r$ ）	60\％
（	Underload threshold at rated motor frequency（［Rated motor freq．］（ $F r 5$ ）page 86），as a \％of the rated motor torque． Visible only if［UnId T．Del．Detect］（ $\sim L \vdash$ ）page 270 is not set to 0 ． See page 270.		
$L \cup L$	［UnId．Thr．0．Speed］	0 to［Unld．Thr．Nom．Speed］（ L H п）	0\％
大	Underload threshold at zero frequency，as a \％of the rated motor torque． Visible only if［UnId T．Del．Detect］（ $\llcorner L \vdash$ ）page $\underline{270}$ is not set to 0 ． See page 270.		
r Mud	［Unld．Freq．Thr．Det．］	0 to 599 Hz	0 Hz
	Underload detection minimum frequency threshold．See page $\underline{270}$ ．		
$5 r b$	［Hysteresis Freq．Att．］	0.3 to 599 Hz	0.3 Hz
＊	Maximum deviation between the frequency reference and the motor frequency，which defines steady state operation． See page 270.		
$F \in \pm$	［Underload T．B．Rest．］	0 to 6 min	0 min
	Minimum time permitted between an underload being detected and any automatic restart． In order for an automatic restart to be possible，the value of［Max．restart time］（ 1 月 r ）page $\underline{252}$ must exceed that of this parameter by at least one minute．See page $\underline{271}$ ．		
L ロ	［Ovld Detection Thr．］	$\begin{aligned} & 70 \% \text { to } 150 \% \text { of } \\ & \text { [Rated mot. current] }(n[r) \end{aligned}$	110\％
$\begin{aligned} & \lambda \\ & (2 \end{aligned}$	Overload detection threshold，as a \％of the rated motor current［Rated mot．current］（ $n[r$ ）．This value must be less than the limit current in order for the function to work．See page 272. Visible only if［Ovid Time Detect．］（ $t \square L$ ）is not set to 0. This parameter is used to detect an＂application overload＂．This is not a motor or drive thermal overload．		
$F E \square$	［Overload T．B．Rest．］	0 to 6 min	0 min
	Minimum time permitted between an overload being detected and any automatic restart． In order for an automatic restart to be possible，the value of［Max．restart time］（ 1 月 r ）page $\underline{252}$ must exceed that of this parameter by at least one minute．See page 272.		
L b［	［Load correction］	0 to 599 Hz	0 Hz
$\begin{aligned} & \star \\ & C \end{aligned}$	Rated correction in Hz．See［Load correction］（ L Ь［ ）page 122.		

Code	Name／Description \quad Adjustment range \quad Factory setting
F F П （） 5td run 5ヒP	［Fan Mode］ If［Fan Mode］（FF \boldsymbol{F} ）is set to［Never］（ $5 \in P$ ），the fan of the drive is disabled． Service life of electronic component is reduced． NOTICE DAMAGE TO THE DRIVE The ambient temperature must be limited to $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ Failure to follow these instructions can result in equipment damage． ［Standard］（ 5 上 d）：The fan starts and stops automatically according to the drive thermal state ［Always］（r $\mathrm{r} \mathrm{\sim}$ ）：The fan is started ［Never］（5ヒP）：The fan is stopped
5 ± 5	［Scale factor display］ Used to display a value in proportion to the output frequency［Output frequency］（ $r F_{r}$ ）：the machine speed，the motor speed，etc． The display will show ［Cust．output value］$(5 P d \exists)=\frac{\left[\text { Scale factor display］}(5 d 5) \times \text {［Output frequency］}\left(r F_{r}\right)\right.}{1000}$ to 2 decimal places －If［Scale factor display］$(5 d 5) \leqslant 1$ ，［Cust．output value］$\left(5 P_{d} I\right)$ is displayed（possible definition $=0.01$ ） －If $1<$［Scale factor display］$(5 d 5) \leqslant 10$ ，［Cust．output value］$(5 P d 己)$ is displayed（possible definition $=0.1$ ） －If［Scale factor display］$(5 d 5)>10$ ，［Cust．output value］$(5 P d \exists)$ is displayed（possible definition $=1$ ） －If［Scale factor display］$(5 d 5)>10$ and［Scale factor display］$(5 d 5) \times$［Output frequency］$\left(r F_{r}\right)>9,999$ ： example：for 24,223 ，display will show 24.22 －If［Scale factor display］（ $5 d 5$ ）>10 and［Scale factor display］（ $5 d 5$ ）\times［Output frequency］（ $r F^{\prime} r$ ）$>65,535$ ，display locked at 65.54 Example：Display motor speed for 4－pole motor， $1,500 \mathrm{rpm}$ at 50 Hz （synchronous speed）： ［Scale factor display］$(5 d 5)=30$ ［Cust．output value］$(5 P d \exists)=1,500$ at［Output frequency］$\left(r F_{r}\right)=50 \mathrm{~Hz}$

（1）In corresponds to the rated drive current indicated in the Installation manual or on the drive nameplate．
（2）If a graphic display terminal is not in use，values greater than 9,999 will be displayed on the 4 －digit display with a period mark after the thousand digit，example： 15.65 for 15,650 ．

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

Parameter that can be modified during operation or when stopped．

2 s
To change the assignment of this parameter，press the ENT key for 2 s ．

Motor control

The parameters in the [MOTOR CONTROL] ($d\ulcorner-\quad-$) menu can only be modified when the drive is stopped and no run command is present, with the following exceptions:

- Parameters containing the sign () in the code column, which can be modified with the drive running or stopped.

Note : We recommend to perform auto-tuning if one of the following parameters are modified from their factory setting.

Code	Name / Description \quad Adjustment range ${ }^{\text {a }}$ Factory setting
$F \rightarrow L L$	[FULL] (continued)
$d r$ -	[MOTOR CONTROL]
bFr	[Standard mot. freq] This parameter modifies the presets of the following parameters: [High speed] (H5P) page 87, [Freq. threshold] (Ftd) page $\text { [50 Hz IEC] (} 5 \mathrm{\square}): \mathrm{IEC}$ [60 Hz NEMA] ($\bar{\square} \square$): NEMA
t Fr	[Max frequency] The factory setting is 60 Hz , or preset to 72 Hz if [Standard mot. freq] (b F r) is set to 60 Hz . The maximum value is limited by the following conditions: It must not exceed 10 times the value of [Rated motor freq.] $\left(F_{r} 5\right.$).
$[t E$ uч [5td	[Motor control type] Note: Select law before entering parameter values. needing high performance during starting or operation. [Standard] (5 t d): Standard motor law. For simple applications that do not require high performance. Simple motor control law keeping a constant Voltage Frequency ratio, with a possible adjustment of the curve bottom. This law is generally used for motors connected in parallel. Some specific applications with motors in parallel and high performance levels may require [SVC V] ($\mathrm{\iota} \mathrm{\iota}$ [).

Note: U0 is the result of an internal calculation based on motor parameters and multiplied by UFr (\%). U0 can be adjusted by modifying UFr value.

Code	Name / Description \quad Adjustment range \quad Factory setting
U 5	[V/F 5pts] ($\lrcorner \mathrm{F} 5$): 5-segment V/F profile: As [Standard] (5 t d) profile but also supports the avoidance of resonance (saturation). Note: U0 is the result of an internal calculation based on motor parameters and multiplied by UFr (\%). U0 can be adjusted by modifying UFr value. [Sync. mot.] (5 yn) : For synchronous permanent magnet motors with sinusoidal electromotive force (EMF) only. This selection makes the asynchronous motor parameters inaccessible, and the synchronous motor parameters accessible. [VIF Quad.] (\sim F q): Variable torque. For pump and fan applications. [Energy Sav.] ($n<d$): Energy saving. For applications that do not require high dynamics.

Asynchronous motor parameters

If [Motor control type] $([t t)$ page 105 is set to [Sync. mot.] ($54 n$), the factory setting is replaced by [Not cont.] ($F \cap[$). In order to obtain rapid high torque on startup, magnetic flux needs to already have been established in the motor.
In [Continuous] ($F[E$) mode, the drive automatically builds up flux when it is powered up.
In [Not cont.] ($F \cap[$) mode, fluxing occurs when the motor starts up.
The flux current is greater than [Rated mot. current] ($n[r$) (configured rated motor current) when the flux is established and is then adjusted to the motor magnetizing current.
$F \cap[$
[Not cont.] ($F \cap[$): Non-continuous mode
$F[t$ [Continuous] $(F[t)$: Continuous mode. This option is not possible if [Auto DC injection] ($A d[$) page 176 is [Yes] ($4 E 5$) or if [Type of stop] (5t) page 173 is [Freewheel] ($n 5 t$).
Fno
$[\mathrm{No}]\left(F_{\cap \square}\right)$: Function inactive. This option is not possible if [Brake assignment] (bL[) page 194 is not [No] ($n \square$).
If [Motor control type] $([t \in)$ page 105 is set to [Sync. mot.] ($54 n$), the [Motor fluxing] (FL u) parameter causes the alignment of the rotor and not the fluxing.
If [Brake assignment] (b $L[$) page 194 is not [No] (na), the [Motor fluxing] (FLu) parameter has no effect.

Code	Name / Description	Adjustment range	Factory setting
ПР [[Motor param choice]		[Mot Power] (n Pr)
$\begin{aligned} & n P r \\ & \text { Cos } \end{aligned}$	[Mot Power] ($n \mathrm{P}_{\mathrm{r}}$) [Mot Cos] ([ם5)		

(1) In corresponds to the rated drive current indicated in the Installation manual and on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
(】 Parameter that can be modified during operation or when stopped.

2 s
To change the assignment of this parameter, press the ENT key for 2 s .

Parameters described in this page can be accessed by:

Asynchronous motor parameters: Expert mode

(1) On the integrated display unit: 0 to 9,999 then 10.00 to $65.53(10,000$ to 65,535$)$.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Synchronous motor parameters

These parameters can be accessed if [Motor control type] ($[$ L) page 105 is set to [Sync. mot.] (5 У п). In this case, the asynchronous motor parameters cannot be accessed.

Once the drive is chosen:
1- Enter the motor nameplate.

2 - Perform the tune.

- Do an [Auto tuning] ($\llcorner\llcorner$ п)
- Check the state of the synchronous motor saliency (See page 113.)

If [Saliency mot. state] ($5 \Pi \square \vdash$) displays [Med salient] ($\Pi\llcorner 5$) or [High salient] (HL5)

- follow the procedure below "3-Improve the tune result" and
- follow the the procedure below "4 - Adjust PHS"

Or if [Saliency mot. state] (5 Пロ) displays [Low salient] (L L S)

- follow the the procedure below "4-Adjust PHS"

3 - Improve the tune results.

NOTICE
OVERHEATING AND DAMAGE TO THE MOTOR
- Verify that the motor is properly rated for the maximum current to be applied to the motor.
- Consider the duty cycle of the motor and all factors of your application including derating requirements in
determining the current limit.
Failure to follow these instructions can result in equipment damage.

- Set [PSI align curr. max] ($П[r$) conforming to the maximum motor current. The maximum value of [PSI align curr. max] $(\Pi[r)$) is limited by [Current Limitation] ([L I). Without information set [PSI align curr.

- Do a second $(t u r)$ after the ($\Pi[r)$ modification.

4 - Adjust PHS.

Adjust [Syn. EMF constant] (PH 5) to have optimal behavior (See page 116.)

- Start the motor at minimal stable frequency available on the machine (without load).
- Check and note the [\% error EMF sync] (r \& A E) value. (See page 117)
- If the [\% error EMF sync] ($r d A E$) value is lower than 0%, then [Syn. EMF constant] (PH5) may be increased.
- If the [\% error EMF sync] ($r \nmid A E$) value is upper than 0%, then [Syn. EMF constant] (PH H 5) may be reduced.
[\% error EMF sync] ($r \perp A E$) value should be closed to 0\%.
- Stop the motor for modify PH5 in accordance with the value of the $r d A E$ (previously noted).

Advices:

The drive must be chosen to have enough current according to the need of behavior, but not too much, to have enough accuracy in the current measurement, especially with the high frequency signal injection (see [HF inj. activation] (HF ,) page 116).
Performances may be higher on high saliency motors by activating high frequency injection function (see [HF inj. activation] (HF ,) page 116).

Code	Name／Description	Adjustment range	Factory setting
H F	［HF inj．activation］		
Пロ YE	Activation of high frequency signal injection in RUN．This function allo at low speed without speed feedback． Note：The more the saliency is high，the more the［HF inj．activation］ In order to ensure the performances，it could be necessary to adjust th ［Speed time integral］（ $5, t$ ）and［Speed prop．gain］（ $5 P \square$ ），see （Expert parameters［HF pll bandwith］（ 5 Р $)$ and［HF pll dump．fa High frequency injection is not efficient with low saliency motors（see It is advised to have 4 kHz of pwm frequency（［Switching freq．］（ 5 F In case of instability with no load，it is advised to decrease［Speed pr adjust the speed loop parameters to have the dynamic behavior and the speed． In case of instability with load，it could help to increase the［Angle err ［No］（ n 口）：Function deactivated ［Yes］（ $y \in 5$ ）：High frequency injection is used for speed estimation	stimate the motor sp 1）function will be eff d loop parameters（［ 18）and the speed （5 PF），see page 11 ncy mot．state］（ 5 П in］（5PG）and［HF gains to have a good	in a view to have torque nt． peed loop filter］（ 5 F［ ）， ation phase locked loop page 114）． bandwith］（ 5 Рロ）．Then， peed estimation at low （mainly for SPM motor）．

（1）In corresponds to the rated drive current indicated in the Installation manual and on the drive nameplate．
（2）On the integrated display unit： 0 to 9,999 then 10.00 to $65.53(10,000$ to 65,536$)$ ．

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．
（2）Parameter that can be modified during operation or when stopped．

2 s
To change the assignment of this parameter，press the ENT key for 2 s ．

Synchronous motor: Expert mode

Code	Name / Description	Adjustment range	Factory setting
$51 r$	[Boost level align.]	0 to 200\%	100\%
,	Current level in \% of [Nominal I sync.] ($n[r 5)$ for high frequency phase-shift angle measurement SPMA type.		
$r d A E$	[\% error EMF sync]	-3276.7 to 3275.8 \%	-
	Ratio D-Axis Current Use $r d A E$ to asjust [Syn. EMF constant] (PHS), $r d A E$ should be closed to 0 . If the [\% error EMF sync] ($r \triangleleft A E$) value is lower than 0%, then [Syn. EMF constant] ($P H 5$), may be increased. If the [\% error EMF sync] ($r \notin A E$) value is upper than 0\%, then [Syn. EMF constant] ($P H 5$), may be reduced.		

(1) On the integrated display unit: 0 to 9,999 then 10.00 to $65.53(10,000$ to 65,536$)$.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
()

Parameter that can be modified during operation or when stopped.

This applies to the following drive versions: ATV320e0॰M2•

Switching frequency setting.

Adjustment range: The maximum value is limited to 4 kHz if [Motor surge limit] ($5 \sim L$) parameter page 120 is configured.
Note: In the event of excessive temperature rise, the drive will automatically reduce the switching frequency and reset it once the temperature returns to normal.
In case of high speed motor, it is advised to increase the Pulse Width Modulation (PWM) frequency [Switching freq.] (5 Fr) at 8,12 or 16 kHz .

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

The value of the [Volt surge limit. opt] (5 ם P) parameter corresponds to the attenuation time of the cable used. It is defined to help to prevent the superimposition of voltage wave reflections resulting from long cable lengths. It limits overvoltages to twice the DC bus rated voltage.
The tables on the following page give examples of correspondence between the
[Volt surge limit. opt] ($5 \square P$) parameter and the length of the cable between the drive and the motor. For longer cable lengths, an output of the filter or a $\mathrm{dV} / \mathrm{dt}$ protection filter must be used.

For motors in parallel, the sum of all the cable lengths must be taken into consideration. Compare the length given in the table row corresponding to the power for one motor with that corresponding to the total power, and select the shorter length.
Example: Two $7.5 \mathrm{~kW}(10 \mathrm{HP})$ motors
Take the lengths on the $15 \mathrm{~kW}(20 \mathrm{HP}$) table row, which are shorter than those on the 7.5 kW (10 HP) row, and divide by the number of motors to obtain the length per motor (with unshielded "GORSE" cable and SOP $=6$, the result is $40 / 2=20 \mathrm{~m}$ maximum for each 7.5 kW (10 HP) motor).
In special cases (for example, different types of cable, different motor powers in parallel, different cable lengths in parallel, etc.), we recommend using an oscilloscope to check the overvoltage values obtained at the motor terminals.
To retain the overall drive performance, do not increase the SOP value unnecessarily.

Tables giving the correspondence between the SOP parameter and the cable length, for 400 V supply mains

Altivar 320	Motor		Cable crosssection (min)		Maximum cable length in meters								
Reference	Power				Unshielded "GORSE" cable Type H07 RN-F 4Gxx			Shielded "GORSE" cable Type GVCSTV-LS/LH			Shielded "BELDEN" cable Type 2950x		
	kW	HP	in mm ${ }^{2}$	AWG	SOP = 10	SOP = 8	SOP = 6	SOP = 10	SOP = 8	SOP = 6	SOP = 10	SOP = 8	SOP = 6
ATV320U04N4•	0.37	0.50	1.5	14	100 m	70 m	45 m	105 m	85 m	65 m	50 m	40 m	30 m
ATV320U06N4•	0.55	0.75	1.5	14	100 m	70 m	45 m	105 m	85 m	65 m	50 m	40 m	30 m
ATV320U07N4•	0.75	1	1.5	14	100 m	70 m	45 m	105 m	85 m	65 m	50 m	40 m	30 m
ATV320U11N4•	1.1	1.5	1.5	14	100 m	70 m	45 m	105 m	85 m	65 m	50 m	40 m	30 m
ATV320U15N4•	1.5	2	1.5	14	100 m	70 m	45 m	105 m	85 m	65 m	50 m	40 m	30 m
ATV320U22N4•	2.2	3	1.5	14	110 m	65 m	45 m	105 m	85 m	65 m	50 m	40 m	30 m
ATV320U30N4•	3	-	1.5	14	110 m	65 m	45 m	105 m	85 m	65 m	50 m	40 m	30 m
ATV320U40N4•	4	5	2.5	12	110 m	65 m	45 m	105 m	85 m	65 m	50 m	40 m	30 m
ATV320U55N4•	5.5	7.5	4	10	120 m	65 m	45 m	105 m	85 m	65m	50 m	40 m	30 m
ATV320U75N4•	7.5	10	6	8	120 m	65 m	45 m	105 m	85 m	65 m	50 m	40 m	30 m
ATV320D11N4•	11	15	10	8	115 m	60 m	45 m	100 m	75 m	55 m	50 m	40 m	30 m
ATV320D15N4•	15	20	16	6	105 m	60 m	40 m	100 m	70 m	50 m	50 m	40 m	30 m

For 230/400 V motors used at 230 V , the [Motor surge limit.] ($5 \Delta \mathrm{~L}$) parameter can remain set to [No C ($\mathrm{n} \mathrm{\square}$).

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
() Parameter that can be modified during operation or when stopped.

Load sharing, parameters that can be accessed at expert level

Principle:

The load sharing factor K is determined by the torque and speed, with two factors K 1 and $\mathrm{K} 2(\mathrm{~K}=\mathrm{K} 1 \times \mathrm{K} 2)$.

Code	Name／Description	Adjustment range	Factory setting
Lb［ I	［Correction min spd］	0 to 598.9 Hz	0 Hz
（）	This parameter can be accessed if［Load sharing］（LЬA）is set to［Yes］（ $Ч E 5$ ）． Minimum speed for load correction in Hz ．Below this threshold，no corrections are made．Used to cancel correction at very low speed if this would hamper rotation of the motor．		
Lロエを	［Correction max spd］	［Correction min spd］ $($ Lb［ \quad ）+0.1 at 599 Hz	0.1 Hz
\star （）	This parameter can be accessed if［Load sharing］（L ட月）is set to［Yes］（ $4 E 5$ ）． Speed threshold in Hz above which maximum load correction is applied．		
L ロ「ヨ	［Torque offset］	0 to 300\％	0\％
\star （）	This parameter can be accessed if［Load sharing］（LレA）is set to［Yes］（ $Ч E S$ ）． Minimum torque for load correction as a \％of the rated torque．Below this threshold，no corrections are made．Used to avoid torque instabilities when the torque direction is not constant．		
LbF	［Sharing filter］	0 to 20 s	100 ms
\star （）	This parameter can be accessed if［Load sharing］（L \llcorner ）is set to［Yes］（ $4 E 5$ ）． Time constant（filter）for correction in ms．Used in the event of flexible mechanical coupling in order to avoid instabilities．		

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

Parameter that can be modified during operation or when stopped．

Inputs / outputs CFG

The parameters in the [INPUTS / OUTPUTS CFG] ($1-\square_{-}$) menu can only be modified when the drive is stopped and no run command is present.

Code	Name／Description ${ }^{\text {a }}$ Adjustment range	Factory setting
run L，I ᄃdロロ －L 1 －L 10	［Drive Running］ Assignment of the stop command． Visible only if［2／3 wire control］（ $t[ᄃ$ ）is set to［3 wire］（ $\exists[$ ）． ［LII］（ L ，I）：Logical input LI1 if not in［I／O profile］（ ，口） ［Cd00］（ $[\triangle \square \square)$ ：In［I／O profile］（ a ），can be switched with possible logic inputs ［OL01］（ \square L \square ）：Function blocks：Logical Output 01 ．．． ［OL10］（ \quad L I \quad ）：Function blocks：Logical Output 10	［ No ］（ ma ）
Frd $\left.\begin{array}{ccc} L & 1 & 1 \\ C & d & 0 \\ 0 & L & 0 \end{array}\right]$	［Forward］ Assignment of the forward direction command． ［LII］（ L ，I）：Logical input LI1 if not in［／IO profile］（ ，口） ［OL01］（ \square L \square I）：Function blocks：Logical Output 01 ．．． ［OL10］（ $\square \mathrm{L} / \square$ ）：Function blocks：Logical Output 10	［LII］（ L ，I）
$r r 5$ $\begin{gathered} n 0 \\ L \quad 1 \end{gathered}$	［Reverse assign．］ Assignment of the reverse direction command． ［No］（ n 口）：Not assigned ［LII］（ L ，I）：Logical input LI1 ［．．．］（．．．）：See the assignment conditions on page 153	［LI2］（ $\mathrm{L}, ~$ 己）

Code	Name／Description	Adjustment range	Factory setting
L I－	［LI1 CONFIGURATION］		
LIA	［LI1 assignment］		
	Read－only parameter，cannot be configured．		
	It displays all the functions that are assigned to input LI1 in order to check for multiple assignments．		
กロ	［No］（nロ）：Not assigned		
r	［Run］（r ¢ п ）：Run Enable		
Frod	［Forward］$(F r d)$ ：Forward operation		
r r 5	［Reverse］（ r r 5）：Reverse operation		
rP5	［Ramp switching］（ r P 5）：Ramp switching		
\checkmark－	［Jog］（ $\dagger \square \square)$ ：Jog operation		
$\checkmark 5 P$	［＋Speed］（ 45 P）：＋speed		
d $5 P$	［－speed］（d5P）：－speed		
P5	［2 preset speeds］（P丂 己）： 2 Preset speeds		
P54	［4 preset speeds］（P5 4）： 4 Preset speeds		
P5日	［8 preset speeds］（P5日）： 8 Preset speeds		
rFE	［Ref． 2 switching］（ \sim F［）：Reference switching		
～5t	［Freewheel stop］（ $n 5 t$ ）：Freewheel stop		
F5t	［Fast stop］（F5t）：Fast stop		
FLo	［Forced local］（FL 口）：Forced local mode		
r 5 F	［Fault reset］（r 5F）：Fault reset		
$t \sim L$	［Auto－tuning］（ $t \cup L$ ）：Auto－tuning		
$5 Р \square$	［Ref．memo．］（ 5 P П）：Save reference		
$F L$ ，	［Pre Fluxing］（FL ，）：Motor fluxing		
P月u	［Auto／manual］（PA $)$ ： $\mathrm{Pl}(\mathrm{D})$ auto－manu		
$P, 5$	［PID integral reset］（ P ，5）：Integral shunting PI（D）		
Pre	［2 preset PID ref．］$\left(P_{\text {r }}\right.$ 己）： 2 Preset $\mathrm{PI}(\mathrm{D})$ references		
Pr 4	［4 preset PID ref．］（ P r 4）： 4 Preset $\mathrm{PI}(\mathrm{D})$ references		
t L A	［Torque limitation］（ E L A）：Permanent torque limitation		
$E \in F$	［External fault］（ $E \in F$ ）：External fault		
r $¢$ A	［Output contact．fdbk］（ r［ 月）：Downstream contactor feedback		
$[\cap F 1$	［2 config．switching］（［ $\cap F 1$ ）：Configuration switching 1		
$\mathrm{CnF}{ }^{\text {c }}$	［3 config．switching］（［ $\cap F 己$ ）：Configuration switching 2		
［ H \％$]$	［2 parameter sets］（［ H 月 I）：Parameter switching 1		
［HA己	［3 parameter sets］（［ H \＃ᄅ）：Parameter switching 2		
t L	［Activ．Analog torque limitation］（ $\llcorner\llcorner[$ ）：Torque limitation：Activation（analog input）by a logic input		
［［5	［Cmd switching］（［ 5 ）：Command channel switching		
$1 \cap \mathrm{H}$	［Fault inhibition］（ $1 \cap H$ ）：Fault inhibition		
P5 16	［16 preset speeds］（ $P 5 / 6)$ ： 16 preset speeds		
ᄂ［ 己	［Current limit 2］（ L ¢ ᄅ）：Current limitation switching		
r $¢ 6$	［Ref 1B switching］（ \upharpoonright［ b）：Reference channel switching（1 to 1B）		
tr $[$	［Traverse control］（ $t r$［ ）：Traverse control		
$b[$ ，	［Brake contact］（b［ ）：Brake logic input contact		
5 月 F	［Stop FW limit sw．］（ 5 月 F ）：Stop switch forward		
5 月r	［Stop RV limit sw．］（ 5 月 r ）：Stop switch reverse		
d AF	［Slowdown forward］（ \ddagger F F ）：Slowdown attained forward		
d ${ }_{\text {r }}$	［Slowdown reverse］（ A A r ）：Slowdown attained reverse $^{\text {S }}$		
CLS	［Disable limit sw．］（［ L 5）：Limits switches clearing		
LES	［Drive lock（Line contact．ctrl）］（ L E 5）：Emergency stop		
rtr	［Init．traverse ctrl．］（ r tr）：Reload traverse control		
$5 n L$ r P	［Counter wobble］（ $5 \cap[$ ）：Counter wobble synchronization		
5 Hz	［2 HSP］（ 5 H 己）：High Speed 2		
5 H 4	［4 HSP］（ 5 H 4）：High Speed 4		
FP5 1	［Preset spd2］（FP5 l）：Function key preset speed 1 assignment		
FP5	［Preset spd3］（FPS $)$ ）Function key preset speed 2 assignment		
FPr 1	［PID ref．2］（ $\left.F P_{r} / 1\right)$ ：Function key preset PI 1 assignment		
FPre	［PID ref．3］（ $F P r$ P）：Function key preset PI 2 assignment		
$F \sim 5$	＋Speed］（ $F \sim 5 P$ ）：Function key faster assignment		
F ¢ $5 P$	－Speed］（ F d 5 P）：Function key slower assignment		
Ft	T／K］$(F \in)$ ：Function key bumpless assignment		
－5，	＋speed around ref．］（ ~ 5 ，）：＋Speed around ref		
d5，	［－speed around ref．］（ +5 ，）：－Speed around ref		

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

2 s To change the assignment of this parameter, press the ENT key for 2 s .

Configuration of analog inputs and Pulse input

The minimum and maximum input values (in volts, mA, etc.) are converted to \% in order to adapt the references to the application.

Minimum and maximum input values:

The minimum value corresponds to a reference of 0% and the maximum value to a reference of 100%. The minimum value may be greater than the maximum value:

Reference

For +/- bidirectional inputs, the min. and max. are relative to the absolute value, for example $+/-2$ to 8 V .

Range (output values): For analog inputs only:

This parameter is used to configure the reference range to $[0 \% \rightarrow 100 \%]$ or $[-100 \% \rightarrow+100 \%]$ in order to obtain a bidirectional output from a unidirectional input.

Reference

(】 Parameter that can be modified during operation or when stopped.

Delinearization: For analog inputs only:

The input can be delinearized by configuring an intermediate point on the input/output curve of this input:

For range $0 \rightarrow 100 \%$

Reference

Note: For [Interm. point X], 0% corresponds to [Min value] and 100\% to [Max value].

For range $-100 \% \rightarrow 100 \%$
Reference

Code	Name／Description	Adjustment range	Factory setting
月 ，1－	［AI1 CONFIGURATION］		
月 1 1 月 月。I Fr I Fre 5 月 2 P，F t月月 d月 2 P，Π FP， 5月ヨ Fr 16 d月 $ヨ$ FLa［ П月己 пнョ PES ，मロ ，月10	［AI1 assignment］ Read－only parameter，cannot be configured． It displays all the functions associated with input AI1 in order to check，for example，for compatibility problems． ［No］（ \quad п ロ）：Not assigned ［AO1 assignment］（ $\mathrm{A} \circ \mathrm{l}$ ）：Analog output AO1 ［Ref． 1 channel］$\left(F_{r} /\right.$ ）：Reference source 1 ［Ref． 2 channel］（ $F_{\ulcorner }$己）：Reference source 2 ［Summing ref．2］（ 5 月 ）：Summing reference 2 ［PID feedback］（ P, F ）：PI feedback（PI control） ［Torque limitation］（ （ A A）：Torque limitation：Activation by an analog value ［Subtract．ref．2］（ $\underset{\rightarrow}{ }$ A $己$ ）：Subtracting reference 2 ［Manual PID ref．］（ P, Π ）：Manual speed reference of the $\mathrm{PI}(\mathrm{D})$ regulator（auto－man） ［PID speed ref．］（ $F P_{1}$ ）：Speed reference of the $\mathrm{PI}(\mathrm{D})$ regulator（predictive reference） ［Summing ref．3］（ 5 月 ヨ）：Summing reference 3 ［Ref．1B channel］（ $F_{\left.r_{r} / b\right) \text { ：Reference source 1B }}$ ［Subtract．ref．3］（ \downarrow 月 \exists ）：Subtracting reference 3 ［Forced local］（ $F L \square[$ ）：Forced local reference source ［Ref． 2 multiplier］（ $П$ Н ᄅ）：Multiplying reference 2 ［Ref． 3 multiplier］（ \cap 月 ）：Multiplying reference 3 ［Weight input］（PE 5）：Hoisting：External weight measurement function ［IA01］（ ，คロ I）：Function blocks：Analog Input 01 ［IA10］（ ，月 I（ ）：Function blocks：Analog Input 10		
A，1t	［Al1 Type］ ［Voltage］$\left(I \square_{u}\right)$ ：Positive voltage input $0-10 \mathrm{~V}$（negative values are interpreted as zero：the input is unidirectional）		
－ו L I	［AI1 min value］ Al1 voltage scaling parameter of 0% ．	0 to 10.0 V	0 V
－，H I	［Al1 max value］ Al1 voltage scaling parameter of 100% ．	0 to 10.0 V	10.0 V
A ，IF	［Al1 filter］ Interference filtering．	0 to 10.00 s	0 s
$\begin{aligned} & \text { A } \quad I L \\ & P 口 5 \\ & \Pi E[\end{aligned}$	［AI1 range］ ［0－100\％］（ $P \square 5$ ）：Positive logical ［ $+1-100 \%$ ］（ $\cap \in \square)$ ：Positive and negative logical		［0－100\％］（Pם 5）
A ，IE	Input delinearization point coordinate．Percentage of the physical input signal． 0% corresponds to［Al1 min value］（ $山, L I)$ ． 100% corresponds to［Al1 max value］（ $\mathrm{u} / \mathrm{H} \mathrm{I}$ ）．		
A ，15	Output delinearization point coordinate（frequency reference）． Percentage of the internal frequency reference corresponding to the［AII Interm．point \mathbf{X} ］（A｜IE）percentage of physical input signal．		
	［INPUTS／OUTPUTS CFG］（continued）		
月，己－	［AI2 CONFIGURATION］		
月，己月	［AI2 assignment］ Identical to［Al1 assignment］ （ । । $\boldsymbol{A})$ page 133.		
－ו L 己	［AI2 min value］ Al2 voltage scaling parameter of 0% ．	0 to 10.0 V	0 V

Code	Name／Description \quad Adjustment range	Factory setting	
A ，ヨ 5	［AI3 Interm．point Y］ 0 to 100\％	0\％	
	Output delinearization point coordinate（frequency reference）． Percentage of the internal frequency reference corresponding to the［AI3 Interm．point X ］（ $~ / ~ \\| \exists E$ ）percentage of physical input signal．		
1－－	［INPUTS／OUTPUTS CFG］（continued）		
月 1 －	［VIRTUAL AI1］		
A 1 A	［AIV1 assignment］ Virtual analog input 1 via the jog dial available on the front side of the product． Identical to［AI1 assignment］（ （｜A）page 133.		
月ぃこ－	［VIRTUAL AI2］		
月七こ月	［AIV2 assignment］ Possible assignments for［AI virtual 2］（ $\mathrm{A}, \mathrm{\lrcorner}$ 己）：Virtual analog input 2 via communication channel，to be configured with［AI2 net．channel］（A ，［ 己 ）． Identical to［AIV1 assignment］（ $\mathrm{F}_{\boldsymbol{u}} /$ 月）page 133.		
月 ，［ 己 пロ ᄃ月n nEt	［Al2 net．Channel］ ［VIRTUAL AI2］（ $\mathrm{A} \sqcup \mathrm{C}$ 月）source channel． This parameter can also be accessed in the［PID REGULATOR］（ $P, d-$ ）submenu page 210. Scale：The value 8192 transmitted by this input is equivalent to 10 V on a 10 V input． ［ No ］（ n 口）：Not assigned ［Modbus］（ Π db）：Integrated Modbus ［CANopen］（ $\left[\begin{array}{ll}\text { 月 } n): \text { Integrated CANopen® }\end{array}\right.$ ［Com．card］（ $n E t$ ）：Communication card（if inserted）		
，En－	［ENCODER CONFIGURATION］ Following parameters can be accessed if the speed monitoring card VW3A3620 has been inserted．		
Eпレ $\begin{array}{r} \text { ח口 } \\ \text { SE } \end{array}$	［Encoder usage］ ［ No ］（ n 口）：Function inactive． ［Fdbk monit．］（ 5 E［ ）：The encoder provides speed feedback for monitoring．		
$E \cap S$ А月ьь月ь	［Encoder type］ Encoder usage configuration． Encoder usage configuration． To be configured in accordance with the type of encoder used． ［AABB］（AAbb）：For signals $A, / A, B, / B$ ． ［AB］$(A b)$ ：For signals A, B ． Following parameters can be accessed if［Encoder usage］（Eпu）is set to［Fdbk monit．］（ $5 E[$ ）．		
P[,	［Number of pulses］ Encoder usage configuration． Number of pulses per encoder revolution． Following parameters can be accessed if［Encoder usage］（ $E \cap \sim$ ）is set to［Fdbk monit．］（ 5 E［）．	1024	

[^3]
Load slip detection ：

The drive will detect an error and display the error code［Load slipping］（ $A \cap F$ ）in the following cases：
－As soon as the RUN order is received，if the sign of the output frequency and the speed feedback are in opposite way during［ANF Time Thd．］（ 1 月 \cap F）．
－During operation：
－if the speed feedback is in the same direction than the output frequency
－and the speed feedback is over［ANF Detection level］（ $L A \cap F$ ）．
－and，
＂if［ANF Direction check］（ d A $\cap F$ ）is set to［Over］（ $\square \Delta E r$ ），the difference between the output frequency and the speed feedback is over［ANF Frequency Thd．］（ F 月 $\cap F$ ）during［ANF Time Thd．］
（TAnF）（Overspeed detection）．
or，
 frequency and the speed feedback is over［ANF Frequency Thd．］（ F 月 $\cap F$ ）or below－［ANF Frequency Thd．］（FA $\cap F$ ）during［ANF Time Thd．］（ t A $\cap F$ ）（Overspeed or underspeed detection）．

Code	Name / Description	Adjustment range	Factory setting
$d A n F$	[ANF Direction check]		[Over] (\square ¢ Er)
वч E r bath	Available [Load slipping] ($A \cap F$) detection direction. [Over] ($\square\left\llcorner E_{r}\right.$): The drive will detect the error [Load slipping] ($A \cap F$) in case of overspeed. [Both] ($\llcorner\circ \vdash h$): The drive will detect the error [Load slipping] ($A \cap F$) in case of overspeed or underspeed.		
$t A \cap F$	[ANF Time Thd.] Level of [Load slipping] ($A \cap F$) detected error. The drive will detect the error [Load slipping] (A	0 to 10 s esent during [ANF Tim	0.10 s Thd.] ($A \cap F)$.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Code	Name / Description	Adjustment range	Factory setting
L - 15	[LO1 active at] Configuration of the operating logic: [1] $(P \square 5)$: State 1 when the information is true [0] ($n \in[)$: State 0 when the information is true The configuration [1] ($P_{\square} 5$) cannot be modified for the [No drive flt] ($F L E$), [Brk control] ($\llcorner L[$) and [Input cont.] $(L L[)$ assignments.		
$\begin{aligned} & P \text { OS } \\ & \text { REL } \end{aligned}$			
LaIH	[LO1 holding time]	0 to 9,999 ms	0
	The holding time cannot be set for the [No drive flt] (FLE), [Brk control] ($b L[)$ and [Input cont] ($L L[$) assignments, and remains at 0 . The change in state only takes effect once the configured time has elapsed, when the information becomes false.		

(1) 0 to $9,999 \mathrm{~ms}$ then 10.00 to 60.00 s on the integrated display terminal.

Use of analog output AO1 as a logic output

Analog output AO1 can be used as a logic output，by assigning DO1．In this case，when set to 0 ，this output corresponds to the AO1 min．value（ 0 V ，or 0 mA for example），and when set to 1 to the AO 1 max．value（ 10 V ，or 20 mA for example）．
The electrical characteristics of this analog output remain unchanged．As these characteristics are different from logic output characteristics，check that it is still compatible with the intended application．

Code	Name／Description	Adjustment range	Factory setting
1－\square^{-}	［INPUTS／OUTPUTS CFG］（continued）		
dロ1－	［D01 CONFIGURATION］		
dol	［DO1 assignment］ Identical to［R1 Assignment］（ r／）page 138 with the addition as these selections can only be configured in the［APPLICATIO ［Brk control］（b L［ ）：Brake contactor control ［Input cont．］（ L L［ ）：Line contactor control ［Output cont］（ $a[\Sigma$ ）：Output contactor control ［Sync．wobble］（ 5 צ ）：＂Counter wobble＂synchronization ［DC charging］（ $d[$ a）：DC bus precharging contactor control ［OL01］（ $\square\llcorner\square$ ）：Function blocks：Logical Output 01 ．．． ［OL10］（ \circ L $\mid \square$ ）：Function blocks：Logical Output 10	ng parameter value （F～п－）menu）：	own for informa
dold	［DO1 delay time］	0 to 60，000 ms（1）	0 ms
	The delay cannot be set for the［No drive flt］（ $F L E$ ），［Brk control］（ $b L[$ ），［Output cont．］（ $\square[5$ ）and［Input cont．］（ $L L[$ ） assignments，and remains at 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes true．		
dals	［DO1 active at］		［1］（Pロ5）
$\begin{aligned} & P \square 5 \\ & \cap E[\end{aligned}$	Configuration of the operating logic： ［1］$(P \square 5)$ ：State 1 when the information is true ［0］（ $n \in \square$ ）：State 0 when the information is true The configuration $[1]\left(P_{\square} 5\right)$ cannot be modified for the［No drive flt］（ $F L E$ ），［Brk control］（ $~$ L L ）and［Input cont．］（ $L L[$ ） assignments．		
dalH	［DO1 holding time］	0 to 9，999 ms	0 ms
	The holding time cannot be set for the［No drive fit］（FLE），［Brk control］（ $\llcorner L[$ ）and［Input cont］（ $L L[$ ）assignments，and remains at 0 ． The change in state only takes effect once the configured time has elapsed，when the information becomes false．		

（1） 0 to $9,999 \mathrm{~ms}$ then 10.00 to 60.00 s on the integrated display terminal．

Configuration of analog output

Minimum and maximum values (output values):
The minimum output value, in volts, corresponds to the lower limit of the assigned parameter and the maximum value corresponds to its upper limit. The minimum value may be greater than the maximum value.

Scaling of the assigned parameter

The scale of the assigned parameter can be adapted in accordance with requirements by modifying the values of the lower and upper limits by means of two parameters for each analog output.

These parameters are given in \%. 100\% corresponds to the total variation range of the configured parameter, so: 100% = upper limit - lower limit For example, [Sign. torque] (5 t 9) which varies between -3 and +3 times the rated torque, 100% corresponds to 6 times the rated torque.
 ASLx). The value 0\% (factory setting) does not modify the lower limit.

- The [Scaling AOx max] (A 5 Hx) parameter modifies the upper limit: new value = lower limit + (range \mathbf{x} ASLx). The value 100% (factory setting) does not modify the upper limit.
- [Scaling AOx min] (A $5 L x$) must always be lower than [Scaling AOx max] (月 5 Hx).

Upper limit of the assigned parameter

Lower limit of the assigned parameter

Application example 2

The value of the motor current at the AO1 output is to be transferred with 0-20 mA, range 2 In motor, In motor being the equivalent of a 0.8 In drive.
The [I motor] ($\mathrm{a}[\mathrm{r}$) parameter varies between 0 and 2 times the rated drive current, or a range of 2.5 times the rated drive current.
[Scaling AO1 min] (A5 L I) must not modify the lower limit, which therefore remains at its factory setting of 0\%.
[Scaling AO1 max] (A5H I) must modify the upper limit by $0.5 x$ the rated motor torque, or $100-100 / 5=80 \%$ (new value = lower limit + (range \times ASH1).

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

The following submenus group the alarms into 1 to 3 groups，each of which can be assigned to a relay or a logic output for remote signaling．These groups can also be displayed on the graphic display terminal（see ［3．3 MONITORING CONFIG．］（ $\Pi[F-)$ menu page 284）and viewed via the［1．2 MONITORING］（ Π（ \square－ ） menu page 47.
When one or a number of alarms selected in a group occurs，this alarm group is activated．

Code	Name／Description
1－口	［INPUTS／OUTPUTS CFG］（continued）
A 1［－	［ALARM GRP1 DEFINITION］
	Selection to be made from the following list： ［LI6＝PTC al．］（ P L A）：LI6＝PTCL alarm ［Ext．fault al．］（E F A）：External fault alarm ［Under V．al．］（ 5 S A）：Undervoltage alarm ［I attained］（［ $\llcorner A)$ ：Current threshold attained（［Current threshold］（［ $t d)$ page 102） ［Freq．Th．att．］$(F \in A)$ ：Frequency threshold attained（［Freq．threshold］（ $F \in d$ ）page 102） ［Freq．th． 2 attained］（ $F \mathcal{P}$ A）：Frequency threshold 2 attained（［Freq．threshold 2］（ $F \mathcal{L} d$ ）page 102） ［Freq．ref．att］（ 5 rA）：Frequency reference attained ［Th．mot．att．］（ 5 月 ）：Motor 1 thermal state attained ［Th．mot2 att］（ $\leqslant 5$ 己）：Motor 2 thermal state attained ［Th．mot3 att］（ L 5 ヨ）：Motor 3 thermal state attained ［HSP attain．］（F L A）：High speed attained ［AI．${ }^{\circ} \mathrm{C}$ drv］（ E H A$)$ ：Drive overheating ［［PID error al］（ $P \in E$ ）：PID error alarm ［PID fdbk al．］（ P F R）：PID feedback alarm ［AI3 AI．4－20］（ A P \exists ）：Alarm indicating absence of 4－20 mA signal on input AI3 ［Lim T／I att．］（ 5 5 月）：Torque limit alarm ［Th．drv．att．］（ 1 月 d）：Drive thermal state attained ［IGBT alarm］$(t\lrcorner A)$ ：IGBT alarm ［Underload．Proc．AI．］（ $\lrcorner L$ A）：Underload alarm ［Overload．Proc．Al．］（ \square L A）：Overload alarm ［Rope slack alarm］（ r 5 \ddagger A）：Rope slack（see［Rope slack config．］（ r 5d）parameter page 205） ［High torque alarm］（ $\llcorner\in H A$ ）：Motor torque overshooting high threshold［High torque thd．］$(t \in H)$ page 102. ［Low torque alarm］（ $E \in L A$ ）：Motor torque undershooting low threshold［Low torque thd．］（ $t \in L$ ）page 102. ［Freq．meter Alarm］（F ЯL A）：Measured speed threshold attained：［Pulse warning thd．］（F ЯL）page 102. ［Dynamic load alarm］（ $d L d A$ ）：Load variation detection（see［DYNAMIC LOAD DETECT．］（ $d L d-$ ）page 267）． See the multiple selection procedure on page 33 for the integrated display terminal，and page $\underline{24}$ for the graphic display terminal．
月 こ－	［ALARM GRP2 DEFINITION］
	Identical to［ALARM GRP1 DEFINITION］（ $\% ~ /[-)$ page 145.
月 \square^{-}	［ALARM GRP3 DEFINITION］
	Identical to［ALARM GRP1 DEFINITION］（ ／I［－）page 145.

Command

The parameters in the［COMMAND］（ $\left[t L^{-}\right.$）menu can only be modified when the drive is stopped and no run command is present．

Command and reference channels

Run commands（forward，reverse，stop，etc．）and references can be sent using the following channels：

Command	Reference
Terminals：logic inputs LI or analog inputs used as logic inputs LA	Terminals：analog inputs AI，pulse input
Function blocks	Function blocks
Remote display terminal	Remote display terminal
Graphic display terminal	Graphic display terminal
Integrated Modbus	Integrated Modbus
Integrated CANopen®	Integrated CANopen®
Communication card	Communication card
	$+/-$ speed via the terminals
	$+/-$ speed via the graphic display terminal

A WARNING

UNANTICIPATED EQUIPMENT OPERATION

［LAI2］（ $L A, ~ 己)$ ），they remain active in their behaviors in analog input mode（example ：［Ref． 1 channel］ （ $F_{r} /$ ）is still set to［Al1］（ 月 $\left.\left.\mid ~ / ~\right) ~\right) ~ . ~_{\text {．}}$
－Remove the configuration of［AI1］（A／I）or［AI2］（ （ $/$ 己）in analog input mode
Failure to follow these instructions can result in death，serious injury，or equipment damage．

－＋ 24 V power supply（max． 30 V ）
－State 0 if $<7.5 \mathrm{~V}$ ，state 1 if $>8.5 \mathrm{~V}$ ．

Note：The stop keys on the graphic display terminal or remote display can be programmed as non－priority keys．A stop key can only have priority if the［Stop Key priority］（P5ヒ）parameter in the
［COMMAND］$([t L-)$ menu，page 154 is set to［Yes］$(Ч E 5)$ ．

The behavior of the Altivar 320 can be adapted according to requirements：
－［Not separ．］（ $5, \Pi$ ）：Command and reference are sent via the same channel．
－［Separate］（ $5 E P$ ）：Command and reference may be sent via different channels．
In these configurations，control via the communication bus is performed in accordance with the DRIVECOM standard with only 5 freely－assignable bits（see Communication Parameters Manual）．The application functions cannot be accessed via the communication interface．
－［I／O profile］（ ，口）：The command and the reference can come from different channels．This configuration both simplifies and extends use via the communication interface．Commands may be sent via the logic inputs on the terminals or via the communication bus．When commands are sent via a bus，they are available on a word，which acts as virtual terminals containing only logic inputs．Application functions can be assigned to the bits in this word．More than one function can be assigned to the same bit．
Note：Stop commands from the graphic display terminal or remote display terminal remain active even if the terminals are not the active command channel．

Reference channel for［Not separ．］（5 ，П），［Separate］（5 E P）and［I／O profile］（ ，ם）configurations，PID not configured

Fr I，5月コ，5月ヨ，d月コ，d月ヨ，П月コ，ПАヨ：
－Terminals，graphic display terminal，integrated Modbus，integrated CANopen®，communication card
Fr lb，for 5EP and $1 \square$ ：
－Terminals，graphic display terminal，integrated Modbus，integrated CANopen®，communication card
Frlı，for 5，П：
－Terminals，only accessible if $F_{r} I=$ terminals
Fre：
－Terminals，graphic display terminal，integrated Modbus，integrated CANopen®，communication card，and ＋／－speed
 ［APPLICATION FUNCT．］（ $F \mathrm{~F}_{\mathrm{n}} \mathrm{n}^{-}$）menu．

Reference channel for［Not separ．］（ 5 ，П），［Separate］（5 E P）and［I／O profile］（ 1 ）configurations，PID configured with PID references at the terminals

（1）Ramps not active if the PID function is active in automatic mode．
F_{r} I：
－Terminals，graphic display terminal，integrated Modbus，integrated CANopen®，communication card Fr lb，for 5EP and $1 \square$ ：
－Terminals，graphic display terminal，integrated Modbus，integrated CANopen®，communication card
Frlı，for 5，п：
－Terminals，only accessible if $F_{r} I=$ terminals
5月己，5月ヨ，d月己，d月ヨ：
－Terminals only
Fre：
－Terminals，graphic display terminal，integrated Modbus，integrated CANopen $®$ ，communication card，and ＋／－speed
 ［APPLICATION FUNCT．］（ $F_{\Delta n^{-}}$）menu．

Command channel for [Not separ.] (5 , П) configuration

Reference and command, not separate
The command channel is determined by the reference channel. Parameters $F_{r} I, F r \mathcal{F}, r F L, F L a$ and $F L$ a $[$ are common to reference and command.
Example: If the reference is $F_{r} I=$ 月, I (analog input at the terminals), control is via L, (logic input at the terminals).

Key:

Parameter:
The black square represents the factory setting assignment

Command channel for［Separate］（ $5 E P$ ）configuration

Separate reference and command
Parameters $F L \square$ and $F L_{\square}[$ are common to reference and command．
Example：If the reference is in forced local mode via 月 ।／（analog input at the terminals），command in forced local mode is via L ，（logic input at the terminals）．
The command channels $\left[d /\right.$ and $\left[d 己\right.$ are independent of the reference channels $F_{r} I, F_{r} I b$ and Fre．

Key：

Parameter：
The black square represents the factory setting assignment，except for［Profile］．

［dI，［d己：

－Terminals，graphic display terminal，integrated Modbus，integrated CANopen®，communication card

Command channel for［I／O profile］（ ）configuration

Separate reference and command，as in［Separate］（5EP）configuration
The command channels $\left[d /\right.$ and $\left[d 己\right.$ are independent of the reference channels $F_{r} I, F_{r} I b$ and Fre．
［Cmd channel 1］

Key：

Parameter：
The black square represents the factory setting assignment，except for［Profile］．

［dI，［d己：

－Terminals，graphic display terminal，integrated Modbus，integrated CANopen®，communication card

A command or an action can be assigned：
－To a fixed channel by selecting an L ，input or a Cxxx bit：
－By selecting，for example，L, \exists ，this action will be triggered by L, \exists regardless of which command channel is switched．
－By selecting，for example，โ 〕 14 ，this action will be triggered by integrated CANopen® with bit 14 regardless of which command channel is switched．
－To a switchable channel by selecting a CDxx bit：
－By selecting，for example，［ d｜।，this action will be triggered by：
$L, l 己$ if the terminals channel is active
［｜｜｜if the integrated Modbus channel is active
［ 己｜｜if the integrated CANopen® channel is active
［ \exists ।／if the communication card channel is active

If the active channel is the graphic display terminal，the functions and commands assigned to CDxx switchable internal bits are inactive．
Note：$[d \square E$ to $[d \mid \exists$ can only be used for switching between 2 networks．They do not have equivalent logic inputs．

Terminals	Integrated Modbus	Integrated CANopen®	Communication card	Internal bit, can be switched
				CD00
LI2 (1)	C101 (1)	C201 (1)	C301 (1)	CD01
LI3	C102	C202	C302	CD02
LI4	C103	C203	C303	CD03
L15	C104	C204	C304	CD04
LI6	C105	C205	C305	CD05
-	C106	C206	C306	CD06
-	C107	C208	C307	CD07
-	C109	C209	C308	CD08
-	C110	C211	C309	CD09
-	C112	C212	C311	CD10
-	C113	C312	CD11	
-	C114	C313	CD13	
LA11	C115	C215	C315	CD14
LA12				CD15
-	CL01 to OL10			

Assignment conditions for logic inputs and control bits
The following elements are available for every command or function that can be assigned to a logic input or a control bit：

［LI1］（ L, ，）to［LI6］（ $L, ~$ b ）	Drive with or without option
［LAI1］（LA，I）to［LAI2］（ L ，，己）	Logical inputs
［C101］（ $[\|\square\|)$ to［C110］（ $[1 \mid \square)$	With integrated Modbus in［I／O profile］（ 10 ）configuration
［C111］（［｜｜｜to［C115］（［｜｜5）	With integrated Modbus regardless of configuration
［C201］（［ 己 \｜）to［C210］（［ 己 I ロ）	With integrated CANopen® in［I／O profile］（ 1 ）configuration
［C211］（ ¢ 己／I）to［C215］（［ 己 I 5）	With integrated CANopen® regardless of configuration
	With a communication card in［I／O profile］（ 1 ）configuration
［C311］（［ ］／I）to［C315］（［ ヨ／5）	With a communication card regardless of configuration
［CD00］（ ᄃ d प ）to［CD10］（［ d I $)$	In［I／O profile］（ 1 ）configuration
［CD11］（［d｜）to［CD15］（ $[$ d｜5）	Regardless of configuration
［OL01］（aL｜）to［OL10］（aL I $)$	Regardless of configuration

Note：In［I／O profile］（／ロ）configuration，L ，／cannot be accessed and if［2／3 wire control］（ t［［ ）page 85 is set to［3 wire］（ $\exists[), L$ ，ᄅ，ᄃ $|\square|,\lceil 2 \square \mid$ and $[\exists \square \mid$ cannot be accessed either．

A WARNING

LOSS OF CONTROL
Inactive communication channels are not monitored（no error detection in the event of a communication interruption）．
Verify that using the commands and functions assigned to bits C101 to C315 does not result in unsafe conditions in the event of a communication interruption．
Failure to follow these instructions can result in death，serious injury，or equipment damage．

Code	Name / Description	Adjustment range	Factory setting
[口P	[Copy channel 1 <> 2]		[No] (ma)
2 s	1. WARNING		
	UNANTICIPATED EQUIPMENT OPERATION This parameter can cause unintended movements, for example, inversion of the direction of rotation of the motor, sudden acceleration or stops. - Verify that the setting of this parameter does not cause unintended movements. - Verify that the setting of this parameter does not result in unsafe conditions Failure to follow these instructions can result in death, serious injury, or equipment damage.		

Can be used to copy the current reference and/or the command by means of switching, in order to avoid speed surges, for example.
If [Profile] ([H [F) page 154 is set to [Not separ.] ($5, \Pi$) or [Separate] ($5 E P$), copying will only be possible from channel 1 to channel 2.
If [Profile] ($\left[\begin{array}{c}\text { H L F) is set to [I/O profile] (} \mathrm{c} \text {) , copying will be possible in both directions. }\end{array}\right.$
A reference or a command cannot be copied to a channel on the terminals.
The reference copied is [Frequency ref.] ($F\ulcorner$ r) (before ramp) unless the destination channel reference is set via $+/-$ speed. In this case, the reference copied is [Output frequency] ($\left\ulcorner F_{r}\right.$) (after ramp).

- [No] (n口): No copy
$5 P$ [Reference] ($5 P$): Copy reference
[d [Command] ([d): Copy command
h L L [Cmd + ref.] (A L L): Copy command and reference

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

To change the assignment of this parameter, press the ENT key for 2 s .

As the graphic display terminal may be selected as the command and／or reference channel，its action modes can be configured．
The parameters on this page can only be accessed on the graphic display terminal，and not on the integrated display terminal．

Comments：

－The display terminal command／reference is only active if the command and／or reference channels from the terminal are active with the exception of $[T / K](F E)$（command via the display terminal），which takes priority over these channels．Press［T／K］（ $F E$ ）（command via the display terminal）again to revert control to the selected channel．
－Command and reference via the display terminal are impossible if the latter is connected to more than one drive．
－The JOG，preset speed and＋／－speed functions can only be accessed if［Profile］（［ H［ F ）is set to ［Not separ．］（ $5, \Pi$ ）．
－The preset PID reference functions can only be accessed if［Profile］（［ H［ F ）is set to ［Not separ．］（5 ，П）or［Separate］（5EP）．
－The $[T / K](F E)$（command via the display terminal）can be accessed regardless of the［Profile］（LH［F）．

Code	Name／Description \quad Adjustment range	Factory setting	
	［F1 key assignment］ ［No］（ n 口） ［No］（пロ）：Not assigned ［Jog］（ F ل $\quad[$ ）：JOG operation ［Preset spd2］（FP5／）：Press the key to run the drive at the 2nd preset speed［Preset speed 2］（5P己）page 97．Press STOP to stop the drive． ［Preset spd3］（FPS $)$ ：Press the key to run the drive at the 3rd preset speed［Preset speed 3］（ 5 P \exists ）page 97．Press STOP to stop the drive． ［PID ref．2］$\left(\begin{array}{lll}F P_{r} /\end{array}\right)$ ：Sets a PID reference equal to the 2nd preset PID reference［Preset ref．PID 2］（ $\left.r P \mathcal{P}\right)$ page 99，without sending a run command．Only operates if［Ref． 1 channel］$\left(F_{r} I\right)$ is set to［HMI］（ $L[[$ ）．Does not operate with the $[\mathrm{T} / \mathrm{K}](F E)$ function． ［PID ref．3］$\left(F P_{r} 己\right)$ ：Sets a PID reference equal to the 3rd preset PID reference［Preset ref．PID 3］（ $\left.r P \exists\right)$ page 100，without sending a run command．Only operates if［Ref． 1 channel］$\left(F_{r} I\right)$ is set to $[\mathrm{HMI}](L[L)$ ．Does not operate with the $[\mathrm{T} / \mathrm{K}](F E)$ function． ［＋speed］（ F_{\sim} SP）：Faster，only operates if［Ref． 2 channel］$\left(F_{r}\right.$ ）is set to［HMI］（ $L[\Sigma$ ）．Press the key to run the drive and increase the speed．Press STOP to stop the drive． ［－speed］$(F \quad d 5 P)$ ：Slower，only operates if［Ref． 2 channel］$\left(F_{r} 己\right)$ is set to［HMI］（ $L[\Sigma$ ）and if a different key has been assigned to［＋speed］．Press the key to run the drive and decrease the speed．Press STOP to stop the drive． ［T／K］$(F \in)$ ：Command via the display terminal：Takes priority over［Cmd switching］（［［ 5）and over ［Ref． 2 switching］（ $\sim F[$ ）．		
$F \cap 己$	Identical to［F1 key assignment］（ F_{\cap} I）page 157.		
$F \cap \exists$	Identical to［F1 key assignment］（ $F_{\square} \cap$ l ）page 157.		
$F \cap 4$	［F4 key assignment］ Identical to［F1 key assignment］（ $F \cap \\|)$ page $\underline{157}$.	［No］（na）	
ВП	［HMI cmd．］	［Stop］（ 5 ロ－	
Stap ローחF	When the $[T / K](F \in)$ function is assigned to a key and that function is active，this parameter defines the behavior at the moment when control returns to the graphic display terminal or remote display terminal． ［Stop］（ 5 t a P）：Stops the drive（although the controlled direction of operation and reference of the previous channel are copied （to be taken into account on the next RUN command））． ［Bumpless］（ $\lrcorner \Pi F$ ）：Does not stop the drive（the controlled direction of operation and the reference of the previous channel are copied）		

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

Parameters described in this page can be accessed by：
DRI－＞CONF＞FULL $>$ FBM－$>$ FBP－

Function Block Management

Code	Name／Description	Adjustment range	Factory setting
$F \sim L L$	［FULL］（continued）		
Fロワ－	［FUNCTION BLOCKS］		
ПFb－	［MONIT．FUN．BLOCKS］ Note：This section shows only what is possible to do with local or remote display on the drive．For advanced configuration using PC software，please refer to the dedicated Function blocks manual．		
$\begin{aligned} & \text { FbSt } \\ & \text { IdLE } \\ & \text { CHEL } \\ & 5 t \square \mathrm{P} \\ & \text { init } \\ & \text { run } \\ & E r r \end{aligned}$	［FB Status］ ［Idle］（ ，dLE）：No binary file in the target，the FB is waiting for a download ［Check prog．］（［ H E［）：Check the program downloaded ［Stop］（ 5 上 ロ P）：The Function blocks application is stopped ［Init］（ $\because \cap, t$ ）：Check coherency between ATVLogic program and Function blocks parameters ［Run］$(r u n)$ ：The Function blocks application is running ［Error］（Err）：An internal error has been detected．The Function blocks application is in fault state mode．		
	［FB Fault］ ［No］（ \cap 口）：No detected fault ［Internal］（,$\cap t$ ）：Internal detected error ［Binary file］(b, \cap) ：Binary file corrupted ［Intern Para．］（,$\cap P$ ）：Internal parameter detected error ［Para．RW］（ $P A_{r}$ ）：Parameter access detected error ［Calculation］（［ AL ）：Calculation detected error ［TO AUX］（ （ロ月 H ）：TimeOut AUX task ［TO synch］（ $t \square P P$ ）：TimeOut in PRE／POST task ［Bad ADLC］$(A d L)$ ：ADLC with bad parameter ［Input assig．］（,$~ \square)$ ：Input not configured		

Fb ，－	［FB IDENTIFICATION］		
buEr	［Program version］	0 to 255	－
\star	Program user version．		
ロ～5	［Program size］	0 to 65，535	
＊	Program file size．		
ロாப	［Prg．format version］	0 to 255	－
	Binary format version of the drive．		
［ヒu	［Catalog version］	0 to 65，535	
	Catalog version of the drive．		
Fロワ－	［FUNCTION BLOCKS］（continued）		
Fb[d()	［FB Command］ Allows to start and stop the function blocks manually． ［FB Command］（ F b $[d$ ）is forced to［Stop］（ 5 上ロP）if there is no valid function blocks application in the drive memory． ［FB Command］（ $F\llcorner[d$ ）is set to［Start］（ 5 t r ）when the function blocks application switch to Run according to ［FB start mode］（Fbr ）configuration． Note：As soon as the function blocks are started，the drive is considered as in running state and the modification of configuration parameters is no longer possible． ［Stop］（ 5 t a P）：Function blocks application Stop command ［Start］（5trt）：Function blocks application Start command		
$\begin{aligned} & \text { 5tap } \\ & \text { stre } \end{aligned}$			

\begin{tabular}{|c|c|c|}
\hline Code \& Name／Description \(\quad\) Adjustment range \& Factory setting \\
\hline Fbr \(\quad\) \& ［FB start mode］ \& ［ No ］（ \(\quad\) 口） \\
\hline 12s \& \begin{tabular}{l}
A WARNING \\
UNANTICIPATED EQUIPMENT OPERATION \\
Depending on the setting of this parameter，function blocks may be immediately exec \\
－Verify that this setting does not result in unsafe conditions． \\
Failure to follow these instructions can result in death，serious injury，or equipm \\
Allows to choose the different ways of starting the Function blocks application． \\
Note：Modifications of this parameter are not taken into account if the Function blocks application \\
［ No ］（ n a）：：Function blocks application is controlled by［FB command］（Fb［d）parameter ［Yes］（ \(4 \in 5\) ）：Function blocks application switches to Run automatically at drive power on \\
［LII］（ \(L\) ，I）：Function blocks application switches to Run on a rising edge of the logic input．It swith the logic input． \\
［．．．］（．．．）：See the assignment conditions on page 153 （not［OL10］（aLロ ）to［OL10］（a \(\mathrm{L} \mid \square)\) ）．
\end{tabular} \& \begin{tabular}{l}
d． \\
nt damage． \\
unning． \\
to Stop on falling edge of
\end{tabular} \\
\hline Fb5 \& ［Stop FB Stop motor］ \& \\
\hline \& \begin{tabular}{l}
A WARNING \\
LOSS OF CONTROL \\
 stopped． \\
－Only set this parameter to［No］（ \(n\) 口）if you have implemented appropriate alternative Failure to follow these instructions can result in death，serious injury，or equipm \\
Allows to setup the way of working of the drive when function blocks are stopped． \\
［Ignore］（ \(n\) 口）：The drive does not stop \\
［Freewheel］（ \(y \in 5\) ）：Motor stops in freewheel \\
［Ramp stop］（ \(\stackrel{\Pi}{ }\) П）：Ramp stop \\
［Fast stop］（F5t）：Fast stop \\
［DC injection］（d［ ，）：DC injection
\end{tabular} \& \begin{tabular}{l}
program will be \\
stop functions． nt damage．
\end{tabular} \\
\hline FbdF

5tar

15n \& \multicolumn{2}{|l|}{| Behavior of function blocks when the drive trips． |
| :--- |
| ［Stop］（ $5 t_{\square}$ P）：Function blocks stops when the drive trips，outputs are realeased ［Ignore］（ ，$\square \sqcap$ ）：Function blocks continue to work when the drive trips（except CFF and INFE） |}

\hline F 女 A－ \& \multicolumn{2}{|l|}{［INPUTS ASSIGNMENTS］}

\hline \& \multicolumn{2}{|l|}{| ［Logic input 1 assignment］ |
| :--- |
| Possible assignment for the Function block logic input． |
| ［No］（na）：Not assigned |
| ［No drive flt］（ $F L \in$ ）：Drive fault detection status（relay normally energized，and de－energized in the event of an error） |
| ［Freq．Th．attain．］（ $F \in A$ ）：Frequency threshold attained（［Freq．threshold］（ $F \in d$ ）page 102） |
| ［Freq．Th． 2 attained］（F \mathcal{F} ）：Frequency threshold 2 attained（［Freq．threshold 2］（ F 己 d）page 102） |
| ［Ref． 1 channel］（ $\left.F_{r} /\right)_{\text {）}}$ Reference source 1 |
| ［Ref． 2 channel］$\left(F_{r}\right.$ 己）Reference source 2 |
| ［ch1 active］（ $[\triangleleft l)$ ：Command channel＝channel 1 （for［Cmd switching］（［55）） |
| ［ch2 active］$([d$ ）$)$ ：Command channel $=$ channel 2 （for［Cmd switching］（［55）） |
| ［Ref．1B channel］（ $F\ulcorner L b$ ）：Reference channel＝channel 1b（for［Ref． 2 switching］（ $\ulcorner F[$ ）） |
| ［Yes］（ ЧE 5）：Yes |
| ［LII］（ L ，$/$ ）：Logical input LI1 |
| ［．．．］（．．．）：See the assignment conditions on page 153 |}

\hline ，L－ \& \multicolumn{2}{|l|}{| ［Logic input x assignment］ |
| :--- |
| All the Function Blocks logic inputs available on the drive are processed as in the example for ［Logic input 1 assignment］（ $L \square /$ ）above，up to［Logic input 10 assignment］（ $/ L / \square)$ ． |}

\hline
\end{tabular}

Code	Name／Description	Adjustment range	Factory setting
A 11 －1 己 ค 1 ヨ －［r －Fr －r P tr9 5ヒ9 －r 5 －P 5 $\square P F$ －PE 口P， －Pr $t \mathrm{Hr}_{r}$ $t \mathrm{Hd}$ ヒ ワП 5 uPdt uPdH L［ П】ロ ［月の nEt －F 5 tHre ヒHrヨ t و L －P P ， 月14 1 dol 月 ا ப 己 －月 ا	［Analog input 1 assignment］ Possible assignment for the Function block analog input． ［No］（пロ）：Not assigned ［AI1］（ （／I）：Analog input A1 ［AI2］（ （ $/$ 己）：Analog input A2 ［AI3］（ （／ヨ）：Analog input A3 ［I motor］（ $\mathrm{a}[\mathrm{r}$ ）：Motor current ［Motor freq．］（ \square Fr ）：Motor speed ［Ramp．out］（ $\circ \subset P$ ）：Ramp output ［Motor torq．］（ tr q）：Motor torque ［Sign torque］（5ヒ 7）：Signed motor torque ［Sign ramp］（or 5）：Signed ramp output ［PID ref．］（םP 5）：PI（D）reference ［PID feedbk］（aPF）：PI（D）feedback ［PID error］（ $\square P E$ ）：PI（D）error ［PID output］（ $\square P$ ，）：PI（D）integral ［Mot．power］（ a Pr ）：Motor power ［Mot．thermal］（ EHr ）：Motor thermal state ［Drv thermal］（ EHd ）：Drive thermal state ［Torque 4Q］（ \llcorner Я \ddagger ）：Signed motor torque ［＋／－Speed］（ $\sim P d t)$ ：Up／Down function is assigned by Lix ［＋l－spd HMI］（ $\sim P d H$ ）：Up／Down function is assigned by graphic display t ［HMI］（L［［ ）：Graphic display terminal or remote display terminal source ［Modbus］（ $\cap \downarrow b$ ）：Integrated Modbus ［CANopen］（ $[$ 月 n ）：Integrated CANopen® ［Com．card］（ $n E \in$ ）：Communication option board source ［Sig．o／p frq．］（ \square F 5）：Signed output frequency ［Mot therm2］（ tHr 己）：Motor 2 thermal state ［Mot therm3］（ t H r ヨ）：Motor 3 thermal state ［Torque lim．］（ \leftarrow qL）：Torque limitation ［Motor volt．］（ \quad ロ P ）：Motor voltage ［RP］（ P_{1} ）：Pulse input ［AI virtual 1］（ （ $\mid\llcorner/$ ）：Virtual analog input 1 with the jog dial ［DO1］（dal）：Analog／logical output DO1 ［OA01］（ \square A \square I）：Function blocks：Analog Output 01 ．．． ［OA10］（ \square A $/ \square$ ）：Function blocks：Analog Output 10	minal or remote disp	erminal
，月－－	All the Function blocks analog inputs available on the drive are processed as in the example for［IA01］（ ，A \square I）above，up to ［IA10］（ ，A｜（ ）．		
Fロワ－	［FUNCTION BLOCKS］（continued）		
F 月 d	ADL containers contain Modbus logical adress of internal parameters of the drive．If the chosen adress is valid，the display shows the parameter name instead of the adress．		
LAD I	ADL Container 01	3，015 to 64，299	0
L月口己	ADL Container 02	3，015 to 64，299	0
L月口ヨ	ADL Container 03	3，015 to 64，299	0
L A ¢ 4	ADL Container 04	3，015 to 64，299	0
L A 5 5	ADL Container 05	3，015 to 64，299	0
LA口白	ADL Container 06	3，015 to 64，299	0
L A 7 7	ADL Container 07	3，015 to 64，299	0
L A ロ	ADL Container 08	3，015 to 64，299	0

(1) If a graphic display terminal is not in use, values greater than 9,999 will be displayed on the 4-digit display with a period mark after the thousand digit, for example, 15.65 for $15,650$.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

()

 Parameter that can be modified during operation or when stopped.2 s
To change the assignment of this parameter, press the ENT key for 2 s .
[APPLICATION FUNCT.] ($F_{\mathrm{H}}^{\mathrm{u}} \mathrm{m}$)
Summary of functions:

Code	Name	Page
(r E F -)	[REFERENCE SWITCH.]	167
($口$ A, -)	[REF. OPERATIONS]	168
(rPt-)	[RAMP]	170
(5tt-)	[STOP CONFIGURATION]	173
($\mathrm{A} \subset$ [-)	[AUTO DC INJECTION]	176
(ل $\square \square-$)	[JOG]	178
(P55-)	[PRESET SPEEDS]	181
($\sim P$ d)	[+/- SPEED]	185
($5 r-{ }^{\text {- }}$)	[+l-SPEED AROUND REF.]	187
(5PП-)	[MEMO REFERENCE]	188
(FL, -)	[FLUXING BY LI]	189
(bL [-)	[BRAKE LOGIC CONTROL]	194
($E\llcorner\Pi$ -)	[EXTERNAL WEIGHT MEAS.]	$\underline{200}$
(H5H-)	[HIGH SPEED HOISTING]	$\underline{205}$
$(P, d-)$	[PID REGULATOR]	$\underline{210}$
(Prl-)	[PID PRESET REFERENCES]	$\underline{214}$
($\mathrm{E} \square \mathrm{L}-$)	[TORQUE LIMITATION]	$\underline{216}$
([L , -)	[2nd CURRENT LIMIT.]	$\underline{218}$
(12ヒ)	[DYN CURRENT LIMIT]	$\underline{219}$
(L L [-)	[LINE CONTACTOR COMMAND]	$\underline{221}$
(0 L [-)	[OUTPUT CONTACTOR CMD]	$\underline{223}$
($\left.L P_{\square}\right)^{-}$)	[POSITIONING BY SENSORS]	$\underline{227}$
($\cap \mathrm{L} P$-)	[PARAM. SET SWITCHING]	$\underline{230}$
(ППГ-)	[MULTIMOTORS/CONFIG.]	$\underline{235}$
($t \cap L-)$	[AUTO TUNING BY LI]	$\underline{236}$
(tra-)	[TRAVERSE CONTROL]	$\underline{237}$
(CH 5 -)	[HSP SWITCHING]	$\underline{244}$
(d [[-)	[DC BUS]	$\underline{245}$

The parameters in the [APPLICATION FUNCT] ($F_{\nu H^{-}}$) menu can only be modified when the drive is stopped and there is no run command, except for parameters with a () symbol in the code column, which can be modified with the drive running or stopped.

Note: Compatibility of functions
The choice of application functions may be limited by the number of I/O and by the fact that some functions are incompatible with others. Functions that are not listed in the table below are fully compatible.
If there is an incompatibility between functions, the first function configured will help to prevent the others being configured.
Each of the functions on the following pages can be assigned to one of the inputs or outputs.

A WARNING

UNANTICIPATED EQUIPMENT OPERATION

Multiple functions can be assigned to and simultaneously activated via a single input.

- Verify that assigning multiple functions to a single input does not result in unsafe conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

It is only possible to assign one input to several functions at [Advanced] (Ad d) and [Expert] ($\mathrm{E} \mathrm{P}_{\mathrm{r}}$) levels. Before assigning a command, reference or function to an input or output, the user must check that this input or output has not already been assigned and that another input or output has not been assigned to an incompatible function.
The drive factory setting or macro configurations automatically configure functions, which may help to prevent other functions being assigned.
In some case, it is necessary to unconfigure one or more functions in order to be able to enable another. Check the compatibility table below.

Stop functions have priority over run commands.
Speed references via logic command have priority over analog references.
Note: This compatibility table does not affect commands that can be assigned to the keys of the graphic display terminal (see page 24).

Compatibility table

Reference operations (page 168)			\uparrow	(2)		\uparrow	\uparrow	\uparrow											
$\begin{aligned} & \text { +/- speed (3) } \\ & \text { (page 185) } \end{aligned}$					-	\bullet	\uparrow	\uparrow											
Preset speeds (page 180)	\leftarrow					\uparrow	\uparrow	\uparrow											
PID regulator (page 210)	(2)				\bullet	-	\uparrow	\uparrow	-							\bullet	-	\bullet	\bullet
Traverse control (page 242)		-		\bullet		\bullet	\uparrow	\uparrow								\bullet	\bullet		
JOG operation (page 178)	\leftarrow	\bullet	\leftarrow	\bullet	\bullet			\uparrow	\bullet	\leftarrow						\bullet	\bullet		
Reference switching (page 167)	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow			\uparrow								\uparrow			
Skip frequency (page 183)	\leftarrow									\leftarrow									
Brake logic control (page 194)				-		-					-	-	-						
Auto DC injection (page 176)						\uparrow							\uparrow		\uparrow				
Catch on the fly (page 253)									-										
Output contactor command (page 223)									-										
DC injection stop (page 173)									-	\leftarrow				(1)	\uparrow				
Fast stop (page 173)													(1)		\uparrow				
Freewheel stop (page 173)										\leftarrow			\leftarrow	\leftarrow					
+/- speed around a reference (page 187)				-	\bullet	\bullet	\leftarrow	\uparrow											
High speed hoisting (page 205)				-	-	-													
Load sharing (page 122)				-															
Positioning by sensors (page 227)				\bullet															

(1) Priority is given to the first of these two stop modes to be activated.
(2) Only the multiplier reference is incompatible with the PID regulator.

- Incompatible functions \square Compatible functions

Priority functions (functions which cannot be active at the same time):
\leftarrow \square The function indicated by the arrow has priority over the other.

Incompatible Functions

The following function will be inaccessible or deactivated after an Automatic restart.
This is only possible for control type if [$2 / 3$ wire control] ($t[\Sigma$) is set to [2 wire] ($2[$) and if [2 wire type] ($t\left[E\right.$) is set to [Level] ($L E L$) or [Fwd priority] ($P F_{\square}$). See [$2 / 3$ wire control] ($t[[$) page 85.

The [1.2 MONITORING] (Π ロ \cap^{-}) menu page 47 can be used to display the functions assigned to each input in order to check their compatibility.

When a function is assigned, a \checkmark appears on the graphic display terminal, as illustrated in the example below:

RDY \quad Term 0.0 Hz	0 A	
APPLICATION FUNCT.		
REFERENCE SWITCH.		
REF. OPERATIONS		
RAMP		
STOP CONFIGURATION		
AUTO DC INJECTION		
Code $\ll \quad \gg$		

If you attempt to assign a function that is incompatible with another function that has already been assigned, an alarm message will appear:

- With the graphic display terminal:

RDY \quad Term $\quad+0.0 \mathrm{~Hz} \quad 0.0 \mathrm{~A}$
INCOMPATIBILITY
The function can't be assigned
because an incompatible
function is already selected. See
programming book.
ENT or ESC to continue

- With the integrated display terminal and the remote display terminal:

COMP flashes until ENT or ESC is pressed.
When you assign a logic input, an analog input, a reference channel or a bit to a function, pressing the HELP key will display the functions that may already have been activated by this input, bit or channel.
When a logic input, an analog input, a reference channel or a bit that has already been assigned is assigned to another function, the following screens appear:

- With the graphic display terminal:

RUN \quad Term $\quad 0.0 \mathrm{~Hz} \quad 0.0 \mathrm{~A}$	
WARNING - ASSIGNED TO	
Forward	
ENT-Valid.	

If the access level permits this new assignment, pressing ENT confirms the assignment.
If the access level does not permit this new assignment, pressing ENT results in the following display:

RUN \quad Term $0.0 \mathrm{~Hz} \quad 0.0 \mathrm{~A}$
ASSIGNMENT FORBIDDEN
Un-assign the present functions, or select "Advanced" access level

- With the integrated display terminal:

The code for the first function, which is already assigned, is displayed flashing.
If the access level permits this new assignment, pressing ENT confirms the assignment.
If the access level does not permit this new assignment, pressing ENT has no effect, and the message continues to flash. It is only possible to exit by pressing ESC.

REFERENCE SWITCHING

Code	Name / Description	Adjustment range	Factory setting
F	[APPLICATION FUNCT.]		
$r E F$	[REFERENCE SWITCH.]		
r b coll	[Ref 1B switching] See the diagrams on pages 147 and 148 . If the assigned input or bit is at 0 , [Ref. 1 channel] ($F_{r} /$) is active (see [Ref. 1 channel] ($F_{r} /$) page 154). If the assigned input or bit is at 1, [Ref.1B channel] $\left(F_{r_{r}} /\right.$ b $)$ is active. [Ref 1B switching] (r [b) is forced to [ch1 active] ($F_{r} /$) if [Profile] ($[H[F)$ is set to [Not separ.] ($5, \Pi$) with [Ref. 1 channel] $\left(F_{r} /\right)$ assigned via the terminals (analog inputs, pulse input). See [Ref. 1 channel] $(F r I)$ page 154. [ch1 active] $(F r L)$: No switching, [Ref.1 channel] $\left(F_{r} /\right)$ active [LI1] (L , I): Logical input LI1 		
	[Ref.1B channel] [No] ($\cap \mathrm{\square}$): Not assigned [AI1] ((\| I): Analog input A1 [AI2] (ㄱ \| ᄅ): Analog input A2 [AI3] (($\mid \exists$): Analog input A3 [HMI l ($\mathrm{L}[\mathrm{L}$): Graphic display terminal or remote display terminal source [Modbus] $(\Pi \downarrow b)$: Integrated Modbus [CANopen] ([An): Integrated CANopen® [Com. card] ($\cap E \in$): Communication option board source [RP] (P,): Pulse input [AI virtual 1] (月 $\mid\llcorner/$): Virtual analog input 1 with the jog dial (only available if [Profile] ([H [F) is not set to [Not separ.] (5, П)) [OA01] ((AB I): Function blocks: Analog Output 01 ... [OA10] (a A $/$ () : Function blocks: Analog Output 10		

REFERENCE OPERATIONS

Summing input／Subtracting input／Multiplier

$A=(F r 1$ or $\mathrm{Fr} 1 \mathrm{~b}+\mathrm{SA} 2+\mathrm{SA} 3-\mathrm{dA} 2-\mathrm{dA} 3) \times$ MA2 \times MA3

- If 5月2，5月 ヨ，d月己，d月ヨ are not assigned，they are set to 0 ．
- If ПА己，ПА ヨ are not assigned，they are set to 1 ．
－A is limited by the minimum $L 5$ P and maximum H5P parameters．
－For multiplication，the signal on ПА己 or ПАヨ is interpreted as a $\%$ ． 100% corresponds to the maximum value of the corresponding input．If ПА己 or ПА ヨis sent via the communication bus or graphic display terminal，an ΠF_{r} multiplication variable，page 284 must be sent via the bus or graphic display terminal．
－Reversal of the direction of operation in the event of a negative result can be inhibited（see ［RV Inhibition］（5 in）page 154）．

Code	Name／Description \quad Adjustment range	Factory setting
F ¢－	［APPLICATION FUNCT．］（continued）	
口 月 ，－	［REF．OPERATIONS］ Reference $=($ Fr1 or Fr1b + SA2 + SA3 $-\mathrm{dA} 2-\mathrm{dA} 3) \times$ MA2 \times MA3．See the diagrams on pages Note：This function cannot be used with certain other functions．Follow the instructions on page	and 148. 3.
5月己 п \quad ロ 月 11 ค ا己 ค 1 ヨ L［［ П』b ［月п nEt P ， 月 اء 1 月 اே己 －月 I ．．． －月 10	［Summing ref．2］ Selection of a reference to be added to［Ref．1 channel］（ $F_{r} /$ ）or［Ref．1B channel］（ F_{r} Ib）． ［No］（ n 口）：Not assigned ［AI1］（ （／／）：Analog input A1 ［AI2］（ （ \mid 己）：Analog input A2 ［AI3］（ （／ヨ）：Analog input A3 ［HMI］（L［［ ）：Graphic display terminal or remote display terminal source ［Modbus］$(\Pi d b)$ ：Integrated Modbus ［CANopen］（ $\left[A_{n}\right.$ ）：Integrated CANopen® ［Com．card］（ $n E t$ ）：Communication option board source ［RP］（ P ，）：Motor voltage ［AI virtual 1］（ 月 $\mid\llcorner/$ ）：Virtual analog input 1 with the jog dial ［OA01］（ \square A \square I）：Function blocks：Analog Output 01 ．．． ［OA10］（ \square A $/ \square$ ）：Function blocks：Analog Output 10	$[\mathrm{No}](\mathrm{n} \text { 口) }$
5 月 ヨ	［Summing ref．3］ Selection of a reference to be added to［Ref．1 channel］（ $F_{r} /$ ）or［Ref．1B channel］（ F_{r} lb）． Identical to［Summing ref．2］（5 月 己）page 168.	[No] (na)
d月	［Subtract．ref．2］ Selection of a reference to be subtracted from［Ref．1 channel］（ $F_{r} /$ ）or［Ref．1B channel］（ F_{r} Identical to［Summing ref．2］（5 月 ᄅ）page 168.	$\begin{aligned} & \hline[\mathrm{No}](\mathrm{n} \text { 口) } \\ & \text { lb). } \end{aligned}$

Code	Name／Description	Adjustment range	Factory setting
d月ヨ	［Subtract．ref．3］		［No］（ na ）
	Selection of a reference to be subtracted from［Ref．1 channel］（ $F_{r} /$ ）or［Ref．1B channel］（ $\left.F_{r} / \mathrm{L}\right)$ ）． Identical to［Summing ref．2］（5 月 ᄅ）page 168.		
П月己	［Multiplier ref．2］		［ No ］（ $\mathrm{C口}$ ）
	Selection of a multiplier reference［Ref． 1 channel］（ $F\ulcorner/$ ）or［Ref．1B channel］（ $F \subset / b$ ）． Identical to［Summing ref．2］（5 5 己）page 168.		
ПНヨ	［Multiplier ref．3］		［No］（ \quad 口 ）
	Selection of a multiplier reference［Ref．1 channel］（ $F_{r} /$ ）or［Ref．1B channel］（ $F_{r} /$｜$)$ ）． Identical to［Summing ref．2］（5 月 ᄅ）page 168.		

RAMP

Code	Name／Description	Factory setting
F ¢ $^{\text {－}}$	［APPLICATION FUNCT．］（continued）	
rPE－	［RAMP］	
$\begin{array}{rr} \hline r P E & \\ L \quad 1 n \\ & 5 \\ & 4 \\ & 4 \\ \hline \end{array}$	［Ramp type］ ［Linear］（ L in） ［S ramp］（5） ［U ramp］（u） ［Customized］（［ $\llcorner 5$ ） S ramps U ramps Customized ramps The rounding coefficient is fixed， $\mathrm{t} 1=0.6$ set ramp time（linear） $\mathrm{t} 2=0.4$ set ramp time（round） $\mathrm{t} 3=1.4$ set ramp time The rounding coefficient is fixed， $\mathrm{t} 1=0.5$ set ramp time（linear） $\mathrm{t} 2=1.0$ set ramp time（round） $\mathrm{t} 3=1.5$ set ramp time tA1：adjustable from 0 to 100\％ tA2：adjustable from 0 to（ 100%－tA1） tA3：adjustable from 0 to 100% tA4：adjustable from 0 to（ 100%－tA3） $\begin{aligned} & \mathrm{t} 12=\mathrm{ACC} *(\mathrm{tA} 1(\%) / 100+\mathrm{tA}(\%) / 100+1) \\ & \mathrm{t} 34=\mathrm{DEC} *(\mathrm{tA}(\%) / 100+\mathrm{t} 4(\%) / 100+1) \end{aligned}$	
$1 п r$ （） （1） ロ．\quad I ロ． 1 1	［Ramp increment］ This parameter is valid for［Acceleration］（ $A[C$ ），［Deceleration］（ $\triangle E[$ ），［Acceleration 2］（ $A[\mathcal{L}$ ）and ［Deceleration 2］（ $\downarrow E \mathcal{C})$ ． ［0，01］：Ramp up to 99.99 seconds ［0，1］：Ramp up to 999.9 seconds ［1］：Ramp up to 6,000 seconds	
月 [[Time to accelerate from 0 to the［Rated motor freq．］（ $F\ulcorner 5$ ）（page 86）．To have repeatability in ramps，the value of this parameter must be set according to the possibility of the application．	
dE［ （） （1）	Time to decelerate from the［Rated motor freq．］（ $F r 5$ ）（page 86）to 0 ．To have repeatability in ramps，the value of this parameter must be set according to the possibility of the application．	
ERI	Rounding of start of acceleration ramp as a \％of the［Acceleration］（A［［ ）or［Acceleration 2］（A［ 己）ramp time． Can be set between 0 and 100\％． This parameter can be accessed if the［Ramp type］（ $r P \vdash$ ）is［Customized］（ $[\sim 5$ ）．	

Code	Name／Description		Adjustment range	Factory setting
ヒ月 ᄅ	Rounding of end of acceleration ramp as a \％of the［Acceleration］（A［［ ）or［Acceleration 2］（A［ 己）ramp time． Can be set between 0 and（ 100%－［Begin Acc round］（ 1 A l ））． This parameter can be accessed if the［Ramp type］$(r P \vdash)$ is［Customized］（ $[\sim 5)$ ．			
ヒ 月 ヨ	Rounding of start of deceleration ramp as a \％of the［Deceleration］（ $d E[$ ）or［Deceleration 2］（ $d E 己$ ）ramp time． Can be set between 0 and 100\％． This parameter can be accessed if the［Ramp type］（ $r P \vdash$ ）is［Customized］（ $[\sim 5$ ）．			
ER4	Rounding of end of deceleration ramp as a \％of the［Deceleration］（ $d E[$ ）or［Deceleration 2］（ $d E \subset$ ）ramp time． Can be set between 0 and（ 100%－［Begin Dec round］（ ヒ 月 \exists ））． This parameter can be accessed if the［Ramp type］$(r P \vdash)$ is［Customized］$([\sim 5)$ ．			
$F r t$	［Ramp 2 threshold］ Ramp switching threshold The 2nd ramp is switched frequency is greater than Threshold ramp switching	the value of amp 2 thresh an be combined Frequency ＜Frt ＞Frt ＜Frt ＞Frt	0 to 599 Hz according to rating d］$\left(F_{r}\right.$ ）is not 0 （ 0 deactivates the fu itch ass．］（rP5）switching as follows：	0 Hz unction）and the output
$r P 5$	［Ramp switch ass．］ Identical to［Ref．1B channel］（ $F_{r} /$ b）page 167.			$[\mathrm{No}](\mathrm{n} \square)$
月［ 己 ＊ （） （1）	Time to accelerate from 0 to the［Rated motor freq．］（ $F r$ ） ）．To have repeatability in ramps，the value of this parameter must be set according to the possibility of the application． This parameter can be accessed if［Ramp 2 threshold］$(F r t)$ is greater than 0 or if［Ramp switch ass．］（ $r P 5$ ）is assigned．			
$d E 己$ \star （） （1）	Time to decelerate from［Rated motor freq．］$\left(F_{r} 5\right)$ to 0 ．To have repeatability in ramps，the value of this parameter must be set according to the possibility of the application． This parameter can be accessed if［Ramp 2 threshold］$(F r t)$ is greater than 0 or if［Ramp switch ass．］（ $r P 5$ ）is assigned．			

(1) The parameter can also be accessed in the [SETTINGS] ($5 E t-$) menu.
(2) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to $6,000 \mathrm{~s}$ according to [Ramp increment] (i n r) page 170.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Parameter that can be modified during operation or when stopped.

STOP CONFIGURATION

\begin{tabular}{|c|c|c|c|}
\hline Code \& Name / Description \& Adjustment range \& Factory setting \\
\hline \(1 d[\) 己 \& [DC inject. level 2] \& \(0.1 \ln (2)\) to [DC inject. level 1]
\[
(, d[)
\] \& \(0.5 \ln (2)\) \\
\hline \multirow[t]{3}{*}{} \& \multicolumn{3}{|c|}{NOTICE} \\
\hline \& \multicolumn{3}{|l|}{\begin{tabular}{l}
OVERHEATING AND DAMAGE TO THE MOTOR \\
Verify that the connected motor is properly rated for the DC injection current to be applied in terms of amount and time in order to avoid overheating and damage to the motor. \\
Failure to follow these instructions can result in equipment damage.
\end{tabular}} \\
\hline \& \multicolumn{3}{|l|}{\begin{tabular}{l}
Injection current activated by logic input or selected as stop mode, once period of time [DC injection time 1] (\(t \quad d \quad\)) has elapsed. \\
This parameter can be accessed if [Type of stop] (\(5 t t\)) is set to [DC injection] (\(d[1\)) or if [DC injection assign.] (\(d[1\)) is not set to [No] (n 口) .
\end{tabular}} \\
\hline \multirow[t]{2}{*}{\(t d[\)} \& [DC injection time 2] \& 0.1 to 30 s \& 0.5 s \\
\hline \& NO \& CE \& \\
\hline \multirow[t]{2}{*}{} \& \begin{tabular}{l}
OVERHEATING AND DAMAGE TO THE MOTOR \\
Verify that the connected motor is properly rated for the and time in order to avoid overheating and damage to Failure to follow these instructions can result in
\end{tabular} \& DC injection current to be app e motor. ipment damage. \& lied in terms of amount \\
\hline \& \multicolumn{3}{|l|}{Maximum injection time [DC inject. level 2] (,\(d[\)) for injection, selected as stop mode only. This parameter can be accessed if [Stop type] (\(5 t t\)) is set to [DC injection] (\(d[1\)).} \\
\hline \multirow[t]{4}{*}{datd

n5t
rחP} \& \multicolumn{2}{|l|}{[Dis. operat opt code]} \& [Ramp stop] (\sim ПP)

\hline \& \multicolumn{3}{|l|}{Disable operation stop mode.}

\hline \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{| [Freewheel] (~ 5) : Disable drive function |
| :--- |
| [Ramp stop] ($\ulcorner\cap P$): Ramp stop then disable drive function |}}

\hline \& \& \&

\hline
\end{tabular}

(1) The parameter can also be accessed in the [SETTINGS] ($5 E t-$) menu.
(2) In corresponds to the rated drive current indicated in the Installation manual and on the drive nameplate.
(3) These settings are independent of the [AUTO DC INJECTION] ($A \Delta[-$) function.

AUTO DC INJECTION

(1) The parameter can also be accessed in the [SETTINGS] ($5 E E^{-}$) menu.
(2) In corresponds to the rated drive current indicated in the Installation manual and on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

()

Parameter that can be modified during operation or when stopped.

2 s
To change the assignment of this parameter, press the ENT key for 2 s .

JOG

(1) The parameter can also be accessed in the [SETTINGS] (5Et -) menu.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
(2) Parameter that can be modified during operation or when stopped.

2 s
To change the assignment of this parameter, press the ENT key for 2 s .

PRESET SPEEDS

$2,4,8$ or 16 speeds can be preset, requiring 1, 2, 3 or 4 logic inputs respectively.

Note:

You must configure 2 and 4 speeds in order to obtain 4 speeds.
You must configure 2, 4 and 8 speeds in order to obtain 8 speeds.
You must configure 2, 4, 8, and 16 speeds in order to obtain 16 speeds.

Combination table for preset speed inputs

16 speeds LI (PS16)	8 speeds LI (PS8)	4 speeds LI (PS4)	2 speeds LI (PS2)	Speed reference
0	0	0	0	Reference (1)
0	0	0	1	SP2
0	0	1	0	SP3
0	0	1	1	SP4
0	1	0	0	SP5
0	1	0	1	SP6
0	1	1	0	SP7
0	0	1	1	SP8
1	0	0	0	SP9
1	0	1	1	SP10
1	1	1	1	SP11
1	1	0	0	SP12
1	1	1	1	SP13
1	1	0	SP14	
1	1	0	SP15	

(1) See the diagram on page 147: Reference $1=(S P 1)$.

Code	Name／Description ${ }^{\text {a }}$（ Adjustment range	Factory setting
$F \cup \square^{-}$	［APPLICATION FUNCT．］（continued）	
P55－	［PRESET SPEEDS］ Note：This function cannot be used with certain other functions．Follow the instructions on page	
	［2 preset speeds］ ［No］（ n 口）：：Not assigned ［LII］（ L ，I）：Logical input LI1 ［．．．］（．．．）：See the assignment conditions on page 153	
P54	［4 preset speeds］ Identical to［2 preset speeds］（ P 5 己）page 181. To obtain 4 speeds，you must also configure 2 speeds．	[No] (na)
P5日	［8 preset speeds］ Identical to［2 preset speeds］（ $P 5$ 己）page 181. To obtain 8 speeds，you must also configure 2 and 4 speeds．	$[\mathrm{No}](\mathrm{n} \text { (a) }$
P516	［16 preset speeds］ Identical to［2 preset speeds］（ P 5 己）page 181. To obtain 16 speeds，you must also configure 2,4 and 8 speeds．	[No] (na)
$\begin{gathered} \hline 5 P 己 \\ \star \\ \mathbf{~} \end{gathered}$	［Preset speed 2］ Preset speed 2．See the Combination table for preset PID references page 206.	10 Hz
5Рヨ \star （） （1）	［Preset speed 3］ Preset speed 3．See the Combination table for preset PID references page 206.	$15 \mathrm{~Hz}$
5 P 4 \star （） （1）	［Preset speed 4］ Preset speed 4．See the Combination table for preset PID references page 206.	$20 \mathrm{~Hz}$
$\begin{gathered} 5 P 5 \\ \star \\ \mathbf{X} \\ (1) \end{gathered}$	［Preset speed 5］ Preset speed 5．See the Combination table for preset PID references page $\underline{206}$ ．	$25 \mathrm{~Hz}$
5PG \star （） （1）	［Preset speed 6］ Preset speed 6．See the Combination table for preset PID references page $\underline{206}$.	$30 \mathrm{~Hz}$
5 P 7 \star （） （1）	［Preset speed 7］ Preset speed 7．See the Combination table for preset PID references page $\underline{206}$.	35 Hz

Code	Name / Description	Adjustment range	Factory setting
$\lrcorner P F$	[Skip Frequency]	0 to 599 Hz	0 Hz
()	Skip frequency. This parameter helps to prevent prolonged operation within an adjustable range around the regulated frequency. This function can be used to help to prevent a critical speed, which would cause resonance, being reached. Setting the function to 0 renders it inactive.		
$\lrcorner F 2$	[Skip Frequency 2]	0 to 599 Hz	0 Hz
()	2nd skip frequency. This parameter helps to prevent prolonged operation within an adjustable range around the regulated frequency. This function can be used to help to prevent a critical speed, which would cause resonance, being reached. Setting the function to 0 renders it inactive.		
$\lrcorner F \exists$	[3rd Skip Frequency]	0 to 599 Hz	0 Hz
()	3rd skip frequency. This parameter helps to prevent prolonged operation within an adjustable range around the regulated frequency. This function can be used to help to prevent a critical speed, which would cause resonance, being reached. Setting the function to 0 renders it inactive.		
$\lrcorner F H$	[Skip.Freq.Hysteresis]	0.1 to 10 Hz	1 Hz
$\not \subset$	This parameter is visible if at least one skip frequency [Skip Frequency] ($\lrcorner P F$), [Skip Frequency 2] ($\lrcorner F$ Z) or [3rd Skip Frequency] ($\lrcorner F \exists$) is different from 0 . Skip frequency range: between $(\lrcorner P F-\lrcorner F H)$ and $(\lrcorner P F+\lrcorner F H)$, for example. This adjustment is common to the 3 frequencies $(\lrcorner P F,\lrcorner F 己\lrcorner , F \exists)$.		

(1) The parameter can also be accessed in the [SETTINGS] (5Et-) menu.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
() Parameter that can be modified during operation or when stopped.

+/- SPEED

Two types of operations are available:

- Use of single action keys: Two logic inputs are required in addition to the operating direction(s).

The input assigned to the "+ speed" command increases the speed, the input assigned to the "- speed" command decreases the speed.

- Use of double action keys: Only one logic input assigned to "+ speed" is required.
+/- speed with double-press buttons:
Description: 1 button pressed twice (2 steps) for each direction of rotation. A contact closes each time the button is pressed.

	Released (- speed)	1st press (speed maintained)	2nd press (faster)
Forward button	-	a	a and b
Reverse button	-	c	c and d

Example of wiring:

LI1: Forward

LIx: Reverse
Lly: + speed

Do not use this +/-speed type with 3-wire control.
Whichever type of operation is selected, the max. speed is set by [High speed] (H5P) (see page 87).

Note:

If the reference is switched via [Ref. 2 switching] (r F $[$) (see page 155) from any one reference channel to another reference channel with "+/-speed", the value of reference [Output frequency] ($r \mathrm{~F} r$) (after ramp) may be copied at the same time in accordance with the [Copy channel 1 --> 2] ($[\square P$) parameter (see page 156).

If the reference is switched via [Ref. 2 switching] ($r F[$) (see page 155) from one reference channel to any other reference channel with "+/- speed", the value of reference [Output frequency] ($r \mathrm{~F}_{\mathrm{r}}$) (after ramp) is copied at the same time.
This helps to prevent the speed being incorrectly reset to zero when switching takes place.

Code	Name／Description \quad Adjustment range	Factory setting
Fun－	［APPLICATION FUNCT．］（continued）	
uPd－	［＋／－SPEED］ This function can be accessed if reference channel［Ref． 2 channel］$(F r 己$ ）is set to［ +1 －Speed］（ $\Delta P d t$ ），see page 155 Note：This function cannot be used with certain other functions．Follow the instructions on page 163.	
$45 P$ $\begin{gathered} n \\ \text { n } \quad 1 \end{gathered}$	［＋speed assignment］ Function active if the assigned input or bit is at 1. ［No］（ n 口）：Not assigned ［LII］（ L, i ）：Logical input LI1 ［．．．］（．．．）：See the assignment conditions on page 153	［ No ］（ na ）
d $5 P$	［－Speed assignment］ See the assignment conditions on page 153 Function active if the assigned input or bit is at 1.	［ No ］（ n 口）
5tr $\begin{array}{r} n \square \\ \text { rA } \quad \\ E E P \end{array}$	［Reference saved］ Associated with the＂$+/$－speed＂function，this parameter can be used to save the reference： －When the run commands disappear（saved to RAM）． －When the supply mains or the run commands disappear（saved to EEPROM）． Therefore，the next time the drive starts up，the speed reference is the last reference saved． ［ Noj （（ 口 ）：No save（the next time the drive starts up，the speed reference is［Low speed］（ $L 5$ ［RAM］（ \ulcorner A Π ）：Saved in RAM ［EEprom］（ E E P）：Saved in EEPROM	［No］（ n 口） ee page 87）

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

+/- SPEED AROUND A REFERENCE

The reference is given by [Ref.1 channel] ($F_{r} / /$) or [Ref.1B channel] ($F_{r} /\left.\right|_{\text {b }}$) with summing/subtraction/multiplication functions and preset speeds if relevant (see the diagram on page 147). For improved clarity, we will call this reference A. The action of the +speed and -speed keys can be set as a \% of this reference A. On stopping, the reference (A +/- speed) is not saved, so the drive restarts with reference A+ only.

The maximum total reference is limited by [High speed] (H5P) and the minimum reference by [Low speed] ($L 5 P$), see page 87 .

Example of 2-wire control:

(1) The parameter can also be accessed in the [SETTINGS] ($5 E t-$) menu.
(2) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to $6,000 \mathrm{~s}$ according to [Ramp increment] ($\quad \mathrm{n}$ r) page 170.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Parameter that can be modified during operation or when stopped.

REFERENCE MEMORIZING

Saving a speed reference value using a logic input command lasting longer than 0.1 s .

- This function is used to control the speed of several drives alternately via a single analog reference and one logic input for each drive.
- It is also used to confirm a line reference (communication bus or network) on several drives via a logic input. This allows movements to be synchronized by getting rid of variations when the reference is set.
- The reference is acquired 100 ms after the rising edge of the request. A new reference is not then acquired until a new request is made.

Code	Name / Description	Adjustment range	Factory setting
Fun-	[APPLICATION FUNCT.] (continued)		
$5 Р П-$	[MEMO REFERENCE]		
$5 \text { P }$ $\begin{gathered} n 0 \\ L \\ 1 \end{gathered}$	[Ref. memo ass.] Assignment to a logic input. Function active if the assigned input is at active state. [No] (\quad 口 口): Not assigned [LII] (L , $/$): Logical input LI1 [...] (...): See the assignment conditions on page 153		

FLUXING BY LOGIC INPUT

\begin{tabular}{|c|c|c|c|}
\hline Code \& Name／Description \& Adjustment range \& Factory setting

\hline 月 5 t \& \multicolumn{2}{|l|}{［Angle setting type］} \& ［PSIO align．］（P5 ¢ 5 ）

\hline \& \multicolumn{3}{|l|}{Mode for measuring the phase－shift angle．Visible only if［Motor control type］（ $[t t$ ）is set to［Sync．mot．］（ $54 n$ ）． ［PSI align］（ $P 5$ ）and［PSIO align］（ $P 5, a$ ）are working for all type of synchronous motors．［SPM align］（ 5 P Π ）and ［IPM align］（ ，P П A）increase performances depending on the type of synchronous motor．}

\hline PП
SPПA

P5，

P5， \& \multicolumn{3}{|l|}{| ［IPM align］（ ，P П A）：Alignment for IPM motor．Alignment mode for Interior－buried Permanent Magnet motor（usually，this kind of motor has a high saliency level）．It uses high frequency injection，which is less noisy than standard alignment mode． |
| :--- |
| ［SPM align］（ 5 P П A）：Alignment for SPM motor．Mode for Surface－mounted Permanent Magnet motor（usually，this kind of motor has a medium or low saliency level）．It uses high frequency injection，which is less noisy than standard alignment mode． ［PSI align］（ $P 5$ ，）：Pulse signal injection．Standard alignment mode by pulse signal injection． |
| ［PSIO align］（P5 口 ）：Pulse signal injection－Optimized．Standard optimized alignment mode by pulse signal injection．The phase－shift angle measurement time is reduced after the first run order or tune operation，even if the drive has been turned off． ［No align］（ n 口 ）：No alignment |}

\hline
\end{tabular}

（1）The parameter can also be accessed in the［SETTINGS］（5Et－）menu．
These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．
（）Parameter that can be modified during operation or when stopped．

To change the assignment of this parameter，press the ENT key for 2 s ．

BRAKE LOGIC CONTROL

Used to control an electromagnetic brake by the drive, for horizontal and vertical hoisting applications, and for unbalanced machines.

Principle:

- Vertical hoisting movement:

Maintain motor torque in the driving load holding direction during brake opening and closing, in order to hold the load, start smoothly when the brake is released and stop smoothly when the brake is engaged.

- Horizontal movement:

Synchronize brake release with the build-up of torque during startup and brake engage at zero speed on stopping, to help to prevent jolting.

Instructions for brake logic control for a vertical hoisting application:

UNANTICIPATED EQUIPMENT OPERATION
Verify that the selected settings will not result in the loss of control
of the load being lifted.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

- [Brake impulse] (b, P): [Yes] (ЧE 5). Ensure that the direction of rotation FW corresponds to lifting the load.
For applications in which the load being lowered is very different from the load being lifted, set b , $P=$ 2 , br (for example, ascent always with a load and descent always without a load).
- Brake release current ([Brake release IFW] (, br) and [Brake release I Rev] (ir d) if [Brake impulse] $(b, P)=2, b r)$: Adjust the brake release current to the rated current indicated on the motor. During testing, adjust the brake release current in order to hold the load smoothly.
- Acceleration time: For hoisting applications, it is advisable to set the acceleration ramps to more than 0.5 seconds. Ensure that the drive does not exceed the current limit. The same recommendation applies for deceleration.
Reminder: For a hoisting movement, a braking resistor should be used.
- [Brake Release time] ($b r t$): Set according to the type of brake. It is the time required for the mechanical brake to release.
 necessary.

- [Brake engage time] ($\llcorner\in \in$): Set according to the type of brake. It is the time required for the mechanical brake to engage.

Instructions for brake logic control for a horizontal hoisting application:

- [Brake impulse] (\llcorner, P): No
- [Brake release I FW] (, br): Set to 0.
- [Brake Release time] ($b r$) : Set according to the type of brake. It is the time required for the mechanical brake to release.
- [Brake engage frequency] (bEn), in open-loop mode only: Leave in [Auto] (Auta), adjust if necessary.
- [Brake engage time] ($\llcorner\in \in$): Set according to the type of brake. It is the time required for the mechanical brake to engage.

Brake logic control，horizontal movement in open－loop mode

Key：
－（ЬEп）：［Brake engage freq］
－（b $E t)$ ：［Brake engage time］
－（brt）：［Brake Release time］
－（ ，br）：［Brake release I FW］
－（ $5 \Delta[$［ ）：［Auto DC inj．level 1］
－（ヒロE）：［Brake engage delay］
－（ヒヒr）：［Time to restart］

Brake logic control, vertical movement in open-loop mode

Key:

- (b E п): [Brake engage freq]
- (bEt): [Brake engage time]
- (b \quad, r): [Brake release freq]
- (br) : [Brake Release time]
- (, br): [Brake release I FW]
- $(\lrcorner d[)$: [Jump at reversal]
- (ヒレE): [Brake engage delay]
- (- $\begin{aligned} \text { r): [Time to restart] }\end{aligned}$

Code	Name／Description	Adjustment range	Factory setting
Fun－	［APPLICATION FUNCT．］（continued）		
bL［－	［BRAKE LOGIC CONTROL］ Note：This function cannot be used with certain other functions．Follow the instructions on page 163.		
bL [$\begin{array}{lll} n & 0 \\ r & 2 \\ \vdots & 2 & 1 \\ 0 & 1 & 1 \end{array}$	［Brake assignment］ Logic output or control relay． Note：If the brake is assigned，only a ramp stop is possible．Check the［Type of stop］（5 5 ）page 173. Brake logic control can only be assigned if［Motor control type］（ $[t \vdash$ ）is not set to［Standard］（ 5 L d），［VIF 5pts］（ \llcorner F 5）， ［VIF Quad．］（ $\left\llcorner\right.$ F 9 ）or［Sync．mot］（ $5 \mathrm{y}_{\mathrm{n}}$ ）．See Compatibility table page $\underline{165}$ to see the compatible functions． ［No］（ n ）：Function not assigned（in this case，none of the function parameters can be accessed） ［R2］（ r ᄅ）：Relay ［LO1］（L－I）：Logic output ［dO1］（ $\ddagger \square 1$ ）：Analog output AO1 functioning as a logic output．Selection can be made if［AO1 assignment］（A口 I）page 144 is set to［No］（ n 口）		
$\text { b } 5 \text { t }$ Har uEr	［Traveling］（ H ar ）：Resistive－load movement（translational motion of overhead crane，for example） ［Traveling］（ $\mathrm{H} \circ \mathrm{r}$ ）． ［Hoisting］（ ΔE_{r} ）：Driving－load movement（hoisting winch，for example） 		
$b[\text {, }$ $\begin{aligned} & n 0 \\ & \text { no } \end{aligned}$	［Brake contact］ If the brake has a monitoring contact（closed for released brake）． ［No］（ n 口 ）：Not assigned ［LII］（ L ，I）：Logical input LI1 ［．．．］（．．．）：See the assignment conditions on page 153		
b ，P （） $\begin{array}{r} \text { no } \\ \text { YE5 } \\ \text { 2,br } \end{array}$	［Brake impulse］ Brake impulse． This parameter can be accessed if［Weight sensor ass．］（PES）is set if［Movement type］（ $\llcorner 5 \vdash$ ）is set to［Hoisting］（ $\sim E r$ ）． ［ No ］（ \cap ）：The motor torque is given in the required operating direction ［Yes］（ ЧE 5）：The motor torque is in forward direction（check that this dir ［Brake release I FW］（ ，br） ［2 IBR］（己 ，br）：The torque is in the required direction，at current［Bra ［Brake release I Rev］（ $ו r d$ ）for Reverse，for certain specific applicatio	［No］（no）（see pag at current［Brake re ection corresponds e release I FW］ s	［Yes］（YE 5） ．It is set to［Yes］（ $4 \in 5$ ） FW］（ 1 br） ding），at current Forward and
br	［Brake release I FW］	0 to $1.36 \ln (2)$	OA
（） （1）	Brake release current threshold for ascending or forward movement． This parameter can be accessed if［Weight sensor ass．］（ $P \in 5$ ）is set to［ No ］（ n ）page $\underline{200}$.		
rd	［Brake release I Rev］	0 to $1.36 \ln (2)$	0 A
\star （	Brake release current threshold for descending or reverse movement． This parameter can be accessed if［Brake impulse］（ b, P ）is set to［2 IBR］（ $ᄅ$ ，b r）．		
brt	［Brake Release time］	0 to 5.00 s	0 s
（） （1）	Brake release time delay．		

Code	Name / Description	Adjustment range	Factory setting
ttr	[Time to restart]	0.00 to 15.00 s	0 s
*	Time between the end of a brake engage sequence and the start of a brake release sequence.		
()			
(1)			

(1) The parameter can also be accessed in the [SETTINGS] ($5 E E-$) menu.
(2) In corresponds to the rated drive current indicated in the Installation manual and on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
()

Parameter that can be modified during operation or when stopped.

Parameters described in this page can be accessed by:
DRI- > CONF > FULL > FUN $->$ BLC-

Brake control logic expert parameters

Following parameters for brake logic sequence are accessible in expert mode only.

Code	Name / Description \quad Adjustment range \quad Factory setting
brHD	[BRH b0] Selection of the brake restart sequence if a run command is repeated while the brake is engaging. [0] (\square): The engage/release sequence is completely executed [1] (I): The brake is released immediately A run command may be requested during the brake engagement phase. Whether or not the brake release sequence is executed depends on the value selected for [BRH b0] (brHD). Note: If a run command is requested during the "ttr" phase, the complete brake control sequence is initialized.
brH I	[BRH b1] Deactivation of the brake contact in steady state fault. $[0](\square)$: The brake contact in steady state fault is active (fault state if the contact is open during operation). The [Brake feedback] ($b r F$) brake contact fault is monitored in all operating phases. [1] (I): The brake contact in steady state fault is inactive. The [Brake feedback] (brF) brake contact fault is only monitored during the brake release and engage phases.

[^4]()

Parameter that can be modified during operation or when stopped.

EXTERNAL WEIGHT MEASUREMENT

Load measurement

This function uses the information supplied by a weight sensor to adapt the current [Brake release I FW] (, br) of the [BRAKE LOGIC CONTROL] (bL [-) function. The signal from the weight sensor can be assigned to an analog input (usually a 4-20 mA signal) or to the pulse-in input, according to the type of weight sensor.

Example: Measurement of the total weight of a hoisting winch and its load

The current [Brake release I FW] (1 br) is adapted in accordance with the curve below.

(1) In corresponds to the rated drive current indicated in the Installation manual and on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

HIGH SPEED HOISTING

This function can be used to optimize the cycle times for hoisting movements for zero or lightweight loads. It authorizes operation at "constant power" in order to reach a speed greater than the rated speed without exceeding the rated motor current.

The speed remains limited by the [High speed] (H5P) parameter page 87.

The function acts on the speed reference pedestal and not on the reference itself.

Principle:

There are 2 possible operating modes:

- Speed reference mode: The maximum permissible speed is calculated by the drive during a speed step that is set so that the drive can measure the load.
- Current limitation mode: The maximum permissible speed is the speed that supports current limitation in motor mode, in the "ascending" direction only. For the "descending" direction, operation is in Speed reference mode.

Speed reference mode

OSP: Adjustable speed step for load measurement tOS: Load measuring time

Two parameters are used to reduce the speed calculated by the drive, for ascending and descending.

Current limiting mode

SCL: Adjustable speed threshold, above which current limitation is active
CLO: Current limitation for high-speed function

Note: The speed reached for a specific current will be lower in case of network undervoltage in comparison with nominal network voltage.

The Rope slack function can be used to help to prevent starting up at high speed when a load has been set down ready for lifting but the rope is still slack (as illustrated below).

The speed step (OSP parameters) described on page $\underline{202}$ is used to measure the load. The effective measurement cycle will not be triggered until the load reaches the adjustable threshold [Rope slack trq level] ($r 5 t L$), which corresponds to the weight of the hook.

A logic output or a relay can be assigned to the indication of the rope slack state in the [INPUTS / OUTPUTS CFG] ($1-\square^{-}$) menu.

(1) In corresponds to the rated drive current indicated in the Installation manual and on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Parameter that can be modified during operation or when stopped.

PID REGULATOR

Block diagram

The function is activated by assigning an analog input to the PID feedback（measurement）．

（1）Ramp AC2 is only active when the PID function starts up and during PID＂wake－ups＂．

PID feedback：

The PID feedback must be assigned to one of the analog inputs Al1 to AI3，to the pulse input，according to whether any extension cards have been inserted．

PID reference：

The PID reference must be assigned to the following parameters：Preset references via logic inputs（ $r P$ 己 ， r Pヨ，r $P 4$ ）
In accordance with the configuration of［Act．internal PID ref．］（ P ， ）page 210：
Internal reference（ $\ulcorner P$ ）or
Reference \mathbf{A}（［Ref．1 channel］（ $F_{r} /$ ）or［Ref．1B channel］（ F_{r} I ），see page 154）．

Combination table for preset PID references：

$\mathbf{L I}(P r$ ）	$\mathbf{L I}(P r$ ）	Prコ＝$\square_{\text {a }}$	Reference
			rPI or A
0	0		rPI or A
0	1		rP2
1	0		rP3
1	1		rP4

A predictive speed reference can be used to initialize the speed on restarting the process．

Scaling of feedback and references：

－［Min PID feedback］（ $F, F /$ ），［Max PID feedback］$(F, F 己)$ parameters can be used to scale the PID feedback（sensor range）．This scale MUST be maintained for all other parameters．
－［Min PID reference］（ $P, P /$ ），［Max PID reference］$\left(P, P \sum\right)$ parameters can be used to scale the adjustment range，for example the reference．The adjustment range MUST remain within the sensor range．
The maximum value of the scaling parameters is 32,767 ．To facilitate installation，we recommend using values as close as possible to this maximum level，while retaining powers of 10 in relation to the actual values．

Example（see graph below）：Adjustment of the volume in a tank，between $6 \mathrm{~m}^{3}$ and $15 \mathrm{~m}^{3}$ ．
－Sensor used $4-20 \mathrm{~mA}, 4.5 \mathrm{~m}^{3}$ for 4 mA and $20 \mathrm{~m}^{3}$ for 20 mA ，with the result that $P, F I=4,500$ and $P, F 己=20,000$ ．
－Adjustment range 6 to $15 \mathrm{~m}^{3}$ ，with the result that $P, P I=6,000$（min．reference）and $P, P 己=15,000$ （max．reference）．
－Example references：
－rP1（internal reference）$=9,500$
－rP2（preset reference）$=6,500$
－rP3（preset reference）$=8,000$
－rP4 $($ preset reference $)=11,200$
The［3．4 DISPLAY CONFIG．］menu can be used to customize the name of the unit displayed and its format．

Other parameters：

－［PID wake up thresh．］（ $r 5 L$ ）parameter：Can be used to set the PID error threshold，above which the PID regulator will be reactivated（wake－up）after a stop due to the max．time threshold being exceeded at low speed［Low speed time out］（ $t L 5$ ）．
－Reversal of the direction of correction［PID correct．reverse］（ $P,[$ ）：If［PID correct．reverse］(P, L) is set to $[\mathrm{No}]$（ n 口），the speed of the motor will increase when the error is positive（for example：pressure control with a compressor）．If［PID correct．reverse］（ $P,[$ ）is set to［Yes］（ $Ч E 5$ ），the speed of the motor will decrease when the error is positive（for example：temperature control using a cooling fan）．
－The integral gain may be short－circuited by a logic input．
－An alarm on the PID feedback may be configured and indicated by a logic output．
－An alarm on the PID error may be configured and indicated by a logic output．

＂Manual－Automatic＂Operation with PID

This function combines the PID regulator，the preset speeds and a manual reference．Depending on the state of the logic input，the speed reference is given by the preset speeds or by a manual reference input via the PID function．
Manual reference［Manual reference］（ P, Π ）：
－Analog inputs AI1 to AI3
－Pulse input
Predictive speed reference［Speed ref．assign．］（ $F P_{P_{,}}$）：

- ［AI1］（月 ，I）：Analog input
- ［AI2］（ （ ，己）：Analog input
- ［AI3］（月，ヨ）：Analog input
－［RP］（ P ，）：Pulse input
－［HMI］（L［［ ）：Graphic display terminal or remote display terminal
－［Modbus］（ Π db）：Integrated Modbus
－［CANopen］（［ 月 $\boldsymbol{\square}$ ）：Integrated CANopen®
－［Com．card］（ $n E \in$ ）：Communication card（if inserted）

Setting up the PID regulator

1．Configuration in PID mode．
See the diagram on page $\underline{206}$ ．

2．Perform a test in factory settings mode．

To optimize the drive，adjust［PID prop．gain］（ $\sim P \square$ ）or［PID integral gain］（ r, \square ）gradually and independently，and observe the effect on the PID feedback in relation to the reference．

3．If the factory settings are unstable or the reference is incorrect．

－Perform a test with a speed reference in Manual mode（without PID regulator）and with the drive on load for the speed range of the system：
－In steady state，the speed must be stable and comply with the reference，and the PID feedback signal must be stable．
－In transient state，the speed must follow the ramp and stabilize quickly，and the PID feedback must follow the speed．If this is not the case，see the settings for the drive and／or sensor signal and wiring．
－Switch to PID mode．
－Set［Dec ramp adapt．］（br－A）to［No］（n ロ）（no auto－adaptation of the ramp）．
－Set［PID ramp］$(P r P)$ to the minimum permitted by the mechanism without triggering an ［Overbraking］（ロロF）．
－Set the integral gain［PID integral gain］（ $r, \boxed{ }$ ）to minimum．
－Leave the derivative gain［PID derivative gain］$(r d \square)$ at 0 ．
－Observe the PID feedback and the reference．
－Switch the drive ON／OFF a number of times or vary the load or reference rapidly a number of times．
－Set the proportional gain［PID prop．gain］（ $r P G$ ）in order to ascertain the compromise between response time and stability in transient phases（slight overshoot and 1 to 2 oscillations before stabilizing）．
－If the reference varies from the preset value in steady state，gradually increase the integral gain ［PID integral gain］（ r, \boxed{L} ），reduce the proportional gain［PID prop．gain］（ $r P G$ ）in the event of instability （pump applications），find a compromise between response time and static precision（see diagram）．
－Lastly，the derivative gain may permit the overshoot to be reduced and the response time to be improved， although this will be more difficult to obtain a compromise in terms of stability，as it depends on 3 gains．
－Perform in－production tests over the whole reference range．

The oscillation frequency depends on the system kinematics.

Parameter	Rise time	Overshoot	Stabilization time	Static error
		4		$=$
rPG				
rIG				$=$

If the "PID" and "Low speed operating time" [Low speed time out] ($E L 5$) functions are configured at the same time, the PID regulator may attempt to set a speed lower than [Low speed] ($L 5 P$).
This results in unsatisfactory operation, which consists of starting, operating at low speed then stopping, and so on... Parameter [PID wake up thresh.] ($r 5 L$) (restart error threshold) can be used to set a minimum PID error threshold for restarting after a stop at prolonged [Low speed] ($L 5 P$). [PID wake up thresh.] ($r 5 L$) is a percentage of the PID error (value depends on [Min PID feedback] $(P, F l)$ and [Max PID feedback] ($P, F 2$), see [Min PID feedback] ($P, F I$) page 210). The function is inactive if [Low speed time out] $(E L 5)=0$ or if [PID wake up thresh.] $(r S L)=0$.
(1) The parameter can also be accessed in the [SETTINGS] (5Et-) menu.
(2) If a graphic display terminal is not in use, values greater than 9,999 will be displayed on the 4-digit display with a period mark after the thousand digit, for example, 15.65 for 15,650.
(3) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to $6,000 \mathrm{~s}$ according to [Ramp increment] (in r) page 170.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Parameter that can be modified during operation or when stopped.

2 s
To change the assignment of this parameter, press the ENT key for 2 s .

PID PRESET REFERENCES

(1) The parameter can also be accessed in the [SETTINGS] ($5 E t-$) menu.
(2) If a graphic display terminal is not in use, values greater than 9,999 will be displayed on the 4-digit display with a period mark after the thousand digit, for example, 15.65 for 15,650 .

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
(2) Parameter that can be modified during operation or when stopped.

TORQUE LIMITATION

There are two types of torque limitation:

- With a value that is fixed by a parameter
- With a value that is set by an analog input (AI or pulse)

If both types are enabled, the lowest value is taken into account. The two types of limitation can be configured or switched remotely using a logic input or via the communication bus.

Code	Name / Description \quad Adjustment range \quad Factory setting
LL A	[Analog limit. act.] This parameter cannot be accessed if [Torque limit. activ.] (t / A) is set to $[\mathrm{No}]$ (n 口) . Identical to [Torque limit. activ.] ($t L A$) page $\underline{216}$. If the assigned input or bit is at 0 : The limitation is specified by the [Motoring torque lim] $(E L, \Pi)$ and [Gen. torque $\lim].(E L, L)$ parameters if [Torque limit. activ.] (t / A) is not [No] ($n \square$). No limitation if [Torque limit. activ.] (t L A) is set to [No] ($n \circ$). If the assigned input or bit is at 1 : The limitation depends on the input assigned by [Torque ref. assign.] (1 A A). Note: If [Torque limitation] (L A) and [Torque ref. assign.] ((月 A) are enabled at the same time, the lowest value will be taken into account.

(1) The parameter can also be accessed in the [SETTINGS] ($5 E E^{-}$) menu.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

2ND CURRENT LIMITATION

First current limitation.
This parameter can be accessed if [Current limit 2] ($L[己$) is not set to [No] ($\mathrm{n} \circ$).
The adjustment range is limited to 1.5 In .
Note: If the setting is less than 0.25 In , the drive may lock in [Output Phase Loss] ($a P L$) fault mode if this has been enabled (see [Output Phase Loss] ($a P L$) page 256). If it is less than the no-load motor current, the motor cannot run.
(1) In corresponds to the rated drive current indicated in the Installation manual and on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Parameter that can be modified during operation or when stopped.

DYN CURRENT LIMIT

The DTM ATV320, is available with SoMove to set the BMP motors. To install the Altivar 320 DTM (device type manager), you can download and install our FDT (field device tool): SoMove lite on www.schneider-electric.com.

(1) In corresponds to the rated drive current indicated in the Installation manual or on the drive nameplate.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

LINE CONTACTOR COMMAND

The line contactor closes every time a run command (forward or reverse) is sent and opens after every stop, as soon as the drive is locked. For example, if the stop mode is stop on ramp, the contactor will open when the motor reaches zero speed.
Note: The drive control power supply must be provided via an external 24 V source.
Example circuit:

Note: The "Run/Reset" key must be pressed once the "Emergency stop" key has been released.

Lle $=$ Run command [Forward] $(F r d)$ or [Reverse] $(r r 5)$
LO-/LO+ = [Line contactor ass.] ($L L[$)
LIn $=[$ Drive lock $](L E S)$

NOTICE

DAMAGE TO THE DRIVE

Do not use this function at intervals of less than 60 s .
Failure to follow these instructions can result in equipment damage.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

OUTPUT CONTACTOR COMMAND

This allows the drive to control a contactor located between the drive and the motor. The contactor is closed when a run command is applied. The contactor is opened when there is no longer any current in the motor.
Note: If the DC injection braking function is used, the output contactor does not close as long as DC injection braking is active

Output contactor feedback

The corresponding logic input should be at 1 when there is no run command and at 0 during operation. In the event of an inconsistency, the drive trips in FCF2 if the output contactor fails to close (LIx at 1) and in FCF1 if it is stuck (LIx at 0).
The [Delay to motor run] (+ b 5) parameter can be used to delay tripping in fault mode when a run command is sent and the [Delay to open cont.] (- A 5) parameter delays the detected fault when a stop command is set.

Note: FCF2 (contactor failing to close) can be reset by the run command changing state from 1 to 0 (0 --> 1 --> 0 in 3 -wire control).

The [Out. contactor ass.] ($\square[\square$) and [Output contact. fdbk] ($r[$ A) functions can be used individually or together.

Code	Name／Description	Adjustment range	Factory setting
F 4 п－	［APPLICATION FUNCT．］（continued）		
－［［－	［OUTPUT CONTACTOR CMD］		
$\square[\Gamma$ $\begin{array}{cc} n & 0 \\ 0 & 1 \\ r & 1 \\ \hdashline & 2 \end{array}$	［Out．contactor ass．］ Logic output or control relay． ［No］（ n 口 $)$ ：Function not assigned（in this case，none of the function param ［LO1］（ L 口 $/$ ）：Logical output LO1 ［R2］（ r 己）：Relay r2 ［dO1］（ d a l ）：Analog output AO1 functioning as a logic output．Selection is set to［No］（ n 口）	eters can be accesse be made if［AO1 as	ment］（ （ व I）page 144
$r[A$	［Output contact．fdbk］ The motor starts up when the assigned input or bit changes to 0 ． ［No］（ n 口）：：Function inactive ［LII］（ L ，I）：Logical input LI1 ［．．．］（．．．）：See the assignment conditions on page 153		No］
dと5	［Delay to motor run］	0.05 to 60 s	0.15 s
	Time delay for： Motor control following the sending of a run command Output contactor state monitoring，if the feedback is assigned．If the conta will lock in FCF2 mode． This parameter can be accessed if［Out．contactor ass．］（ $\square[5$ ）is assig The time delay must be greater than the closing time of the output contactor	or fails to close at the d or if［Output conta	of the set time，the drive dbk］$(r$［ A）is assigned．
d月5	［Delay to open cont．］	0 to 5.00 s	0.10 s
＊	Time delay for output contactor opening command following motor stop． This parameter can be accessed if［Output contact． $\mathbf{f d b k}$ ］（ r［ A）is assigned． The time delay must be greater than the opening time of the output contactor．If it is set to 0 ，the detected fault will not be monitored． If the contactor fails to open at the end of the set time，the drive will lock in FCF1 fault mode．		

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

Parameter that can be modified during operation or when stopped．

POSITIONING BY SENSORS

This function is used for managing positioning using position sensors or limit switches linked to logic inputs or using control word bits:

- Slowing down
- Stopping

The action logic for the inputs and bits can be configured on a rising edge (change from 0 to 1) or a falling edge (change from 1 to 0). The example below has been configured on a rising edge:

The slowdown mode and stop mode can be configured.
The operation is identical for both directions of operation. Slowdown and stopping operate according to the same logic, described below.

Example: Forward slowdown, on rising edge

- Forward slowdown takes place on a rising edge (change from 0 to 1) of the input or bit assigned to forward slowdown if this rising edge occurs in forward operation. The slowdown command is then stored, even in the event of a power outage. Operation in the opposite direction is authorized at high speed. The slowdown command is deleted on a falling edge (change from 1 to 0) of the input or bit assigned to forward slowdown if this falling edge occurs in reverse operation.
- A bit or a logic input can be assigned to disable this function.
- Although forward slowdown is disabled while the disable input or bit is at 1 , sensor changes continue to be monitored and saved.
Example: Positioning on a limit switch, on rising edge

A WARNING

LOSS OF CONTROL

- Verify correct connection of the limit switches.
- Verify the correct installation of the limit switches. The limit switches must be mounted in a position far enough away from the mechanical stop to allow for an adequate stopping distance.
- You must release the limit switches before you can use them.
- Verify the correct function of the limit switches

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Operation with short cams:

A WARNING

LOSS OF CONTROL

When operating for the first time or after a reset of the configuration to the factory settings, the motor must always be started outside of the Slowdown and Stop ranges.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

A WARNING

LOSS OF CONTROL

When the drive is switched off, it stores the range which it is currently in.
If the system is moved manually while the drive is off, you must restore the original position before switching it on again.
Failure to follow these instructions can result in death, serious injury, or equipment damage.
In this instance, when operating for the first time or after restoring the factory settings, the drive must initially be started outside the slowdown and stop zones in order to initialize the function.

Operation with long cams:

In this instance, there is no restriction, which means that the function is initialized across the whole trajectory.

Stop at distance calculated after deceleration limit switch

This function can be used to control the stopping of the moving part automatically once a preset distance has been traveled after the slowdown limit switch.

On the basis of the rated linear speed and the speed estimated by the drive when the slowdown limit switch is tripped, the drive will induce the stop at the configured distance.
This function is useful in applications where one manual-reset overtravel limit switch is common to both directions. It will then only respond to help management if the distance is exceeded. The stop limit switch retains priority in respect of the function.

The [Deceleration type] (d 5 F) parameter can be configured to obtain either of the functions described below:

Note:

- If the deceleration ramp is modified while stopping at a distance is in progress, this distance will not be observed.
- If the direction is modified while stopping at a distance is in progress, this distance will not be observed.

A WARNING

LOSS OF CONTROL

Verify that the configured distance is actually possible.
This function does not replace the limit switch.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

PARAMETER SET SWITCHING

A set of 1 to 15 parameters from the [SETTINGS] ($5 E E^{-}$) menu on page 89 can be selected and 2 or 3 different values assigned. These 2 or 3 sets of values can then be switched using 1 or 2 logic inputs or control word bits. This switching can be performed during operation (motor running).

It can also be controlled on the basis of 1 or 2 frequency thresholds, whereby each threshold acts as a logic input ($0=$ threshold not reached, $1=$ threshold reached).

	Values 1	Values 2	Values 3
Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Parameter 7 Parameter 8 Parameter 9 Parameter 10 Parameter 11 Parameter 12 Parameter 13 Parameter 14 Parameter 15	Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Parameter 7 Parameter 8 Parameter 9 Parameter 10 Parameter 11 Parameter 12 Parameter 13 Parameter 14 Parameter 15	Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Parameter 7 Parameter 8 Parameter 9 Parameter 10 Parameter 11 Parameter 12 Parameter 13 Parameter 14 Parameter 15	Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 Parameter 7 Parameter 8 Parameter 9 Parameter 10 Parameter 11 Parameter 12 Parameter 13 Parameter 14 Parameter 15
Input LI or bit or frequency threshold 2 values	0	1	0 or 1
Input LI or bit or frequency threshold 3 values	0	0	1

Note: Do not modify the parameters in the [SETTINGS] (5 E E -) menu, because any modifications made in this menu ([SETTINGS] ($5 E E-$)) will be lost on the next power-up. The parameters can be adjusted during operation in the [PARAM. SET SWITCHING] ($\Pi L P-$) menu, on the active configuration.

Note: Parameter set switching cannot be configured from the integrated display terminal.
Parameters can only be adjusted on the integrated display terminal if the function has been configured previously via the graphic display terminal, by PC Software or via the bus or communication network. If the function has not been configured, the [PARAM. SET SWITCHING] ($\Pi L P-$) menu and the

Code	Name／Description		Adjustment range	Factory setting
Fun－	［APPLICATION FUNCT．］（continued）			
П L P－	［PARAM．SET SWITCHING］			
[HA I $\begin{aligned} & n 0 \\ & \text { FER } \\ & \text { FEA } \\ & L \quad 1 \end{aligned}$	［2 parameter sets］ Switching 2 parameter sets． ［No］（п）：Not assigned ［Freq．Th．att．］$(F \in A)$ ：Switching via［Freq．threshold］$(F \in d)$ page 253 ［Freq．Th． 2 attained］（F ᄅ A）：Switching via［Freq．threshold 2］（ F 己d）page $\underline{253}$ ［LII］（ L ，$/$ ）：Logical input LI1 ［．．．］（．．．）：See the assignment conditions on page 153			
［H月己	［3 parameter sets］ Identical to［2 parameter sets］（［ HA I）page $\underline{230}$ ． Switching 3 parameter sets． Note：In order to obtain 3 parameter sets，［2 parameter sets］（［ H A I）must also be configured．			
$5 P 5$	［PARAMETER SELECTION］ This parameter can only be accessed on Making an entry in this parameter opens Select 1 to 15 parameters using ENT（a ENT． Example：	the graphic display terminal if a window containing all the ad \checkmark then appears next to the p	arameter sets］（［ H ment parameters that meter）．Parameter（s）	is not set to［No］（ n 口）． be accessed． also be deselected using
ПLP－	［PARAM．SET SWITCHING］（continued）			
P5 1－	［SET 1］			
（）	This parameter can be accessed if at lea Making an entry in this parameter opens selected． With the graphic display terminal： With the integrated display terminal： Proceed as in the Settings menu using the	1 parameter has been selec a settings window containing the he parameters that appear．	in［PARAMETER SEL lected parameters in	ION］． order in which they were
П L P－	［PARAM．SET SWITCHING］（continued）			
P5こ－	［SET 2］			
（） $52 \square$ 5215	This parameter can be accessed if at least 1 parameter has been selected in［PARAMETER SELECTION］． Identical to［SET 1］ （P5 I－）page $\underline{230}$ ．			

Code	Name／Description	Adjustment range	Factory setting
$\Pi L P$－	［PARAM．SET SWITCHING］（continued）		
P 5 ヨ－	［SET 3］		
（） $5 \exists \square$ $5 \exists 15$	This parameter can be accessed if［3 parameter sets］（［ HA 弓）is not［ No ］（ n 口）and if at least 1 parameter has been selected in［PARAMETER SELECTION］． Identical to［SET 1］（P5／－）page 230 ．		

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．
（】 Parameter that can be modified during operation or when stopped．

Note：We recommend that a parameter set switching test is carried out while stopped and a check is made to verify that it has been performed correctly．

Some parameters are interdependent and in this case may be restricted at the time of switching． Interdependencies between parameters must be respected，even between different sets．
Example：The highest［Low speed］（ $L 5$ P）must be below the lowest［High speed］（H5P）．

MULTIMOTORS / MULTICONFIGURATIONS

Motor or configuration switching [MULTIMOTORS/CONFIG.] (ПП - -

The drive may contain up to 3 configurations, which can be saved using the
[FACTORY SETTINGS] (F [5-) menu, page 81.
Each of these configurations can be activated remotely, enabling adaptation to:

- 2 or 3 different motors or mechanisms (multimotor mode)
- 2 or 3 different configurations for a single motor (multiconfiguration mode)

The two switching modes cannot be combined.
Note: The following conditions MUST be observed:

- Switching may only take place when stopped (drive locked). If a switching request is sent during operation, it will not be executed until the next stop.
- In the event of motor switching, the following additional conditions apply:
- When the motors are switched, the power and control terminals concerned must also be switched as appropriate.
- The maximum power of the drive must not be exceeded by any of the motors.
- All the configurations to be switched must be set and saved in advance in the same hardware configuration, this being the definitive configuration (option and communication cards). Failure to follow this instruction can cause the drive to lock on an [Incorrect config.] ($[F F$) state.

Menus and parameters switched in multimotor mode

- [SETTINGS] ($5 E t-$)
- [MOTOR CONTROL] ($d \stackrel{l}{\text { - }) ~}$
- [INPUTS / OUTPUTS CFG] (1 - - -)
- [COMMAND] ([L -)
- [APPLICATION FUNCT.] ($F_{\Delta n^{-}}$) with the exception of the [MULTIMOTORS/CONFIG.] function (to be configured once only)
- [FAULT MANAGEMENT] (F $L E$)
- [MY MENU]
- [USER CONFIG.]: The name of the configuration specified by the user in the [FACTORY SETTINGS] (F [5-) menu

Menus and parameters switched in multiconfiguration mode

As in multimotor mode, except for the motor parameters that are common to the 3 configurations:

- Rated current
- Thermal current
- Rated voltage
- Rated frequency
- Rated speed
- Rated power
- IR compensation
- Slip compensation
- Synchronous motor parameters
- Type of thermal protection
- Thermal state
- The auto-tuning parameters and motor parameters that can be accessed in expert mode
- Type of motor control

Note: No other menus or parameters can be switched.

Transfer of a drive configuration to another one，with graphic display terminal，when the drive uses ［MULTIMOTORSICONFIG．］（ ПП Г－）function

Let A be the source drive and B the drive addressed．In this example，switching is controlled by logic input．
1．Connect graphic display terminal to the drive A ．
2．Put logic input LI（［2 Configurations］$([\cap F I)$ ）and $\mathrm{LI}([3$ Configurations］（ $[\cap F 己)$ ）to 0 ．
3．Download configuration 0 in a file of graphic display terminal（example：file 1 of the graphic display terminal）．
4．Put logic input LI（［2 Configurations］（ $[\cap F I)$ ）to 1 and leave logic input $L I\left(\left[\begin{array}{l}\text { Configurations }]([\cap F \\ \square\end{array}\right)\right.$ ） to 0 ．

5．Download configuration 1 in a file of graphic display terminal（example：file 2 of the graphic display terminal）．
6．Put logic input $\mathrm{LI}\left(\left[3\right.\right.$ Configurations］$\left([\cap F 己)\right.$ ）to 1 and leave logic input $\mathrm{LI}\left(\left[\begin{array}{l}\text { Configurations }]([\cap F \\ \square\end{array}\right)\right.$ ） to 1.

7．Download configuration 2 in a file of graphic display terminal（example：file 3 of the graphic display terminal）．
8．Connect graphic display terminal to the drive B ．
9．Put logic input LI（［2 Configurations］（［nFl））and LI（［3 Configurations］（ $[\cap F 己)$ ）to 0 ．
10．Make a factory setting of the drive B ．
11．Download the configuration file 0 in the drive（file 1 of graphic display terminal in this example）．
12．Put logic input LI（［2 Configurations］（ $[\cap F I$ ）to 1 and leave logic input LI
（［3 Configurations］$([\cap F 己))$ to 0.
13．Download the configuration file 1 in the drive（file 2 of graphic display terminal in this example）．
14．Put logic input LI（［3 Configurations］（ $[\cap F$ ））to 1 and leave logic input LI
（［2 Configurations］$([\cap F I))$ to 1 ．
15．Download the configuration file 2 in the drive（file 3 of graphic display terminal in this example）．

Note：Steps 6，7， 14 et 15 are necessary only if［MULTIMOTORSICONFIG．］（ П П［－）function is used with 3 configurations or 3 motors．

Switching command

Depending on the number of motors or selected configurations (2 or 3), the switching command is sent using one or two logic inputs. The table below lists the possible combinations.

LI 2 motors or configurations	LI 3 motors or configurations	Number of configurations or active motors
0	0	0
1	0	1
0	1	2
1	1	2

Schematic diagram for multimotor mode

NOTICE

MOTOR OVERHEATING

The motor thermal state of each motor is not saved when drive is switched off.
When the drive is switched on, it is not aware of the thermal state of the connected motor or motors.

- To enable correct temperature monitoring of the motors, install an external temperature sensor for each motor.
Failure to follow these instructions can result in equipment damage.

Configuration 0
if the 2 contacts are open

Auto-tuning in multimotor mode

This auto-tuning can be performed:

- Manually using a logic input when the motor changes.
- Automatically each time the motor is activated for the $1^{\text {st }}$ time after switching on the drive, if the [Automatic autotune] ($A\lrcorner t$) parameter on page 109 is set to [Yes] ($Ч E 5$).

Motor thermal states in multimotor mode:

The drive helps to protect the three motors individually. Each thermal state takes into account all stop times, if the drive power is not switched off.

Configuration information output

In the [INPUTS / OUTPUTS CFG] ($1-\square^{-}$) menu, a logic output can be assigned to each configuration or motor (2 or 3) for remote information transmission.

Note: As the [INPUTS / OUTPUTS CFG] ($1-\square^{-}$) menu is switched, these outputs must be assigned in all configurations in which information is required.

AUTO TUNING BY LOGIC INPUT

Code	Name / Description	Adjustment range	Factory setting
$F \cup \square$ -	[APPLICATION FUNCT.] (continued)		
E $\cap \mathrm{L}$	[AUTO TUNING BY LI]		
$t u L$ $\begin{aligned} & \text { no } \\ & \text { in } \end{aligned}$	[Auto-tune assign.] Auto-tuning is performed when the assigned input or bit changes to 1 . Note: Auto-tuning causes the motor to start up. [No] (\cap 口) : Not assigned [LII] (L, I): Logical input LI1 [...] (...): See the assignment conditions on page 153		

TRAVERSE CONTROL

Function for winding reels of yarn (in textile applications):

The speed of rotation of the cam must follow a precise profile to ensure that the reel is steady, compact and linear:

The function starts when the drive has reached its base reference and the traverse control command has been enabled.
When the traverse control command is disabled, the drive returns to its base reference, following the ramp determined by the traverse control function. The function then stops, as soon as it has returned to this reference.
Bit 15 of word LRS1 is at 1 while the function is active.

Function parameters

These define the cycle of frequency variations around the base reference，as shown in the diagram below：

tr	［Yarn control］$(\operatorname{tr}[)$ ：Assignment of the traverse control command to a logic input or to a communication bus control word bit
ErH	［Traverse freq．high］$(t r H)$ ：in Hertz
trL	［Traverse Freq．Low］$(t r L)$ ：in Hertz
95 H	［Quick step High］（95 H）：in Hertz
¢ 5 L	［Quick step Low］（ 95 L ）：in Hertz
$t \cup P$	［Traverse ctrl．accel．］（ $t^{\text {c }}$ P）：time，in seconds
$t d n$	［Traverse ctrl．decel］（ $t \sim \square$ ）：time，in seconds

Reel parameters：

ヒロロ	［Reel time］（ ヒ ட ロ）：Time taken to make a reel，in minutes． This parameter is intended to signal the end of winding．When the traverse control operating time since command［Yarn control］（ $t r[$ ）reaches the value of［Reel time］（ $\ell b \square$ ），the logic output or one of the relays changes to state 1，if the corresponding function［End reel］（Eba）has been assigned． The traverse control operating time E bロt can be monitored online by a communication bus．
$d t F$	［Decrease ref．speed］（ $d \in F)$ ：Decrease in the base reference． In certain cases，the base reference has to be reduced as the reel increases in size．The ［Decrease ref．speed］（ $d \in F$ ）value corresponds to time［Reel time］（ ℓ bロ）．Once this time has elapsed，the reference continues to fall，following the same ramp．If low speed［Low speed］（ $L 5 P$ ）is at 0 ，the speed reaches 0 Hz ，the drive stops and must be reset by a new run command． If low speed［Low speed］（ $L 5 P$ ）is not 0 ，the traverse control function continues to operate above ［Low speed］（L 5 P）．

Counter wobble

Master drive Slave drive

Thread guide motor
The Counter wobble function is used in certain applications to obtain a constant yarn tension when the Traverse control function is producing considerable variations in speed on the yarn guide motor ([Traverse freq. high] ($1 r H$) and [Traverse Freq. low] (trL), see [Traverse freq. high] (trH) page 242).

Two motors must be used (one master and one slave).
The master controls the speed of the yarn guide, the slave controls the winding speed. The function assigns the slave a speed profile, which is in antiphase to that of the master. This means that synchronization is required, using one of the master's logic outputs and one of the slave's logic inputs.

Connection of synchronization I/O

Master drive
Slave drive

The starting conditions for the function are:

- Base speeds reached on both drives
- [Yarn control] ($\operatorname{rr}[$) input activated
- Synchronization signal present

Note: The [Quick step High] (95 H) and [Quick step Low] (7 5 L) parameters should generally be kept at 0.

Code	Name／Description	Adjustment range	Factory setting
$5 \cap[$ $\begin{aligned} & \text { no } \\ & \hline \end{aligned}$	［Counter wobble］ Synchronization input． To be configured on the winding drive（slave）only． ［No］（ m 口）：Function inactive，thereby helping to prevent access to other parameters ［LII］（ L ，$/$ ）：Logical input LI1 ［．．．］（．．．）：See the assignment conditions on page 153		
$t 54$	［Sync．wobble］ Synchronization output． To be configured on the yarn guide drive（master）only． ```[No] (\(\cap\) 口): Function not assigned [LO1] (\(\mathrm{L}-\mathrm{I}\)) [R2] (\(\stackrel{\text { 己 }) ~}{\text { l }}\) [dO1] (\(\Delta_{\square} /\)): Analog output AO1 functioning as a logic output. Selection can be made if [AO1 assignment] (\(A\) a \(/\)) page 144 is set to [No] (\(\cap \square\)).```		
$d t F$ \star （）	Decrease in the base reference during the traverse control cycle．		
	When the state of the assigned input or bit changes to 1 ，the traverse control operating time is reset to 0 ，along with ［Decrease ref．speed］（ $d \in F)$ ． ［No］（ n 口 ）：Function not assigned ［LII］（ L ，I）：Logical input LI1 ［．．．］（．．．）：See the assignment conditions on page 153		

（1）The parameter can also be accessed in the［SETTINGS］（5EE－）menu．
These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．
（】 Parameter that can be modified during operation or when stopped．

HIGH SPEED SWITCHING

[^5]
DC Bus

Parameters described in this page can be accessed by:

0
Parameter that can be modified during operation or when stopped.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Fault Management

With integrated display terminal：
Summary of functions：

Code	Name	Page
Pt［	［PTC MANAGEMENT］	$\underline{250}$
r 5t	［FAULT RESET］	$\underline{251}$
月ヒr	［AUTOMATIC RESTART］	$\underline{252}$
AL 5	［ALARMS SETTING］	$\underline{252}$
FLr	［CATCH ON THE FLY］	$\underline{253}$
tHE	［MOTOR THERMAL PROT．］	$\underline{255}$
$\square P L$	［OUTPUT PHASE LOSS］	$\underline{256}$
，PL	［INPUT PHASE LOSS］	$\underline{256}$
$\square H L$	［DRIVE OVERHEAT］	$\underline{257}$
5月t	［THERMAL ALARM STOP］	$\underline{258}$
EtF	［EXTERNAL FAULT］	$\underline{258}$
－5b	［UNDERVOLTAGE MGT］	$\underline{259}$
t, t	［IGBT TESTS］	$\underline{260}$
LFL	［4－20mA LOSS］	$\underline{260}$
$1 \rightarrow H$	［FAULT INHIBITION］	$\underline{261}$
c L L	［COM．FAULT MANAGEMENT］	$\underline{261}$
5dd	［ENCODER FAULT］	$\underline{263}$
t ，d	［TORQUE OR I LIM．DETECT］	$\underline{264}$
F ¢ F	［FREQUENCY METER］	$\underline{266}$
dLd	［DYNAMIC LOAD DETECT．］	$\underline{267}$
$t \cap F$	［AUTO TUNING FAULT］	$\underline{268}$
PP，	［CARDS PAIRING］	$\underline{269}$
uLd	［PROCESS UNDERLOAD］	$\underline{270}$
－Ld	［PROCESS OVERLOAD］	$\underline{272}$
LFF	［FALLBACK SPEED］	$\underline{272}$
FSt	［RAMP DIVIDER］	$\underline{272}$
$d[1$	［DC INJECTION］	$\underline{273}$

The parameters in the [FAULT MANAGEMENT] ($F L L^{-}$) menu can only be modified when the drive is stopped and there is no run command, except for parameters with a () symbol in the code column, which can be modified with the drive running or stopped.

PTC probe

1 set of PTC probe can be managed by the drive in order to help to protect the motor: on logic input LI6 converted for this use by switch SW2 on the control block.
The PTC probe is monitored for the following detected faults:

- Motor overheating
- Sensor break
- Sensor short-circuit

Protection via PTC probe does not disable protection via $1^{2} t$ calculation performed by the drive (the two types of protection can be combined).

ATV320••0*०C

Code	Name / Description	Adjustment range	Factory setting
$F ⿻ L ㇒ L L$	[FULL] (continued)		
FLE-	[FAULT MANAGEMENT]		
Pヒ [-	[PTC MANAGEMENT]		
PE [L $\begin{array}{r} \text { Ho } \\ \text { R5 } \\ \text { r } 45 \\ r 5 \end{array}$	[LI6 = PTC probe] Check first that the switch SW2 on the control block is set to PTC. [No] (na): Not used [Always] (A 5): PTC probe are monitored permanently, even if the power supply is not connected (as long as the control remains connected to the power supply) [Power ON] $\left(\begin{array}{rl}r & d\end{array}\right)$: PTC probe are monitored while the drive power supply is connected [Motor ON] (r 5): PTC probe are monitored while the motor power supply is connected		

A WARNING

UNANTICIPATED EQUIPMENT OPERATION

The Restart function performs a Fault Reset and restarts the drive．
－Verify that activating this function does not result in unsafe conditions．
Failure to follow these instructions can result in death，serious injury，or equipment damage
This parameter can only be modified if［3．1 ACCESS LEVEL］（ L A $\left[\right.$ ）is set to［Expert］（ $E P_{r}$ ）mode．
Drive reinitialization via logic input．Can be used to reset all detected faults without having to disconnect the drive from the power supply．The drive is reinitialized on a rising edge（change from 0 to 1 ）of the assigned input．The drive can only be reinitialized when locked．
To assign reinitialization，press and hold down the ENT key for 2 s ．
［No］（ n 口）：Function inactive
［LI1］（L ，I）：Logical input LI1
［LI6］（ $L, ~$ Б）：Logical input LI6
［LAI1］（L A ，I）：Logical input Al1
$\begin{array}{lll}L A, I & {[\text { LAI1］}} & \text { LA，} 2): \text { Logical input Al2 }\end{array}$
－L \quad I［OLO1］（ \square L \square ）：Function blocks：Logical Output 01
．．．
［OL10］（ $\square \perp \mid \square)$ ：Function blocks：Logical Output 10
［Product reset］
The Restart function performs a Fault Reset and then restarts the drive．During this Restart procedure，the drive goes through the same steps as if it had been switched off and on again．Depending on the wiring and the configuration of the drive，this may result in immediate and unanticipated operation．

AWARNING

UNANTICIPATED EQUIPMENT OPERATION

The Restart function performs a Fault Reset and restarts the drive．
－Verify that activating this function does not result in unsafe conditions．
．Failure to follow these instructions can result in death，serious injury，or equipment damage
This parameter can only be accessed if［3．1 ACCESS LEVEL］（ $L A[$ ）is set to［Expert］（ E Pr ）mode．
Drive reinitialization．Can be used to reset all detected faults without having to disconnect the drive from the power supply．
［No］（ n 口）：Function inactive
YE 5
［Yes］（ $y \in 5$ ）：Reinitialization．Press and hold down the ENT key for 2 s ．The parameter changes back to［No］（n a） automatically as soon as the operation is complete．The drive can only be reinitialized when locked．

(1) In corresponds to the rated drive current indicated in the Installation manual and on the drive nameplate.

Motor thermal protection

Function

Thermal protection by calculating the I^{2} t.
Note: The motor thermal state is not saved when the drive is switched off.

- Self-cooled motors: The tripping curves depend on the motor frequency.
- Force-cooled motors: Only the 50 Hz tripping curve needs to be considered, regardless of the motor frequency.

The following curves represent the triggering time in seconds:
Triggering time in seconds

CAUTION

RISK OF DAMAGE TO THE MOTOR

External protection against overloads is required under the following circumstances:

- When the product is being switched on again, as there is no memory to record the motor thermal state
- When supplying more than one motor
- When supplying motors with ratings less than 0.2 times the nominal drive current
- When using motor switching

Failure to follow these instructions can result in equipment damage.

(1) The parameter can also be accessed in the [SETTINGS] ($5 E E^{-}$) menu.
(2) Because, in this case, the detected fault does not trigger a stop, it is recommended to assign a relay or logic output to its indication.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Parameter that can be modified during operation or when stopped.

2 s
To change the assignment of this parameter, press the ENT key for 2 s .

Deferred stop on thermal alarm

This function helps to prevent the drive stopping between two steps of the process if the drive or motor overheats, by authorizing operation until the next stop. At the next stop, the drive is locked until the thermal state falls back to a value, which undershoots the set threshold by 20\%. Example: A threshold set at 80% enables reactivation at 60%.
One thermal state threshold must be defined for the drive, and one thermal state threshold for the motor(s), which will trigger the deferred stop.

Parameters described in this page can be accessed by:
DRI- > CONF > FULL > FLT- > CLL

Parameters described in this page can be accessed by:
DRI- > CONF > FULL > FLT- > SDD

(1) Because, in this case, the detected fault does not trigger a stop, it is recommended to assign a relay or logic output to its indication.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming. Parameter that can be modified during operation or when stopped.

Parameter can be accessed in［Expert］mode

Code	Name I Description \quad Adjustment range	Factory setting
F L L	［FAULT MANAGEMENT］（continued）	
$1 \cap H$	［FAULT INHIBITION］	
$1 \sim H$	In rare cases，the monitoring functions of the drive may be unwanted because they impede the purpose of the application．A typical example is a smoke extractor fan operating as a part of a fire protection system．If a fire occurs，the smoke extractor fan should operate as long as possible，even if，for example，the permissible ambient temperature of the drive is exceeded．In such applications，damage to or destruction of the device may be acceptable as collateral damage，for example，to keep other damage from occurring whose hazard potential is assessed to be more severe． A parameter is provided to disable certain monitoring functions in such applications so that automatic error detection and automatic error responses of the device are no longer active．You must implement alternative monitoring functions for disabled monitoring functions that allow operators and／or master control systems to adequately respond to conditions which correspond to detected errors． For example，if overtemperature monitoring of the drive is disabled，the drive of a smoke extractor fan may itself cause a fire if errors go undetected．An overtemperature condition can be，for example，signaled in a control room without the drive being stopped immediately and automatically by its internal monitoring functions．	
2 s	MONITORING FUNCTIONS DISABLED，NO ERROR DETECTION －Only use this parameter after a thorough risk assessment in compliance with all regulations and standards that apply to the device and to the application． －Implement alternative monitoring functions for disabled monitoring functions that do not trigger automatic error responses of the drive，but allow for adequate，equivalent responses by other means in compliance with all applicable regulations and standards as well as the risk assessment． －Commission and test the system with the monitoring functions enabled． －During commissioning，verify that the drive and the system operate as intended by performing tests and simulations in a controlled environment under controlled conditions． Failure to follow these instructions will result in death or serious injury．	
\square 10 1	If the assigned input or bit is at 0 ，detected fault monitoring is active．If the assigned input or bit is at 1 ，fault monitoring is inactive． Active detected faults are cleared on a rising edge（change from 0 to 1 ）of the assigned input or bit． Note：The Safe Torque Off function and any detected faults that help to prevent any form of operation are not affected by this function． Following faults can be inhibited： ［No］（nロ）：Function inactive ［LI1］（L ，I）：Logical input LI1 ［．．．］（．．．）：See the assignment conditions on page 153	
$F L E$	［FAULT MANAGEMENT］（continued）	
CLL－	［COM．FAULT MANAGEMENT］	
［LL	［Network fault mgt］	［Freewheel］（ Ч S 5）
	A WARNING LOSS OF CONTROL If this parameter is set to［Ignore］（ n 口），fieldbus module communication monitorin －Only use this setting after a thorough risk assessment in compliance with all reg that apply to the device and to the application． －Only use this setting for tests during commissioning． －Verify that communication monitoring has been re－enabled before completing th procedure and performing the final commissioning test． Failure to follow these instructions can result in death，serious injury，or equipr	disabled． tions and standards ommissioning ment damage．

Behavior of the drive in the event of a communication interruption with integrated CANopen®.
ㄱ [Ignore] (\cap ロ): Detected fault ignored
[Freewheel] (ЧE 5): Freewheel stop
YE 5
$5 t t$ [Per STT] $(5 t t)$: Stop according to configuration of [Type of stop] (5t) page 173, without fault tripping. In this case, the fault relay does not open and the drive is ready to restart as soon as the detected fault disappears, according to the restart conditions of the active command channel (for example, according to [2/3 wire control] ($t[L$) and [2 wire type] ($t[t$) page 125 if control is via the terminals). Configuring an alarm for this detected fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop.
L F F [fallback spd] (LFF): Change to fallback speed, maintained as long as the detected fault persists and the run command has not been removed (1)
$r L 5$ [Spd maint.] (r L 5): The drive maintains the speed being applied when the detected fault occurred, as long as the detected fault is present and the run command has not been removed (1)

- ПР [Ramp stop] (r ПР): Stop on ramp

F5t [Fast stop] (F5t): Fast stop
$d[,[D C$ injection $](d[$,$) : DC injection stop. This type of stop cannot be used with certain other functions. See table on page 165$.
$5 L L$
[Modbus fault mgt]
[Freewheel] ($Ч \in 5$)

A WARNING

LOSS OF CONTROL

If this parameter is set to [lgnore] ($n \square$), Modbus communication monitoring is disabled.

- Only use this setting after a thorough risk assessment in compliance with all regulations and standards that apply to the device and to the application.
- Only use this setting for tests during commissioning.
- Verify that communication monitoring has been re-enabled before completing the commissioning procedure and performing the final commissioning test.
Failure to follow these instructions can result in death, serious injury, or equipment damage.

Code	Name I Description \quad Adjustment range	Factory setting	
$\begin{aligned} & \text { חo } \\ & \text { YES } \\ & \text { SEL } \\ & \text { LFF } \\ & \text { rLS } \\ & \text { rחP } \\ & F S E \\ & \text { DE } \end{aligned}$	Behavior of the drive in the event of a communication interruption with integrated Modbus. [Ignore] (n 口): Detected fault ignored [Freewheel] ($4 \in 5$): Freewheel stop [Per STT] ($5: t$): Stop according to configuration of [Type of stop] ($5 t t$) page 173, without fault tripping. In this case, the fault relay does not open and the drive is ready to restart as soon as the detected fault disappears, according to the restart conditions of the active command channel (for example, according to [2/3 wire control] ($t[[$) and [2 wire type] ($t[t$) page 125 if control is via the terminals). Configuring an alarm for this detected fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Change to fallback speed, maintained as long as the detected fault persists and the run command has not been removed (1) [Spd maint.] ($r<5$): The drive maintains the speed being applied when the detected fault occurred, as long as the detected fault is present and the run command has not been removed (1) [Ramp stop] (r ПP): Stop on ramp [Fast stop] (F5t): Fast stop [DC injection] $\left(d\left[\begin{array}{l}\\|\end{array}\right)\right.$: DC injection stop. This type of stop cannot be used with certain other functions. See table on page 165		
$F L E-$	[FAULT MANAGEMENT] (continued)		
$5 d d$ -	[ENCODER FAULT]		
$5 d d$ $\begin{array}{r} n 0 \\ y E 5 \end{array}$	[Load slip detection] Load slip detection activation [No] (\quad 口) : Detected fault ignored [Yes] (ЧE 5): Freewheel stop The event is triggered by comparison with the output frequency and the speed feedback according to the related parameters configuration $F A n F, L A \cap F, d A \cap F$ and $t A \cap F$. The event is also triggered as soon as a RUN order is received, if the sign of the output frequency and the speed feedback are in opposite way during $t A \cap F$. In case of a detected fault, the drive switch to a freewheel stop, and if the brake logic control function has been configured, the brake command will be set to 0 .		
$F A \cap F$	[ANF Frequency Thd.] Visible if [Encoder usage] (E пи) is set to [Fdbk monit.] (5 E [). See page 136	-	
$L A \cap F$	[ANF Detection Ievel] Visible if [Encoder usage] ($E \cap \Delta$) is set to [Fdbk monit.] ($5 E[$). See page 136	-	
$d A \cap F$	[ANF Direction check] Visible if [Encoder usage] (E пи) is set to [Fdbk monit.] ($5: E[$). See page 137	-	
$E A \cap F$	[ANF Time Thd.] Visible if [Encoder usage] ($E \cap \sim$) is set to [Fdbk monit.] ($5 E[$). See page 137	-	

Code	Name／Description	Adjustment range	Factory setting
t ，d－	［TORQUE OR I LIM．DETECT］		
55b	［Trq／I limit．stop］ Behavior in the event of switching to torque or current limitation． ［Ignore］（ n 口）：Detected fault ignored ［Freewheel］（ $Ч \in 5$ ）：Freewheel stop ［Per STT］（ $5 t t$ ）：Stop according to configuration of［Type of stop］（ $5 t t$ ）page 173，without fault tripping．In this case，the fault relay does not open and the drive is ready to restart as soon as the detected fault disappears，according to the restart conditions of the active command channel（for example，according to［ $2 / 3$ wire control］（ $t[L$ ）and［ 2 wire type］（ $E L E$ ）page 125 if control is via the terminals）．Configuring an alarm for this detected fault is recommended（assigned to a logic output，for example）in order to indicate the cause of the stop ［fallback spd］（LFF）：Change to fallback speed，maintained as long as the detected fault persists and the run command has not been removed（1） ［Spd maint．］（ r L5）：The drive maintains the speed being applied when the detected fault occurred，as long as the detected fault is present and the run command has not been removed（1） ［Ramp stop］（ \ulcorner П P）：Stop on ramp ［Fast stop］（F5t）：Fast stop ［DC injection］（ $\quad([$,$) ：DC injection stop．This type of stop cannot be used with certain other functions．See table on page 165$		
5 ¢	［Trq／I limit．time out］	0 to $9,999 \mathrm{~ms}$	1，000 ms
（	（If［Trq／I limit．stop］（ 5 5 b）has been configured） Time delay for taking SSF limitation into account．		

（1）Because，in this case，the detected fault does not trigger a stop，it is recommended to assign a relay or logic output to its indication．
（】 Parameter that can be modified during operation or when stopped．

To change the assignment of this parameter，press the ENT key for 2 s ．

Use of the "Pulse input" input to measure the speed of rotation of the motor
This function uses the "Pulse input" input and can only be used if the "Pulse input" input is not being used for another function.

Example of use

An indexed disk driven by the motor and connected to a proximity sensor can be used to generate a frequency signal that is proportional to the speed of rotation of the motor.

T

When applied to the "Pulse input" input, this signal supports:

- Measurement and display of the motor speed: signal frequency $=1 / T$. This frequency is displayed by means of the [Pulse in. work. freq.] (F १ 5) parameter, page 50.
- Overspeed detection (if the measured speed exceeds a preset threshold, the drive will trigger an error).
- Brake failure detection, if brake logic control has been configured: If the speed does not drop sufficiently quickly following a command to engage the brake, the drive will trigger an error. This function can be used to detect worn brake linings.
- Detection of a speed threshold that can be adjusted using [Pulse warning thd.] (F 9 L) page 102 and is assignable to a relay or logic output, see page 138.

Code	Name／Description	Adjustment range	Factory setting
FLE－	［FAULT MANAGEMENT］（continued）		
F 9 F－	［FREQUENCY METER］		
	［Frequency meter］ Activation of the speed measurement function． ［No］（ n 口）：Function inactive．In this case，none of the function parameters c ［Yes］（ $4 E 5$ ）：Function active，assignment only possible if no other functions	can be accessed s have been assigned	the＂Pulse input＂input
$\begin{gathered} F 9[\\ \mathbf{~} \end{gathered}$	［Pulse scal．divisor］	1.0 to 100.0	1.0
	Scaling factor for the＂Pulse input＂input（divisor）．The frequency measured is displayed by means of the ［Pulse in．work．freq．］（F Я 5）parameter，page 50.		
F9月	［Overspd．pulse thd．］		［ No ］（ na O ）
	［No］（ n 口 ）：No overspeed monitoring 1 Hz to 20.00 kHz ：Adjustment of the frequency tripping threshold on the＂Pulse input＂input divided by ［Pulse scal．divisor］（F 中［）．		
	［Pulse overspd delay］	0.0 s to 10.0 s	0.0 s
	Time delay for taking overspeed detected fault into account．		
$F d t$	［Level fr．pulse ctrl］		No］（ $\mathrm{C口}$ ）
	［ No ］（ n 口 ）：No monitoring of speed feedback 0.1 Hz to 599 Hz ：Adjustment of the motor frequency threshold for tripping a speed feedback detected fault（difference between the estimated frequency and the measured speed）．		
F 9 E	［Pulse thd．wo Run］		［ No ］（ \quad 口 ）
	Activation and adjustment of brake monitoring：［Brake feedback］（brF）． 		
ヒタロ	［Pulse wo Run delay］	0.0 s to 10.0 s	0.0 s
	Time delay for taking brake monitoring into account．		

Load variation detection

This detection is only possible with the High－speed hoisting function．It can be used to detect if an obstacle has been reached，triggering a sudden（upward）increase or（downward）decrease in the load．
Load variation detection triggers a［Dynamic load fault］（ $d L F$ ）．The［Dyn．load Mgt．］（ $d L b$ ）parameter can be used to configure the response of the drive in the event of this detected fault．

Load variation detection can also be assigned to a relay or a logic output．
There are two possible detection modes，depending on the configuration of high－speed hoisting：
－Speed reference mode

Torque variation detection．
During high－speed operation，the load is compared to that measured during the speed step．The permissible load variation and its duration can be configured．If exceeded，the drive switches to fault mode．
－Current limitation mode
［High speed hoisting］（H5a）page 205 is set to［Current Limit］（［ 5 口）．
On ascend，during high－speed operation，an increase in load will result in a drop in speed．Even if high－ speed operation has been activated，if the motor frequency drops below the［I Limit Frequency］（ $5[L$ ） threshold page 205，the drive will switch to fault mode．The detection is realised only for a positive variation of the load and only in the high speed area（area upper to［I Limit Frequency］（5LL））． On descend，operation takes the form of Speed reference mode．

Code	Name／Description \quad Adjustment range	Factory setting
F L E	［FAULT MANAGEMENT］（continued）	
$d L d$	［DYNAMIC LOAD DETECT．］ Load variation detection．This can be accessed if［High speed hoisting］（H5ロ）page 205 is not［ No ］（ H 口）．	
ELd	［Dynamic load time］ Activation of load variation detection and adjustment of time delay for taking load variation detected fault ［Dynamic load fault］（ $d L F$ ）into account． ［No］（ n 口 ）：No load variation detection 0.00 s to $\mathbf{1 0 . 0 0}$ s：Adjustment of the time delay for taking detected fault into account．	
dLd	［Dynamic load threshold］ 1 to 100\％	100\％
	Adjustment of the threshold for load variation detection，as a \％of the load measured during the speed step．	
$d L b$	［Dyn．load Mgt．］	Freewheel］（ $4 E 5$ ）
חロ YE St L	Behavior of the drive in the event of a load variation detected fault． ［Ignore］（ n 口）：Detected fault ignored ［Freewheel］（ ЧE 5）：Freewheel stop ［Per STT］（ $5 t t$ ）：Stop according to configuration of［Type of stop］（5tt）page 173，without tripping．In this case，the fault relay does not open and the drive is ready to restart as soon as the detected fault disappears，according to the restart conditions of the active command channel，（for example，according to［2／3 wire control］（ $t[\Sigma$ ）and［2 wire type］（ $t[t$ ）page $\underline{125}$ if control is via the terminals）．Configuring an alarm for this detected fault is recommended（assigned to a logic output，for example） in order to indicate the cause of the stop ［Fallback spd．］（LFF）：Change to fallback speed，maintained as long as the detected fault persists and the run command has not been removed（1） ［Spd maint．］（r L 5）：The drive maintains the speed at the time the detected fault occurred，as long as the detected fault persists and the run command has not been removed（1） ［Ramp stop］（ r ПP）：Stop on ramp ［Fast stop］（F5t）：Fast stop	

Code	Name / Description	Adjustment range	Factory setting
FLE -	[FAULT MANAGEMENT] (continued)		
$E \cap F-$	[AUTO TUNING FAULT]		
$\begin{aligned} \\ t \cap L \\ Y E 5 \end{aligned}$	[Autotune fault mgt] [Ignore] (n 口): Detected fault ignored [Freewheel] (ЧE 5): Freewheel stop		

(1) Because, in this case, the detected fault does not trigger a stop, it is recommended to assign a relay or logic output to its indication.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Card pairing

Function can only be accessed in [Expert] ($\begin{aligned} & \text { P } P_{r} \text {) mode. }\end{aligned}$
This function is used to detect whenever a card has been replaced or the software has been modified in any way.
When a pairing password is entered, the parameters of the card currently inserted are stored. On every subsequent power-up, these parameters are verified and, in the event of a discrepancy, the drive locks in HCF fault mode. Before the drive can be restarted, you must revert to the original situation or re-enter the pairing password.
The following parameters are verified:

- The type of card for: all cards.
- The software version for: the control block, the communication cards.
- The serial number for: the control block.

Code	Name / Description	Adjustment range	Factory setting
FLE -	[FAULT MANAGEMENT] (continued)		
PP , -	[CARDS PAIRING]		
PP ,	[Pairing password]	[OFF] (םFF) to 9,999	[OFF] (םFF)
$\square \mathrm{FF}$	The [OFF] ($a F F$) value signifies that the card pairing function is inactive The [ON] ($\square n$) value signifies that card pairing is active and that an access code must be entered in order to start the drive in the event of a card pairing detected fault As soon as the code has been entered, the drive is unlocked and the code changes to [ON] ($\square \square$). The PPI code is an unlock code known only to Schneider Electric Product Support.		

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Process underload detected fault

A process underload is detected when the next event occurs and remains pending for a minimum time [Unld T. Del. Detect] ($u L t$), which is configurable:

- The motor is in steady state and the torque is below the set underload limit ([UnId. Thr. 0. Speed.] ($L \sim L$),

- The motor is in steady state when the offset between the frequency reference and motor frequency falls below the configurable threshold [Hysteresis Freq. Att.] (5 г ь).

Torque as a \% of the rated torque

Between zero frequency and the rated frequency, the curve reflects the following equation:
torque $=L u L+\frac{(L u n-L u L) \times \text { (frequency }^{2}}{\text { (rated frequency) }^{2}}$

The underload function is not active for frequencies below
[UnId. Freq. Thr. Det.] (r П $\mathrm{\sim} d$).

A relay or a logic output can be assigned to the signaling of this detected fault in the [INPUTS / OUTPUTS CFG] ($\left.1-\square^{-}\right)$menu.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Parameter that can be modified during operation or when stopped.

Process overload detected fault

A process overload is detected when the next event occurs and remains pending for a minimum time [Ovld Time Detect.] ($t \square L$), which is configurable:

- The drive is in current limitation mode.
- The motor is in steady state and the current is above the set overload threshold [Ovid Detection Thr.] ($L \square$).

The motor is in steady state when the offset between the frequency reference and motor frequency falls below the configurable threshold [Hysteresis Freq. Att.] (5 r b).

A relay or a logic output can be assigned to the signaling of this detected fault in the
[INPUTS / OUTPUTS CFG] ($1-$ - $^{-}$) menu.

Code	Name / Description	Adjustment range	Factory setting	
FLE -	[FAULT MANAGEMENT] (continued)			
d[, -	[DC INJECTION]			
$\prime d[$*($)$(1) (3)	[DC inject. level 1]	0.1 to $1.41 \ln (2)$	$0.64 \ln (2)$	
		CE		
	OVERHEATING AND DAMAGE TO THE MOTOR Verify that the connected motor is properly rated for the DC injection current to be applied in terms of amount and time in order to avoid overheating and damage to the motor. Failure to follow these instructions can result in equipment damage.			
	Level of DC injection braking current activated via logic input or selected as stop mode.			
Ed)	[DC injection time 1]			
	OVERHEATING AND DAMAGE TO THE MOTOR Verify that the connected motor is properly rated for the DC injection current to be applied in terms of amount and time in order to avoid overheating and damage to the motor. Failure to follow these instructions can result in equipment damage.			
	Maximum current injection time [DC inject. level 1$]$ (,$d[$). After this time, the injection current becomes [DC inject. level 2] (,$d[$ 己).			
, d[己	[DC inject. level 2]	$0.1 \ln (2)$ to [DC inject. level 1] (d [) $0.5 \ln (2)$		
	NOTICE			
	OVERHEATING AND DAMAGE TO THE MOTOR Verify that the connected motor is properly rated for the DC injection current to be applied in terms of amount and time in order to avoid overheating and damage to the motor. Failure to follow these instructions can result in equipment damage.			
	Injection current activated by logic input or selected as stop mode, once period of time [DC injection time 1] ($\left.\begin{array}{ll}\\|_{l}\end{array}\right)$ has elapsed.			

Code	Name / Description	Adjustment range	Factory setting
$t d[$	[DC injection time 2]	0.1 to 30 s	0.5 s
	NOTICE		
()(1) (3)	OVERHEATING AND DAMAGE TO THE MOTOR Verify that the connected motor is properly rated for the DC injection current to be applied in terms of amount and time in order to avoid overheating and damage to the motor. Failure to follow these instructions can result in equipment damage.		
	Maximum injection time [DC inject. level 2] (, d[己) for injection, selected as stop mode only. This parameter can be accessed if [Type of stop] ($5 t t$) is set to [DC injection] ($d[1)$.		

(1) The parameter can also be accessed in the[SETTINGS] ($5 E E^{-}$) and [APPLICATION FUNCT.] ($F \mathrm{r}_{\mathrm{n}} \mathrm{H}^{-}$) menus.
(2) In corresponds to the rated drive current indicated in the Installation manual and on the drive nameplate.
(3) These settings are independent of the [AUTO DC INJECTION] (A $d[-$) function.

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.
() Parameter that can be modified during operation or when stopped.

Communication

With integrated display terminal：

Code	Name／Description	Adjustment range	Factory setting
$F \cup L L$	［FULL］（continued）		
［ロП－	［COMMUNICATION］		
，5－	［COM．SCANNER INPUT］ ［Scan．IN1 address］（ \curvearrowleft П $/$ ）to［Scan．IN4 address］（ $п$ П月 4 ）could be used for Fast Task of the communication scanner （see Modbus \＆CANopen® communication manual）．		
ППН ।	［Scan．IN1 address］ Address of the 1st input word．		
пП月己	［Scan．IN2 address］ Address of the 2nd input word．		
пПНヨ	Address of the 3rd input word．		
пП月	［Scan．IN4 address］ Address of the 4th input word		0
п П ¢ 5	［Scan．IN5 address］ Address of the 5th input word		0
пПНб	［Scan．IN6 address］ Address of the 6th input word		0
п П月 7	［Scan．IN7 address］ Address of the 7th input word		0
п П 月日	［Scan．IN8 address］ Address of the 8th input word		0

Code	Name／Description ${ }^{\text {a }}$	Adjustment range	Factory setting
［口П－	［COMMUNICATION］（continued）		
－5－	［COM．SCANNER OUTPUT］ ［Scan．Out1 address］（ n［ A I）to［Scan．Out4 address］（ n［ A 4）could be used for Fast Task of the communication scanner （see Modbus \＆CANopen® communication manual）．		
п［ \％I	［Scan．Out1 address］ Address of the 1st output word．		
п ¢ 月	［Scan．Out2 address］ Address of the 2nd output word．		
п「月ヨ	［Scan．Out3 address］ Address of the 3rd output word．		
n［ 月 4	［Scan．Out4 address］ Address of the 4th output word．		
п 1 月 5	［Scan．Out5 address］ Address of the 5th output word．		
п 5 月白	［Scan．Out6 address］ Address of the 6th output word．		
п［ 月 7	［Scan．Out7 address］ Address of the 7th output word．		
n［ 月日	［Scan．Out8 address］ Address of the 8th output word．		
ГロП－	［COMMUNICATION］（continued）		
Md 1－	［MODBUS NETWORK］		
Rdd $\square F F$	$\begin{aligned} & \text { [OFF] (} \quad \text { FF }) \\ & 1 \text { to } 247 \end{aligned}$		
月Пロ Г －F F	［Modbus add Com．C．］ $\begin{aligned} & \text { [OFF] (aFF) } \\ & 1 \text { to } 247 \end{aligned}$	［OFF］（aFF）to 247	［OFF］（aFF）
tbr	［Modbus baud rate］ 48－96－192－384 kbps on the integrated display terminal． $4800,9600,19200$ or 38400 bauds on the graphic display terminal．		
tFo	［Modbus format］ $[8-\mathrm{E}-1]($ 日E $801-8 \mathrm{E} 1-8 \mathrm{n} 1,8 \mathrm{n} 2$		
ヒヒロ	［Modbus time out］ $0.1 \text { to } 30 \mathrm{~s}$	$0.1 \text { to } 30 \mathrm{~s}$	10.0 s
$\begin{aligned} & \text { [aחI } \\ & r a \in \square \\ & r a t 1 \\ & r \text { It } \\ & r \text { It } 1 \end{aligned}$	［Mdb com stat］ ［r0t0］（ $r \square \in \square)$ ：Modbus no reception，no transmission＝communication idle ［r0t1］（ r ロt l）：Modbus no reception，transmission ［r1t0］（ r It $\square)$ ：Modbus reception，no transmission ［r1t1］（ r It I）：Modbus reception and transmission		

These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Access Level

See [Access Level] (L A [) page $\underline{280}$.

Interface (ItF)

What's in this Chapter?
This chapter contains the following topics:

Topic	Page
Access Level (LAC)	$\underline{280}$
Language (LnG)	$\underline{282}$
Monitoring Configuration (MCF)	$\underline{283}$
Display configuration (dCF)	$\underline{287}$

Access Level (LAC)

With integrated display terminal:

$$
\text { From , } t F \text { - menu }
$$

(】 Parameter that can be modified during operation or when stopped.

Comparison of the menus that can be accessed on the graphic display terminal/integrated display terminal

(1) Can be accessed only with graphic display terminal.

Language (LnG)

Code	Name / Description	Factory setting
$L \cap \square$	[3.2 LANGUAGE]	[Language 0] ($L \cap \square \square$)
()	Current language index.	
L CLO	[Language 0] ($L \cap \square \square$)	
L п ¢ 9	[-..	

() Parameter that can be modified during operation or when stopped.

Monitoring Configuration (MCF)

This menu can only be accessed with the graphic display terminal.

This can be used to configure the information displayed on the graphic display screen during operation.

[PARAM. BAR SELECT]: Selection of 1 to 2 parameters displayed on the top line (the first 2 cannot be modified).
[MONITOR SCREEN TYPE]: Selection of parameters displayed in the centre of the screen and the display mode (digital values or bar graph format).
[COM. MAP CONFIG.]: Selection of the words displayed and their format.

Code	Name / Description
$\Pi[F-$	$[3.3$ MONITORING CONFIG $]$

Monitor screen type

These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

Communication map configuration

Code	Name／Description ${ }^{\text {a }}$（ Factory setting
AdL－	［COM．MAP CONFIG．］
$\text { , 月 \& } 1$ $()$	［Word 1 add．select．］ Select the address of the word to be displayed by pressing the＜＜and＞＞（F2 and F3）keys and rotating the jog dial．
F月d I （） HE 5，［ ก 5 ■	［Format word 1］ Format of word 1. ［Hex］（HE） ［Signed］（5，［5） ［Unsigned］（ $n 5 \mathrm{~L}$ ）
$\begin{gathered} 1 \text { 19d } \\ \mathbf{1} \end{gathered}$	［Word 2 add．select．］ Select the address of the word to be displayed by pressing the＜＜and＞＞（F2 and F3）keys and rotating the jog dial．
$\begin{gathered} \text { FAdコ } \\ \text { (2 } \\ \text { HE } \\ 5, \square \\ \cap 5 \square \end{gathered}$	［Format word 2］ Format of word 2. ［Hex］（HE） ［Signed］（5，L） ［Unsigned］（ $n 5 \mathrm{~L}$ ）
$\begin{gathered} \text { 1月d } \exists \\ \mathbf{Q} \end{gathered}$	［Word 3 add．select．］ Select the address of the word to be displayed by pressing the＜＜and＞＞（F2 and F3）keys and rotating the jog dial．
$\begin{gathered} \text { FA } \triangle \exists \\ \text { (2 } \\ H E \\ 5, \square \\ \cap 5 \square \end{gathered}$	［Format word 3］ Format of word 3. ［Hex］（HE） ［Signed］（5，［5） ［Unsigned］（ n 5 L ）
$\begin{gathered} \text { 1月d } 4 \\ \text { () } \end{gathered}$	［Word 4 add．select．］ Select the address of the word to be displayed by pressing the＜＜and＞＞（F2 and F3）keys and rotating the jog dial．
FRd4 （）	［Format word 4］ Format of word 4. ［Hex］（HE） ［Signed］（5 ，ப） ［Unsigned］（ n 5—） Then，it will be possible to view the selected words in the［COMMUNICATION MAP］submenu of the［1．2 MONITORING］menu． Example：

（】 Parameter that can be modified during operation or when stopped．

Display configuration (dCF)

This menu can only be accessed with the graphic display terminal. It can be used to customize parameters or a menu and to access parameters.

- USER PARAMETERS: Customization of 1 to 15 parameters.
- MY MENU: Creation of a customized menu.
- PARAMETER ACCESS: Customization of the visibility and protection mechanisms of menus and parameters.
- KEYPAD PARAMETERS: Adjustment of the contrast and stand-by mode of the graphic display terminal (parameters stored in the terminal rather than in the drive).

Code	Name / Description
$d[F-$	[3.4 DISPLAY CONFIG]

User parameters

If [Return std name] is set to [Yes], the display reverts to standard but the custom settings remain stored.

Names (USER MENU NAME, DRIVE NAME, configuration, serial no., lines of messages, names of units, etc.) are customized as in the example of the parameter name shown opposite.

If no custom settings have been made, the standard values appear (names, units, etc.). Display on 1 or 2 lines of characters.
Use F1 to change to ABC, abc, 123, *[-.
Use the jog dial to increment the character (alphabetical order), and << and >> (F2 and F3) to switch to the next or previous character respectively.

Code	Name／Description	Factory setting
［ \sim P－	［USER PARAMETERS］	
$\text { L } 5 \text { P }$ （）	［Return std name］ Display standard parameters instead of customised ones． $\begin{aligned} & {[\mathrm{No]} \text { (na) }} \\ & [\mathrm{Yes}] \text { (yE }) \end{aligned}$	$[\mathrm{No}]$（ na ）
ПリПп	［MY MENU］	
P月п	［DEVICE NAME］	
5Er－	［SERVICE MESSAGE］	
$5 \Pi L \square 1$	［LINE 1］	
$5 \Pi L \square 己$	［LINE 2］	
$5 \Pi L \square \exists$	［LINE 3］	
5 ПL प	［LINE 4］	
5 ПL 5	［LINE 5］	
［Fпロ	［CONFIGURATION 0］	
［Fпロ己	［CONFIGURATION 1］	
［Fпロヨ	［CONFIGURATION 2］	
P5n	［SERIAL NUMBER］	

（2）Parameter that can be modified during operation or when stopped．

My Menu config.

Use the F2 and F3 keys to arrange the parameters in the list (example below using F3).

RDY	Term	+0.0 Hz
SELECTED LIST		
Acceleration		
Ramp increment		
Speed prop. gain		
Del		

Code \quad Name / Description

Пリ[- [MY MENU CONFIG.]

Selection to display all parameters or only the active parameters.
Press ESC to exit this screen.

No selections can be made in this screen if there are no parameters.

Note: The protected parameters are no longer accessible and are not, therefore, displayed for the selected channels.

Code	Name / Description	Factory setting
PR [-	[PARAMETER ACCESS]	
Pra-	[PROTECTION]	
P[d-	[PROTECTED CHANNELS]	
[an P 5 Пdb [月п n $E t$	[HMI] ($[$ © \square): Graphic display terminal or remote display terminal [PC Tool] (P 5): PC Software [Modbus] (Π ($)$): Integrated Modbus [CANopen] ($\left[\begin{array}{c}\text { 月 } n \text {): Integrated CANopen® } \\ \text { ® }\end{array}\right.$ [Com. card] ($n E t$): Communication card (if inserted)	
- 15-	[VISIBILITY]	
$P_{u}, 5$ () ACt ALL	[PARAMETERS] Parameter visibility: only active ones, or all parameters. [Active] ($A[t$) [AII] (ALL)	[Active] ($\%[t$)

Keypad parameters

RDY	Term	0.0 Hz	0.0 A
KEYPAD PARAMETERS			
Keypad contrast	$:$	50%	
Keypad stand－by	$:$	5 min	
Code	\ll	\gg	Quick

Code	Name／Description	Adjustment range	Factory setting
［ $\cap \mathrm{L}$－	［KEYPAD PARAMETERS］		
［r5t	［Keypad contrast］	0 to 100\％	50\％
（）	Contrast of the keypad．		
［5ロリ	［Keypad stand－by］	［ No ］（ n 口）to 10 min	5 min
（）	Graphic keypad standby delay．		
по	［ No ］（ n 口）：No		

（】）Parameter that can be modified during operation or when stopped．

Open / Save as (trA)

This menu can only be accessed with the graphic display terminal.

[4.1 OPEN]: To download one of the 4 files from the graphic display terminal to the drive.
[4.2 SAVE AS]: To download the current drive configuration to the graphic display terminal.

Various messages may appear when the download is requested:

- [TRANSFER IN PROGRESS]
- [DONE]
- Error messages if download not possible
- [Motor parameters are NOT COMPATIBLE. Do you want to continue?]: In this case, the download is possible, but the parameters will be restricted.

DOWNLOAD GROUP

［None］：		No parameters
［AII］：		All parameters in all menus
［Drive configuration］：		The entire［1 DRIVE MENU］without ［COMMUNICATION］
［Motor parameters］：	［Rated motor volt．］（un 5）	In the［MOTOR CONTROL］（ d r［－）menu
	［Rated motor freq．］（Fr 5）	
	［PSI align curr．max］（ $n[r$ ）	
	［Rated motor speed］（ $n 5 P$ ）	
	［Motor 1 Cosinus phi］（ $[$－ 5 ）	
	［Rated motor power］（ n Pr）	
	［Motor param choice］（ \cap P［ ）	
	［Tune selection］（ 5 ¢ ¢ п ）	
	［Mot．therm．current］（ ，E H ）	
	［IR compensation］（ \sim Fr ）	
	［Slip compensation］（ $5 / P$ ）	
	［Cust stator resist．］（ \sim 5 A ）	
	［Lfw］（L F 月）	
	［Cust．rotor t const．］（ $1 \subset$ ）	
	［Nominal I sync．］（nLr 5）	
	［Nom motor spdsync］（n5P5）	
	［Pole pairs］（ $P P_{\square} 5$ ）	
	［Syn．EMF constant］（PH5）	
	［Autotune L d－axis］（ L d S ）	
	［Autotune L q－axis］（L 95）	
	［Nominal freq sync．］（ F r 5 5）	
	［Cust．stator R syn］（ －5 月 5）	
	［Motor torque］（t 7 5）	
	［U1］（ \sim I）	
	［F1］（F l）	
	［U2］（ \llcorner 己）	
	［F2］（F 己）	
	［U3］（－ヨ ）	
	［F3］（F ヨ）	
	［U4］（－4）	
	［F4］（F 4）	
	［U5］（ 4 5）	
	［F5］（F5）	
	The motor parameters that can be accessed in［Expert］（ $E P_{r}$ ） mode，page 261.	
	［Mot．therm．current］（ ，E H）	In the［SETTINGS］（ $5 E t-$ ）menu
［Communication］：		All the parameters in the［COMMUNICATION］menu

Password (COd)

With graphic display terminal

With integrated display terminal

Enables the configuration to be protected with an access code or a password to be entered in order to access a protected configuration.

Example with graphic display terminal:

- The drive is unlocked when the PIN codes are set to [Unlocked] (a F F) (no password) or when the correct code has been entered. All menus are visible.
- Before protecting the configuration with an access code, you must:
- Define the [Upload rights] ($u L r$) and [Download rights] ($d L r$).
- Make a careful note of the code and keep it in a place where you will be able to find it.
－The drive has 2 access codes，enabling 2 access levels to be set up：
－PIN code 1 is a public unlock code： 6969.
－PIN code 2 is an unlock code known only to Schneider Electric Product Support．It can only be accessed in［Expert］（ E Pr）mode．
－Only one PIN1 or PIN2 code can be used，the other must remain set to［OFF］（oF F）．

Note：When the unlock code is entered，the user access code appears．

The following items are access－protected：
－Return to factory settings（［FACTORY SETTINGS］（F［ 5 －）menu．
－The channels and parameters protected by the［MY MENU］（ $\Pi \sqcup \Pi_{n}-$ ）as well as the menu itself．
－The custom display settings（［3．4 DISPLAY CONFIG．］（ $d[F-)$ menu）．

\begin{tabular}{|c|c|c|}
\hline Code \& Name／Description \({ }^{\text {a }}\) Adjustment range \& Factory setting \\
\hline ［ad－ \& ［5 PASSWORD］ \& \\
\hline ［5t \(\begin{aligned} \\ \\ \\ \text { LL } \\ \text { u L }\end{aligned}\) \& \begin{tabular}{l}
［State］ \\
Information parameter，cannot be modified． \\
［Locked］（ \(L\) L ）：The drive is locked by a password ［Unlocked］（ \(\lrcorner L[\) ）：The drive is not locked by a password
\end{tabular} \& Unlocked］（ \(~ L ~ L ~ ¢ ~) ~\) \\
\hline ［ad \& \begin{tabular}{l}
［PIN code 1］ \\
1st access code．The value［OFF］（ \(\square F F\) ）indicates that no password has been set［Unlocked］（ \(\Delta\) indicates that the drive is protected and an access code must be entered in order to unlock it．Once entered，it remains on the display and the drive is unlocked until the next time the power supply is PIN code 1 is a public unlock code： 6969.
\end{tabular} \& \begin{tabular}{l}
OFF］（aFF） \\
The value［ON］（an） correct code has been nnected．
\end{tabular} \\
\hline Cod己 \& \begin{tabular}{l}
［PIN code 2］ \\
This parameter can only be accessed in［Expert］（ \(E P_{r}\) ）mode． \\
2nd access code．The value［OFF］（ \(\square F F\) ）indicates that no password has been set［Unlocked］（ \(\lrcorner \mathrm{L}\) indicates that the drive is protected and an access code must be entered in order to unlock it．Once the entered，it remains on the display and the drive is unlocked until the next time the power supply is dis PIN code 2 is an unlock code known only to Schneider Electric Product Support． \\
When［PIN code 2］（ \([a d\) ）is not set to［OFF］（ \(a F F\) ），the［1．2 MONITORING］（ \(\Pi \square n-\) ）menu is the ［PIN code 2］（ \(\left[\begin{array}{c}\mathrm{a} \\ \mathrm{d} \\ \text { 己 }\end{array}\right.\) ）is set to［OFF］（ \(a F F\) ）（drive unlocked），all menus are visible． \\
If the display settings are modified in［3．4 DISPLAY CONFIG．］（ \(d[\) F－）menu，and if［PIN code 2］ ［OFF］（ \(\square F F\) ），the visibility configured is kept．Then if［PIN code 2］（ \([\square \Delta d\) ）is set to OFF（drive unl configured in［3．4 DISPLAY CONFIG．］（ \(d[F-\) ）menu is kept．
\end{tabular} \& \begin{tabular}{l}
OFF］（aFF） \\
The value［ON］（an） correct code has been nnected． \\
only one visible．Then if \\
（ade）is not set to ked），the visibility
\end{tabular} \\
\hline ulr

ulra
ulr

ur \& \begin{tabular}{l}
［Upload rights］

Reads or copies the current configuration to the drive．

［Permitted］（ $\sim L\ulcorner\square)$ ：The current drive configuration can be uploaded to the graphic display termina ［Not allowed］（ $\sim\llcorner\ulcorner/)$ ：The current drive configuration can only be uploaded to the graphic display the drive is not protected by an access code or if the correct code has been entered．

 \&

Permitted］（uLrロ）

or PC Software． minal or PC Sofware if
\end{tabular}

\hline $d L r$
$d L r a$
$d L r I$
$d L r e$

$d L r \exists$ \& | ［Download rights］ |
| :--- |
| Writes the current configuration to the drive or downloads a configuration to the drive． |
| ［Locked drv］（ $d L\ulcorner\square$ ）：A configuration file can only be downloaded to the drive if the drive is prote which is the same as the access code for the configuration to be downloaded． |
| ［Unlock．drv］（ $d L\ulcorner/$ ）：A configuration file can be downloaded to the drive or a configuration in the drive is unlocked（access code entered）or is not protected by an access code． |
| ［Not allowed］（ d L $\stackrel{r}{ }$ ）：Download not authorized． |
| ［Lock／unlock］$(d L\ulcorner\exists)$ ：Combination of［Locked drv．］$(d L \subset \square)$ and［Unlock．drv］$(d L \curvearrowright I)$ ． | \& | Unlock．drv］（ \quad L $\stackrel{\text { r }) ~}{\text { ）}}$ |
| :--- |
| by an access code， |
| can be modified if the |

\hline
\end{tabular}

Multipoint Screen

Multipoint Screen

Communication is possible between a graphic display terminal and a number of drives connected on the same bus. The addresses of the drives must be configured in advance in the [COMMUNICATION] ($[\square \square-$) menu using the [Modbus Address] (Fdd) parameter, page $\underline{276}$.

When a number of drives are connected to the same graphic display terminal, it automatically displays the following screens:

In multipoint mode, the command channel is not displayed. From left to right, the state, then the 2 selected parameters, and finally the drive address appear.

All menus can be accessed in multipoint mode. Only drive control via the graphic display terminal is not authorized, apart from the Stop key, which locks all the drives.
If there is an error on a drive, this drive is displayed.

Maintenance and Diagnostics

What's in this Part?
This part contains the following chapters:

Chapter	Chapter Name	Page
11	Maintenance	$\underline{305}$
12	Diagnostics and Troubleshooting	$\underline{307}$

Maintenance

Limitation of Warranty

The warranty does not apply if the product has been opened, except by Schneider Electric services.

Servicing

CAUTION
RISK OF DAMAGE TO THE DRIVE
Adapt the following recommendations according to the environment conditions: temperature, chemical, dust.
Failure to follow these instructions can result in equipment damage.

It is recommended to do the following in order to optimize continuity of operation.

Environment	Part concerned	Action	Periodicity
Knock on the product	Housing - control block (led - display)	Check the drive visual aspect	At least each year
Corrosion	Terminals - connector - screws - EMC plate	Inspect and clean if required	
Dust	Terminals - fans - blowholes		
Temperature	Around the product	Check and correct if required	
Cooling	Fan	Check the fan operation	After 3 to 5 years, depending on the operating conditions
Vibration	Terminal connections	Check tightening at recom- mended torque	At least each year

Note: The fan operation depends on the drive thermal state. The drive may be running and the fan not.

Spares and repairs

Serviceable product. Please refer to your Customer Care Centre.

Long time storage

If the drive was not connected to mains for an extended period of time, the capacitors must be restored to their full performance before the motor is started. See page 39 .

Fan replacement

It is possible to order a new fan for the ATV320 maintenance, see the commercial references on www.schneider-electric.com.

Fans may continue to run for a certain period of time even after power to the product has been disconnected.

| CAUTION |
| :--- | :--- |
| RUNNING FANS |
| Verify that fans have come to a complete standstill before handling them. |
| Failure to follow these instructions can result in equipment damage. |

Diagnostics and Troubleshooting

What's in this Chapter?

This chapter contains the following topics:

Topic	Page
Error code	$\underline{308}$
Clearing the detected fault	$\underline{308}$
Fault detection codes which require a power reset after the detected fault is cleared	$\underline{309}$
Fault detection codes that can be cleared with the automatic restart function after the cause has disappeared	$\underline{311}$
Fault detection codes that are cleared as soon as their cause disappears	$\underline{314}$
Option card changed or removed	$\underline{314}$
Control block changed	$\underline{314}$
Fault detection codes displayed on the remote display terminal	$\underline{315}$

A ! DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH
Read and understand the instructions in "Safety Information" chapter before performing any procedure in this chapter.
Failure to follow these instructions will result in death or serious injury.

Error code

- If the display does not light up, check the power supply to the drive.
- The assignment of the Fast stop or Freewheel functions will help to prevent the drive starting if the corresponding logic inputs are not powered up. The ATV320 then displays [Freewheel] ($n 5$ t) in freewheel stop and [Fast stop] ($F 5 t$) in fast stop. This is normal since these functions are active at zero so that the drive will be stopped if there is a wire break.
- Check that the run command input is activated in accordance with the selected control mode ([2/3 wire control] ($t[ᄃ$) and [2 wire type] ($t[t)$ parameters, page 85).
- If an input is assigned to the limit switch function and this input is at zero, the drive can only be started up by sending a command for the opposite direction (see page 224).
- If the reference channel or command channel is assigned to a communication bus, when the power supply is connected, the drive will display [Freewheel] ($n 5 \vdash$) and remain in stop mode until the communication bus sends a command.

Code	Name / Description
$d \square t-$	$\left[\begin{array}{l}\text { [DIAGNOSTICS] } \\ \text { This menu can only be accessed with the graphic display terminal. It displays detected faults and their cause in plain text and can } \\ \text { be used to carry out tests, see page } \underline{64} .\end{array}\right.$

Clearing the detected fault

In the event of a non resettable detected fault:

- Disconnect all power, including external control power that may be present.
- Lock all power disconnects in the open position.
- Wait 15 minutes to allow the DC bus capacitors to discharge (the drive LEDs are not indicators of the absence of DC bus voltage).
- Measure the voltage of the DC bus between the PA/+ and PC/- terminals to ensure that the voltage is less than 42 Vdc .
- If the DC bus capacitors do not discharge completely, contact your local Schneider Electric representative. Do not repair or operate the drive.
- Find and correct the detected fault.
- Restore power to the drive to confirm the detected fault has been rectified.

In the event of a resettable detected fault, the drive can be reset after the cause is cleared:

- By switching off the drive until the display disappears completely, then switching on again.
- Automatically in the scenarios described for the [AUTOMATIC RESTART] (Atr-) function, page 252.
- By means of a logic input or control bit assigned to the [FAULT RESET] (r 5t -) function, page 251.
- By pressing the STOP/RESET key on the graphic display keypad if the active channel command is the HMI (see [Cmd channel 1] ([d I) page 155).

Fault detection codes which require a power reset after the detected fault is cleared

The cause of the detected fault must be removed before resetting by turning off and then back on.
AS F, brF, 5aF, SPF and $E \cap F$ detected faults can also be cleared remotely by means of a logic input or control bit ([Fault reset] ($_5$ F) parameter, page 251).

Detected Fault	Name	Probable cause	Remedy
$A \cap F$	[Load slipping]	- The difference between the output frequency and the speed feedback is not correct.	- Check the motor, gain and stabillity parameters. - Add a braking resistor. - Check the size of the motor/drive/load. - Check the encoder's mechanical coupling and its wiring. - Check the setting of parameters
A 5 F	[Angle Error]	- This occurs during the phase-shift angle measurement, if the motor phase is disconnected or if the motor inductance is too high.	- Check the motor phases and the maximum current allowed by the drive.
brF	[Brake feedback]	- The brake feedback contact does not match the brake logic control. - The brake does not stop the motor quickly enough (detected by measuring the speed on the "Pulse input" input).	- Check the feedback circuit and the brake logic control circuit. - Check the mechanical state of the brake. - Check the brake linings.
[rFl	[Precharge]	- Charging relay control detected fault or charging resistor damaged.	- Turn the drive off and then turn on again. - Check the internal connections. - Contact Schneider Electric Product Support.
EEFI	[Control Eeprom]	- Internal memory detected fault, control block.	- Check the environment (electromagnetic compatibility). - Turn off, reset, return to factory settings. - Contact Schneider Electric Product Support.
EEF ᄅ	[Power Eeprom]	- Internal memory detected fault, power card.	
$F[F]$	[Out. contact. stuck]	- The output contactor remains closed although the opening conditions have been met.	- Check the contactor and its wiring. - Check the feedback circuit.
HdF	[IGBT desaturation]	- Short-circuit or grounding at the drive output.	- Check the cables connecting the drive to the motor, and the motor insulation.
, LF	[internal com. link]	- Communication interruption between option card and drive.	- Check the environment (electromagnetic compatibility). - Check the connections. - Replace the option card. - Contact Schneider Electric Product Support.
$1 \cap F 1$	[Rating error]	- The power card is different from the card stored.	- Check the reference of the power card.
$1 \cap F 2$	[Incompatible PB]	- The power card is incompatible with the control block.	- Check the reference of the power card and its compatibility.
$1 \cap F \exists$	[Internal serial link]	- Communication interruption between the internal cards.	- Check the internal connections. - Contact Schneider Electric Product Support.
$1 \cap F 4$	[Internal-mftg zone]	- Internal data inconsistent.	- Recalibrate the drive (performed by Schneider Electric Product Support).
$1 \cap F E$	[Internal - fault option]	- The option installed in the drive is not recognized.	- Check the reference and compatibility of the option. - Check that the option is well inserted into the ATV320.
$1 \cap F 9$	[Internal- I measure]	- The current measurements are incorrect.	- Replace the current sensors or the power card. - Contact Schneider Electric Product Support.
$1 \cap F A$	[Internal-mains circuit]	- The input stage is not operating correctly.	- Contact Schneider Electric Product Support.
$1 \cap F b$	[Internal- th. sensor]	- The drive temperature sensor is not operating correctly.	- Replace the drive temperature sensor. - Contact Schneider Electric Product Support.
$1 \cap F E$	[internal- CPU]	- Internal microprocessor detected fault.	- Turn off and reset. - Contact Schneider Electric Product Support.
5 F F F	[Safety fault]	- Debounce time exceeded. - SS1 threshold exceeded. - Wrong configuration. - SLS type overspeed detected.	- Check the safety functions configuration. - Check the ATV320 Integrated safety Functions manual - Contact Schneider Electric Product Support.

Detected Fault	Name	Probable cause	Remedy
$5 \square F$	[Overspeed]	- Instability or driving load too high.	- Check the motor, gain and stability parameters. - Add a braking resistor. - Check the size of the motor/drive/load. - Check the parameters settings for the [FREQUENCY METER] (F Я $F-$) function page 266, if it is configured.
$5 P$ F	[Speed fdback loss]	- Signal on "Pulse input" missing, if the input is used for speed measurement. - Encoder feedback signal missing	- Check the wiring of the input cable and the detector used. - Check the configuration parameters of the encoder. - Check the wiring between the encoder and the drive. - Check the encoder.

Fault detection codes that can be cleared with the automatic restart function after the cause has disappeared

These detected faults can also be cleared by turning on and off or by means of a logic input or control bit （［Fault reset］（r 5 F）parameter page 251）．

Detected Fault	Name	Probable cause	Remedy
$b L F$	［Brake control］	－Brake release current not reached． －Brake engage frequency threshold ［Brake engage freq］（ $b \in _$）only regulated when brake logic control is assigned．	－Check the drive／motor connection． －Check the motor windings． －Check the［Brake release I FW］（ ，br）and ［Brake release I Rev］（ $1 \mathrm{r} d$ ）settings page 194. －Apply the recommended settings for ［Brake engage freq］（ $\llcorner\in \cap$ ）．
$[\cap F$	［Com．network］	－Communication interruption on communication card．	－Check the environment（electromagnetic compatibility）． －Check the wiring． －Check the time－out． －Replace the option card． －Contact Schneider Electric Product Support．
LaF	［CANopen com．］	－Communication interruption on the CANopen® bus．	－Check the communication bus． －Check the time－out． －Refer to the CANopen® User＇s manual．
EPFI	［External flt－LI／Bit］	－Event triggered by an external device，depending on user．	－Check the device which caused the triggering and reset．
EPF己	［External fault com．］	－Event triggered by a communication network．	－Check for the cause of the triggering and reset．
FbES	［FB stop flt．］	－Function blocks have been stopped while motor was running．	－Check［Stop FB Stop motor］（Fレ5 П）configuration．
$F[F]$	［Out．contact．open．］	－The output contactor remains open although the closing conditions have been met．	－Check the contactor and its wiring． －Check the feedback circuit．
$L[F$	［input contactor］	－The drive is not turned on even though［Mains V．time out］（ $L[t$ ） has elapsed．	－Check the contactor and its wiring． －Check the time－out． －Check the supply mains／contactor／drive connection．
LFFヨ	［AI3 4－20mA loss］	－Loss of the 4－20 mA reference on analog input AI3．	－Check the connection on the analog inputs．
ロレF	［Overbraking］	－Braking too sudden or driving load． －Supply voltage too high．	－Increase the deceleration time． －Install a braking resistor if necessary． －Activate the［Dec ramp adapt．］（ b r A ）function page 172，if it is compatible with the application． －Check the supply voltage．
$\square[F$	［Overcurrent］	－Parameters in the［SETTINGS］ （5Et－）and［MOTOR CONTROL］ （ $d r$［－）menus are not correct． －Inertia or load too high． －Mechanical locking．	－Check the parameters． －Check the size of the motor／drive／load． －Check the state of the mechanism． －Decrease［Current limitation］（［L L ）． －Increase the switching frequency．
－HF	［Drive overheat］	－Drive temperature too high．	－Check the motor load，the drive ventilation and the ambient temperature．Wait for the drive to cool down before restarting．
$\square \mathrm{L}$［	［Proc．overload flt］	－Process overload．	－Check and remove the cause of the overload． －Check the parameters of the ［PROCESS OVERLOAD］（a L d－）function，page 272.
$\square L F$	［Motor overload］	－Triggered by excessive motor current．	－Check the setting of the motor thermal protection，check the motor load．Wait for the motor to cool down before restarting．
－PFI	［1 output phase loss］	－Loss of one phase at drive output．	－Check the connections from the drive to the motor．

Detected Fault	Name	Probable cause	Remedy
$\square P F 己$	［3 motor phase loss］	－Motor not connected or motor power too low． －Output contactor open． －Instantaneous instability in the motor current．	－Check the connections from the drive to the motor． －If an output contactor is being used，set ［Output Phase Loss］（ $\square P L$ ）to［Output cut］（ \square F［ ），page 256. －Test on a low power motor or without a motor：In factory settings mode，motor phase loss detection is active ［Output Phase Loss］（ $\square P L$ ）$=[Y e s]$（ $Ч E 5$ ）．To check the drive in a test or maintenance environment，without having to use a motor with the same rating as the drive（in particular for high power drives），deactivate motor phase loss detection ［Output Phase Loss］$(\square P L)=[\mathrm{No}](\mathrm{n})$ ），see instructions given page 256 ． －Check and optimize the following parameters： ［IR compensation］（ $\Delta \mathrm{Fr}_{\mathrm{r}}$ ）page 90，［Rated motor volt．］ （ $\lrcorner \cap 5$ ）and［Rated mot．current］（ $n[r$ ）page 86 and perform［Auto tuning］（ $1 \sim \square$ ）page 87 ．
－5 F	［Mains overvoltage］	－Supply voltage too high． －Disturbed mains supply．	－Check the supply voltage．
－tFL	［LI6＝PTC overheat］	－Overheating of PTC probes detected on input LI6．	－Check the motor load and motor size． －Check the motor ventilation． －Wait for the motor to cool before restarting． －Check the type and state of the PTC probes．
PヒFL	［LI6＝PTC probe］	－PTC probe on input LI6 open or short－circuited．	－Check the PTC probe and the wiring between it and the motor／drive．
$5[F 1$	［Motor short circuit］	－Short－circuit or grounding at the drive output．	－Check the cables connecting the drive to the motor，and the motor insulation． －Reduce the switching frequency． －Connect chokes in series with the motor． －Check the adjustment of speed loop and brake． －Increase the［Time to restart］（ t t r ），page 101. －Increase the switching frequency．
$5[F \exists$	［Ground short circuit］	－Significant earth leakage current at the drive output if several motors are connected in parallel．	－Check the cables connecting the drive to the motor，and the motor insulation． －Reduce the switching frequency． －Connect chokes in series with the motor． －Check the adjustment of speed loop and brake． －Increase the［Time to restart］（ t t r ），page 101. －Reduce the switching frequency．
$5[F 4$	［IGBT short circuit］	－Power component detected fault．	－Contact Schneider Electric Product Support．
5 ［F5	［Motor short circuit］	－Short－circuit at drive output．	－Check the cables connecting the drive to the motor，and the motor＇s insulation． －Contact Schneider Electric Product Support．
$5 L F I$	［Modbus com．］	－Communication interruption on the Modbus bus．	－Check the communication bus． －Check the time－out． －Refer to the Modbus User＇s manual．
$5 L F 己$	［PC com．］	－Communication interruption with PC Software．	－Check the PC Software connecting cable． －Check the time－out．
$5 L F \exists$	［HMI com．］	－Communication interruption with the graphic display terminal or remote display terminal．	－Check the terminal connection －Check the time－out．
55 F	［Torque／current lim］	－Switch to torque or current limitation．	－Check if there are any mechanical problems． －Check the parameters of［TORQUE LIMITATION］（ 5 口 L－） page 216 and the parameters of the ［TORQUE OR I LIM．DETECT．］（ t ，d－），page $\underline{264}$ ．
$t\lrcorner F$	［IGBT overheat］	－Drive overheated．	－Check the size of the load／motor／drive． －Reduce the switching frequency． －Wait for the motor to cool before restarting．

Detected Fault	Name	Probable cause	Remedy
$t \cap F$	[Auto-tuning]	- Special motor or motor whose power is not suitable for the drive. - Motor not connected to the drive. - Motor not stopped	- Check that the motor/drive are compatible. - Check that the motor is present during auto-tuning. - If an output contactor is being used, close it during auto-tuning. - Check that the motor is stopped during tune operation.
$\sqcup L F$	[Proc. underload Flt]	- Process underload.	- Check and remove the cause of the underload. - Check the parameters of the [PROCESS UNDERLOAD] ($\omega L d-$) function, page 270.

Fault detection codes that are cleared as soon as their cause disappears

Detected Fault	Name	Probable cause	Remedy
[FF	[Incorrect config.]	• Option card changed or removed. • Control block replaced by a control block configured on a drive with a different rating.	• Check that there are no card errors. • In the event of the option card being changed/removed deliberately, see the remarks below.
•In the event of the control block being changed			
deliberately, see the remarks below.			

Option card changed or removed

When an option card is removed or replaced by another, the drive locks in [Incorrect config.] ($[F F$) fault mode on power-up. If the card has been deliberately changed or removed, the detected fault can be cleared by pressing the ENT key twice, which causes the factory settings to be restored (see page 81) for the parameter groups affected by the card. These are as follows:

Card replaced by a card of the same type

- Communication cards: only the parameters that are specific to communication cards

Control block changed

When a control block is replaced by a control block configured on a drive with a different rating, the drive locks in [Incorrect config.] (L F F) fault mode on power-up. If the control block has been deliberately changed, the detected fault can be cleared by pressing the ENT key twice, which causes all the factory settings to be restored.

Fault detection codes displayed on the remote display terminal

Code	Name	Description
וп,	[Initialization in progress]	The microcontroller is initializing. Search underway for communication configuration.
ᄃ П П. Е (1)	[Communication error]	Time out detected fault (50 ms). This message is displayed after 20 attempts at communication.
$A-17$ (1)	[Alarm button]	A key has been held down for more than 10 seconds. The keypad is disconnected. The keypad wakes up when a key is pressed.
$[L r$ (1)	[Confirmation of detected fault reset]	This is displayed when the STOP key is pressed once if the active command channel is the remote display terminal.
$d E \pm . E$ (1)	[Drive disparity]	The drive brand does not match that of the remote display terminal.
$r a \Pi . E$ (1)	[ROM anomaly]	The remote display terminal detects a ROM anomaly on the basis of checksum calculation.
r A П. Е (1)	[RAM anomaly]	The remote display terminal detects a RAM anomaly.
$\left[P_{u} . E\right.$ (1)	[Other detected faults]	Other detected faults.

(1) Flashing

Annex

What's in this Part?
This part contains the following chapters:

Chapter	Chapter Name	Page
13	Index of Functions	$\underline{319}$
14	Index of Parameter Codes	$\underline{321}$

Index of Functions

The following table represents the parameter codes:

Function	Page
[2 wire] (2C)	$\underline{85}$
[2nd CURRENT LIMIT.]	$\underline{218}$
[3 wire] (3C)	$\underline{85}$
[+/- SPEED]	185
[+/-SPEED AROUND REF.]	187
[AUTO DC INJECTION]	176
[AUTOMATIC RESTART]	$\underline{252}$
[Auto tuning]	87
[AUTO TUNING BY LI]	$\underline{236}$
DC Bus	$\underline{245}$
[BRAKE LOGIC CONTROL]	194
[CATCH ON THE FLY]	$\underline{253}$
Command and reference channels	146
Deferred stop on thermal alarm	$\underline{258}$
[DRIVE OVERHEAT]	$\underline{257}$
[ENCODER FAULT]	$\underline{263}$
[ENCODER CONFIGURATION]	$\underline{135}$
[FACTORY SETTINGS]	81
[Fault reset]	$\underline{251}$
[FLUXING BY LI]	189
[HIGH SPEED HOISTING]	$\underline{205}$
[DYN CURRENT LIMIT]	$\underline{219}$
[JOG]	$\underline{178}$
LINE CONTACTOR COMMAND	$\underline{220}$
Load measurement	199
[Load sharing]	122
Load variation detection	$\underline{267}$
Motor or configuration switching [MULTIMOTORS/CONFIG.] (7 П - -)	$\underline{232}$
Motor thermal protection	$\underline{254}$
[Noise reduction]	$\underline{120}$
[OUTPUT CONTACTOR CMD]	$\underline{223}$
[Ovid.Proces.Mngmt]	$\underline{272}$
[PARAM. SET SWITCHING]	$\underline{230}$
[5 PASSWORD]	300
[PID REGULATOR]	$\underline{210}$
POSITIONING BY SENSORS	$\underline{224}$
PRESET SPEEDS	180
PTC probe	$\underline{250}$
[RAMP]	$\underline{170}$
[REFERENCE SWITCH.]	167
Rope slack	$\underline{204}$

Function	Page
[RP assignment]	$\underline{128}$
REFERENCE MEMORIZING	$\underline{188}$
[STOP CONFIGURATION]	$\underline{173}$
Stop at distance calculated after deceleration limit switch	$\underline{226}$
Summing input / Subtracting input / Multiplier	$\underline{168}$
Synchronous motor parameters	$\underline{112}$
TORQUE LIMITATION	$\underline{215}$
TRAVERSE CONTROL	$\underline{237}$
[Underload Managmt.]	$\underline{271}$
Use of the "Pulse input" input to measure the speed of rotation of the motor	$\underline{265}$

Index of Parameter Codes

The following table represents the parameter codes：

Code															CUSTOMER SETTING
		［1．2 MONITORING］ $\left.(\square \circ)^{-}\right)$		T .0 0.0 0 0 0 0 0 0 0 0.0 0 0											
月［ 2						89					$\begin{aligned} & \frac{171}{187} \\ & \underline{212} \end{aligned}$				
H［［					87	89					170				
Ad5											176				
Ad［a													$\underline{277}$		
Add													$\underline{276}$		
A 1 1 ${ }^{\text {a }}$		$\underline{52}$						133							
A ，IL		$\underline{52}$													
A IIE								134							
A 1 1F		$\underline{52}$						134							
A ，15								133							
A 1 It								133							
A 12月		52						133							
A 12［		$\underline{52}$													
A I2E								134							
A I ${ }^{\text {F }}$		52						134							
A 125								134							
A 12t								133							
А 1 ヨ ${ }^{\text {¢ }}$		$\underline{53}$						134							
А 1 ヨ［		$\underline{53}$													
A 1 $\exists \mathrm{E}$								134							
A 1 ヨ F		$\underline{53}$						134							
A 1 ヨ								134							
A 1 35								135							
\＆1ヨヒ								134							
月，［ ${ }^{\text {c }}$								135			$\underline{210}$				
月 ا 1	46	50													
ALGr		$\underline{63}$													
月 \quad－［													$\underline{276}$		
月 1		53						144							
月ロIL		$\underline{53}$													
A口IF		$\underline{53}$						144							

RaIt								144							
A口H I		$\underline{53}$						144							
A口L 1		$\underline{53}$						144							
АРH		$\underline{62}$													
A5H I		53						144							
A5LI		$\underline{53}$						144							
月5t							114				190				
Atr												$\underline{252}$			
Aut							$\frac{109}{114}$								
								135							
月ヶこ月								135							
b［1											194				
bd［a													$\underline{277}$		
bed											195				
bEп						101					195				
bEt						101					$\underline{195}$				
bFr					86		105								
b，P											194				
b ır						101					195				
bLᄃ											194				
ЬாP									157						
bпS		$\underline{55}$								158					
ロாப		56								158					
b－A							120								
bo口							120								
br月											172				
brH0											197				
brHI											197				
brH己											198				
brr											198				
brt						101					194				
b5P								131							
－5t											194				
buEr		$\underline{55}$								158					
［LFG					86										
［［5									155						
［d 1									155						
ᄃd己									155						
［F］				82	85										
［FP5		$\underline{62}$													
［HA I											$\underline{230}$				
［ H月己											$\underline{230}$				

Code															CUSTOMER SETTING
				0 0. 0. 0 0 0 0 0 0 0.0 0 0					0 2 \sum_{0}^{4} \sum_{0} 0. 0.						
chtF									154						
ᄃНП											$\underline{235}$				
［L 2						95					$\underline{218}$				
［L ，						94	119				$\underline{218}$				
cLL												$\underline{261}$			
［ L a											$\underline{205}$				
［ L 5											$\underline{228}$				
［ $\quad \mathrm{d}$［		56													
［nF I											$\underline{235}$				
［nF											$\underline{235}$				
［nF5		62													
［ad		75													
code		75													
LaF											$\underline{205}$				
［aL												$\underline{262}$			
［aP									156						
［ar											$\underline{205}$				
［05							107								
［ P I											200				
［P己											$\underline{200}$				
［rHヨ		$\underline{53}$						134							
［rLヨ		$\underline{53}$						134							
［r5t														$\underline{293}$	
［rtF							118								
く5ロリ														$\underline{293}$	
［5t		$\underline{75}$												300	
［td						102						$\underline{252}$			
ᄃtt							105								
「ヒu		$\underline{56}$								158					
d月											168				
d月ヨ											169				
d FF											$\underline{227}$				
Δ A L											$\underline{227}$				
$d A n F$								137				$\underline{263}$			
d ¢ ${ }_{\text {r }}$											$\underline{227}$				
d月5											$\underline{223}$				
dと 5											$\underline{223}$				
d［［［											$\underline{245}$				
dLᄃП											$\underline{245}$				
d［CI		66													
d［¢		67													
d［「ヨ		$\underline{67}$													

d［54		67													
d［［5		67													
d［C6		67													
d［［ 7		67													
d［5日		67													
$d[F$						$\underline{93}$					173	$\underline{272}$			
d［ ，											174				
dE 己						89					$\frac{171}{187}$				
dEL					87	89					170				
dLb												$\underline{267}$			
dLd												$\underline{267}$			
$d \mathrm{~L}$ r		75												300	
dol								141							
dold								141							
dalH								141							
da 15								141							
$d P 1$		64													
$d P$ 己		67													
dPヨ		67													
dP4		67													
dP5		67													
dP6		67													
dP7		67													
dP日		67													
dr［ I		$\underline{66}$													
dr［ 2		$\underline{66}$													
dr［		$\underline{66}$													
dr［ 4		$\underline{66}$													
$d r[5$		$\underline{66}$													
dr［6		66													
drc 7		66													
drcie		$\underline{66}$													
d5 F											$\underline{228}$				
d5，											187				
d5P											187				
$d t F$											$\underline{243}$				
Ebo											$\underline{242}$				
$E P L$												$\underline{259}$			
Enu								135							
En5								135							
Erco													$\underline{277}$		
Et F												$\underline{258}$			

Code															CUSTOMER SETTING
				T 0.0 0 0 0 0 0 0 0 0 0 0 0 0					0 0 0 \sum_{0}^{u} 0 0						
F I							118								
F 2							118								
F 3 d							102								
Fヨ							119								
F 4							119								
F 5							119								
F月b							120								
FAd I														$\underline{286}$	
F月d己														$\underline{286}$	
F月d ${ }^{\text {F }}$														$\underline{286}$	
F月d4														$\underline{286}$	
F月nF								136				$\underline{263}$			
Fbrd										158					
FbdF										159					
FbFt		55								158					
FbrП										159					
Fロ5п										159					
Fb5t		55								158					
F［5 1			81												
$F d t$												$\underline{266}$			
FFH							118								
FF Π						104									
FFt						102					173				
FL ，											189				
FLo													$\underline{277}$		
$F L \square$													$\underline{277}$		
FLot													$\underline{277}$		
FLr												$\underline{253}$			
FLu						95	109				189				
									157						
$F \cap 己$									157						
$F \cap \exists$									157						
$F \cap 4$									157						
FP ，											$\underline{212}$				
F9月												$\underline{266}$			
F 9 ［												$\underline{266}$			
F9 F												$\underline{266}$			
F9L						102						$\underline{253}$			
F 95		50													
F9E												$\underline{266}$			
Fr I									154						
Fr 16											167				

Fre									155						
FrH	50	$\begin{aligned} & \underline{50} \\ & \underline{56} \end{aligned}$													
Fr ，							116								
Fr 5					86		107								
Fr 55							116								
Frt											171				
F5t											173				
Ftd						102						$\underline{253}$			
Fto						103						$\underline{272}$			
Ftu						103						$\underline{271}$			
Fty			81												
LFS			81												
L5 P														$\underline{289}$	
HFI							116								
H Ir							116								
HrFE												$\underline{252}$			
H50											$\underline{205}$				
H5P					87	89					$\underline{244}$				
H5PE						$\underline{90}$					$\underline{244}$				
H5Pヨ						$\underline{90}$					$\underline{244}$				
H5P4						90					$\underline{244}$				
12ヒ月											$\underline{219}$				
，ᄅヒП		51													
，ᄅt，											$\underline{219}$				
12ヒヒ											$\underline{219}$				
1月ロ1										160					
1月ロ己										160					
1月ロヨ										160					
1月04										160					
1月05										160					
1月ロロ										160					
1月ロ7										160					
，月ロ号										160					
，月ロ9										160					
1月10										160					
1月」1														$\underline{286}$	
1月d己														$\underline{\underline{286}}$	
1月dヨ														$\underline{286}$	
1月d4														$\underline{286}$	
，br						101					194				
1br月											$\underline{200}$				
，dA							111								

Code															CUSTOMER SETTING
				0 0. 0. 0 0 0 0 0 0 0.0 0 0											
，d［						93					174	$\underline{273}$			
，d［ 己						$\underline{93}$					175	$\underline{273}$			
1 L ا										159					
，اロ										159					
1Lロヨ										159					
，L प 4										159					
，L 05										159					
，Lロ										159					
，L 7										159					
，Lロ										159					
，L प9										159					
，10										159					
，Lr							116								
1 mH												$\underline{261}$			
inr						89					170				
int P											$\underline{216}$				
，PL					86						$\underline{245}$	$\underline{256}$			
ird						101					194				
，t H					87	90									
$\rfloor d[$						101					195				
$\lrcorner F E$						102					183				
JFヨ						103					183				
JFH						103					183				
$\lrcorner G F$						$\underline{95}$					178				
」Gt						$\underline{96}$					179				
」ol											178				
$J P F$						102					183				
L 1月		$\underline{51}$						127							
L Id								128							
L 2月		$\underline{51}$						128							
Lこd								128							
L ヨ ค		51						127							
L ヨ d								128							
L 4 月		51						128							
L 4d								128							
L5月		$\underline{51}$						127							
L 5d								128							
L 6 A		$\underline{51}$						128							
L Ed								128							
LA口 I										160					
LRロコ										160					
LRロヨ										160					

				T 0. 0 0 0 0 0 0 0 0 0 0.0 0				0 0 0 0 0 0 1 0 0 0 0 1 0 2 3 3							
LAD 4										160					
LAロ5										160					
L月ロ́										160					
L月ロ 7										160					
L 月 ا										160					
L A 1 ${ }^{\text {a }}$		51						128							
LAId								128							
LA己月		51						128							
LAこd								128							
LAпF								136				$\underline{263}$			
L AL														280	
LロA							122								
Lb「						103	122								
LbI							124								
Lロく己							124								
しь「ヨ							124								
LbF							124								
Lᄃ											$\underline{218}$				
L［ r		50													
LEt											$\underline{221}$				
Ld5							116								
LES											$\underline{221}$				
LEt												$\underline{258}$			
LFA							111								
LFF												$\underline{272}$			
LFL ${ }^{\text {c }}$												$\underline{260}$			
LFr	46	50													
LFrl		59													
LFre		59													
LFrヨ		59													
L ，5 1		51													
L ，5 己		51													
L L［											$\underline{221}$				
L п L														$\underline{282}$	
L－I									139						
Lald									139						
LalH									140						
L－ 15									140						
L－［						103						$\underline{272}$			
LP I											$\underline{200}$				
LP己											$\underline{200}$				
L 95							116								

				T 0. 0.0 0 0 0 0 0 0 0 0.0 0 0			［MOTOR CONTROL］								
LSP					87	89									
LuL						103						$\underline{270}$			
Lun						103						$\underline{270}$			
Пロロ।										161					
Пロロ										161					
Пロロヨ										161					
Пロロ4										161					
Пロロ5										161					
Пロロ曰										161					
Пロロ										161					
Пロロ日										161					
П ILE		58													
П IE［		58													
П5tP											$\underline{228}$				
ПН己												169			
пнヨ												169			
пг r							116								
пdt														$\underline{285}$	
п F r	46	50				$\underline{98}$									
$\Pi \Pi F$		50													
ПРГ							110								
Пヒп												$\underline{255}$			
пbrP		61													
пロヒP		61													
nL I		58													
n¢		58													
n［ヨ		58													
n［4		58													
n 55		58													
nL6		59													
n［ 7		59													
n［日		59													
n¢ ${ }^{\text {a }}$													$\underline{276}$		
п［月己													$\underline{276}$		
п「月ヨ													$\underline{276}$		
n［日4													$\underline{276}$		
－［月5													$\underline{276}$		
пС月6													$\underline{276}$		
n［日 7													$\underline{276}$		
п¢月日													$\underline{276}$		
nLr					86		107								
nLr 5							113								

		0 0 0 0 0 0 2 0 0 0 N I B													
nL 5											$\underline{228}$				
пП I		58													
๑Пอ		58													
пПヨ		58													
п 74		58													
п 75		58													
пПБ		58													
๑П7		58													
пПВ		58													
пП 1													$\underline{275}$		
пПН己													$\underline{275}$		
пПАヨ													$\underline{275}$		
пПн													$\underline{275}$		
пПА 5													$\underline{275}$		
пПАб													$\underline{275}$		
пПА 7													$\underline{275}$		
п П（													$\underline{275}$		
ппt 5		61													
$\square \mathrm{Pr}$					86		107								
nrd							120								
n5P					86		107								
п5P5							113								
n5t											173				
nt」		74													
－［「											$\underline{223}$				
－dL												$\underline{272}$			
adt												$\underline{256}$			
$\square H L$												$\underline{257}$			
－LL												$\underline{255}$			
$\square P L$												$\underline{256}$			
－Pr		50													
－5P											$\underline{205}$				
－tr		50													
P月H						$\underline{99}$					$\underline{212}$				
PAL						$\underline{99}$					$\underline{211}$				
P月5											$\underline{228}$				
P月u											$\underline{212}$				
PCd														$\underline{292}$	
PEr						$\underline{99}$					$\underline{212}$				
PE 5											$\underline{200}$				
PF，		54						128							
PFr		54						128							

								$\begin{aligned} & \text { [INPUTS I OUTPUTS CFG] } \\ & (1,--) \end{aligned}$							
PLI								135							
PH5							116								
P ，$月$		54						128							
P ，ᄃ											$\underline{211}$				
P ，F											$\underline{210}$				
P，FI											$\underline{210}$				
$P, F E$											$\underline{210}$				
P ，，											$\underline{210}$				
P，L		$\underline{54}$						128							
P，П											$\underline{213}$				
P P P I											$\underline{210}$				
P，P											$\underline{210}$				
P， 5											$\underline{212}$				
PaH						$\underline{99}$					$\underline{211}$				
$P \square L$						$\underline{99}$					$\underline{211}$				
$P P$ ，												$\underline{269}$			
$P P \cap 5$							113								
Pre											$\underline{214}$				
Pr 4											$\underline{214}$				
Prst											$\underline{228}$				
Pr P						$\underline{99}$					$\underline{211}$				
P516											181				
P52											181				
P54											181				
P5日											181				
P5r						$\underline{99}$					$\underline{212}$				
P5t									154						
PELL												$\underline{250}$			
PヒH		62													
$P_{4,5}$														$\underline{292}$	
75 H						102					$\underline{242}$				
95L						102					$\underline{242}$				
r 1								138							
$r 1 d$								138							
r IF								139							
ref								139							
r 1H								139							
r 15								138							
r e								139							
$r ᄅ d$								139							
reH								139							
re 2								139							

				T 0. 0 0 0 0 0 0 0 0 0.0 0. 0	［SIMPLY START］ $(5, \Pi-)$										
r 5 A											$\underline{223}$				
r Cb											167				
rdAE							117								
$r d \square$						$\underline{99}$					$\underline{211}$				
rELI		61													
rFE									155						
rFCL		56													
$r F L t$		74													
$r F_{r}$		50													
						$\underline{99}$					$\underline{211}$				
r in									154						
$r \Pi u d$						103						$\underline{270}$			
rP												$\underline{251}$			
rell		59													
rPlz		59													
rP1ヨ		59													
rP14		$\underline{59}$													
rP己						$\underline{99}$					$\underline{214}$				
rPEl		60													
rPe己		60													
rPEヨ		60													
rPe 4		60													
rPヨ						100					$\underline{214}$				
rPヨ 1		60													
rPヨ己		$\underline{60}$													
rPヨヨ		60													
$r P \exists 4$		60													
rP4						100					$\underline{214}$				
rPA												$\underline{251}$			
$r P C$	46	62													
$\ulcorner P E$		62													
$r P F$		62													
$r P G$						$\underline{99}$					$\underline{211}$				
$r r^{\prime \prime}$	46	62									$\underline{211}$				
$r P_{\square}$		62													
$r P r_{\text {r }}$		62													
$r P 5$											171				
$r P t$											170				
r r 5								$\underline{126}$							
r 5月							111								
r 5月5							116								
r 5d											$\underline{205}$				

Code

															SETTING
								$⿹ 勹 巳$ U 0 0 5 0 \vdots 0 0 0 \vdots \vdots 0 2 2 \vdots							
r 5F												$\underline{251}$			
r 5L											$\underline{213}$				
r5tL											$\underline{205}$				
r H		62													
r r											$\underline{243}$				
$r u n$								$\underline{126}$							
5101											$\underline{230}$				
$51 \square 2$											$\underline{230}$				
$51 \square \exists$											$\underline{230}$				
5104											$\underline{230}$				
5105											$\underline{230}$				
$51 \square \square$											$\underline{\underline{230}}$				
5107											$\underline{230}$				
$510 日$											$\underline{230}$				
5109											$\underline{230}$				
5110											$\underline{230}$				
5111											$\underline{230}$				
5112											$\underline{230}$				
$511 \exists$											$\underline{230}$				
5114											$\underline{230}$				
5115											$\underline{230}$				
5 בロ1											$\underline{230}$				
5 こロ己											$\underline{230}$				
5 こロヨ											$\underline{230}$				
$52 \square 4$											$\underline{230}$				
5 2ロ5											$\underline{230}$				
5 こロロ											$\underline{230}$				
5 こロ7											$\underline{230}$				
5 こロ日											$\underline{230}$				
5 2ロ9											$\underline{230}$				
5 こ 10											$\underline{230}$				
5 こ 1 1											$\underline{230}$				
5 こ 12											$\underline{230}$				
5 こ1ヨ											$\underline{230}$				
5 2 14											$\underline{230}$				
5 215											$\underline{230}$				
$5 \exists \square 1$											$\underline{231}$				
$5 \exists ロ 己$											$\underline{231}$				
$5 \exists ロ \exists$											$\underline{231}$				
$5 \exists \square 4$											$\underline{231}$				
$5 \exists \square 5$											$\underline{231}$				
$5 \exists \square \square$											$\underline{231}$				

				T 0. 0 0 0 0 0 0 0 0 0 0.0 0				0 0 0 0 0 0 1 0 0 0 0 1 0 2 3 3							
$5 ヨ \square 7$											231				
5ヨロ日											$\underline{231}$				
5309											$\underline{231}$				
5310											$\underline{231}$				
$5 \exists 11$											$\underline{231}$				
$5 ヨ 12$											$\underline{231}$				
$5 ヨ 1 ヨ$											$\underline{231}$				
5314											$\underline{231}$				
5315											$\underline{231}$				
5月2											168				
5月ヨ											168				
5月FI		69													
5月F己		70													
5月L											$\underline{227}$				
5月r											$\underline{227}$				
5月t												$\underline{258}$			
5［ L											$\underline{205}$				
5LLヨ											$\underline{246}$				
5［5，			81												
5d［1						$\underline{93}$					$\begin{aligned} & \frac{176}{195} \\ & \hline \end{aligned}$				
$5 d[2$						$\underline{94}$					177				
$5 d d$												$\underline{263}$			
5d5						104									
5FOロ		70													
5FOI		70													
$5 F \square 己$		71													
5Fロヨ		71													
5FO4		71													
5FO5		72													
5Fロロ		$\underline{72}$													
5Fロ7		$\underline{72}$													
5Fロ日		73													
5Fロ9		$\underline{73}$													
5 F10		$\underline{73}$													
5 F 11		74													
5 F［						90	118								
5 Fd											$\underline{228}$				
5FFE		$\begin{aligned} & \underline{55} \\ & \underline{69} \end{aligned}$													
5 Fr						$\underline{94}$	119								
5 Ft							119								
5 Hz											$\underline{244}$				

Code															CUSTOMER SETTING
				0 0. 0. 0 0 0 0 0 0 0.0 0 0											
$5 \mathrm{H}^{4}$											$\underline{244}$				
$51 r$							117								
5.1						90	118								
$5 L L$												$\underline{262}$			
5LP						90	118								
5L55		$\underline{54}$													
5Π ロ							114								
$5 \square 5$											$\underline{243}$				
							120								
5 510						97					182				
5 P I I						97					182				
5P12						$\underline{97}$					182				
5 ¢1ヨ						98					182				
5 P14						$\underline{98}$					182				
5 P 15						98					182				
5 ¢16						98					182				
5 P 2						$\underline{97}$					181				
5 Рヨ						$\underline{97}$					181				
$5 P 4$						97					181				
5 P5						97					181				
5 P6						97					181				
5 P 7						97					181				
5 P日						97					182				
5 P9						97					182				
5 Рロ							116								
5Pd I		$\underline{63}$													
5Pd己		63													
5Pdヨ		63													
$5 P F$							116								
$5 P \square$						$\underline{90}$	118								
5PGu						$\underline{90}$	118								
$5 Р \square$											188				
5 r 11		64													
$\begin{array}{rr} 5 r & 12 \\ \text { to } \\ 5 r & 18 \end{array}$		$\underline{67}$													
5 rel		$\underline{64}$													
$\begin{array}{r} 5 r 2 z \\ \text { to } \\ 5 r e \theta \end{array}$		67													
5 r月 I		64													
		67													

Code															CUSTOMER SETTING
				T 0. 0 0 0 0 0 0 0 0 0.0 0. 0					0 0 0 \sum_{0}^{2} 0 0						
5 rbl		64													
$\begin{array}{r} 5 r \text { re } \\ \text { to } \\ 5 r b \text { 日 } \end{array}$		67													
$5 r$［ 1		64													
$\begin{array}{r} 5 r[z \\ \text { to } \\ 5 r[日 \end{array}$		67													
$5 r d 1$		64													
$\begin{array}{r} 5 r d z \\ \text { to } \\ 5 r d 日 \end{array}$		$\underline{67}$													
$5 r$ E 1		64													
$\begin{array}{r} \hline 5 r E z \\ \text { to } \\ 5 r E \text { B } \end{array}$		67													
$5 r \mathrm{~F} 1$		64													
$\begin{array}{r} 5 r F e \\ \text { to } \\ 5 r F B \end{array}$		$\underline{67}$													
$5 r$ ¢ 1		64													
$\begin{array}{r} 5 r \square z \\ \text { to } \\ 5 r-4 日 \end{array}$		$\underline{67}$													
5 r HI		64													
$\begin{array}{r} \hline 5 \mathrm{HE} \\ \text { to } \\ 5 r \mathrm{HB} \end{array}$		67													
$5 r, 1$		64													
$\begin{array}{lr} 5 r & 12 \\ & \text { to } \\ 5 r & 1 \end{array}$		$\underline{67}$													
$5 r{ }^{\text {¢ }}$ ，		64													
$\begin{aligned} 5 r J e \\ \text { to } \\ 5 r J \theta \end{aligned}$		$\underline{67}$													
$5 r 1$		64													
$\begin{array}{r} 5 r K 2 \\ \text { to } \\ 5 r K B \end{array}$		$\underline{67}$													
$5 r$ L 1		64													
$\begin{array}{r} 5 r L e \\ \text { to } \\ 5 r L B \end{array}$		$\underline{67}$													
$5 r$ b						103						$\begin{aligned} & \underline{270} \\ & \underline{272} \end{aligned}$			
$5 r P$						$\underline{98}$					187				
55，5		54													
55b												$\underline{264}$			

Code															CUSTOMER SETTING
									0 2 0 \sum_{0}^{4} 0 0						
5td											$\underline{228}$				
5t Fr		$\underline{50}$													
5ヒП												$\underline{260}$			
5tロ												$\underline{264}$			
5tロ5		54													
5tP												$\underline{259}$			
5tr											185				
5trt												$\underline{260}$			
5tt											173				
5ヒーロ					87		$\frac{108}{114}$								
$5 u L$							120								
t 月 I						89					170				
ヒ日コ						89					171				
ヒ月ヨ						89					171				
ER4						89					171				
ヒ 月 ${ }^{\text {¢ }}$											$\underline{216}$				
ヒ $\boldsymbol{+}$		$\underline{74}$													
thしを		74													
E月nF								136				$\underline{263}$			
ヒ日r												$\underline{252}$			
ヒロE						101					195				
ヒロロ											$\underline{242}$				
ヒロr													$\underline{276}$		
ヒロ5												$\underline{260}$			
t［［					85			125							
$t[t$								125							
td［						93					175	$\underline{274}$			
td［1						$\underline{93}$					176				
td［己						94					177				
td，						$\underline{93}$					174	$\underline{273}$			
$t d n$											$\underline{242}$				
$t \pm 5$												$\underline{266}$			
t E［ I		61													
tFo													$\underline{276}$		
tFr					87			105							
ヒH月												$\begin{aligned} & \underline{257} \\ & \underline{258} \end{aligned}$			
t Hd		$\underline{50}$													
t Hr		$\underline{50}$													
t Ht												$\underline{255}$			
ELA											$\underline{216}$				
tL［											$\underline{217}$				

		1．2 MONITORING］		T 0. 0 0. 0 0 0 0 0 0 0 0 0 0			MOTOR CONTROL］		\square 0 0 i \sum_{0} 0 0						
tLd												267			
EL，						101					$\underline{216}$				
ヒL，\quad						101					$\underline{216}$				
t L 5						$\underline{95}$					$\underline{213}$				
$t \cap L$												$\underline{268}$			
tal												$\underline{272}$			
t－5											$\underline{205}$				
ヒP11		59													
ヒPlを		60													
ヒア1ヨ		60													
tP14		60													
ヒPコ1		60													
ヒPこ己		60													
ヒPこヨ		60													
ヒPご		60													
ヒアヨ।		61													
ヒアヨコ		61													
ヒアヨヨ		61													
ヒアヨ		61													
ヒワ												$\underline{266}$			
ヒ95							113								
tr月							111								
trc											$\underline{242}$				
tr H						102					$\underline{242}$				
tr L						102					$\underline{242}$				
เ 5 П												$\underline{259}$			
t5y											$\underline{243}$				
tヒd						102						$\begin{aligned} & \underline{255} \\ & \underline{258} \end{aligned}$			
ヒヒd己												$\begin{aligned} & \underline{255} \\ & \underline{258} \end{aligned}$			
ヒビヨ												$\begin{aligned} & \underline{255} \\ & \underline{258} \end{aligned}$			
t $\mathrm{H}^{\text {H }}$						102						$\underline{253}$			
ヒヒL						102						$\underline{253}$			
ヒヒロ												$\underline{276}$			
ヒヒr						101				196					
tul										$\underline{236}$					
ヒーп					87		$\frac{108}{113}$								
ヒーாப							$\frac{108}{114}$								
$t u P$										$\underline{242}$					

Code															CUSTOMER SETTING
									0 0 \sum_{0}^{n} \sum_{0}^{u} 0 0						
tu5					87		$\frac{108}{113}$								
41							118								
¢ ᄅ							118								
－\exists							119								
－4							119								
45							119								
ubr											$\underline{247}$		122		
$u d L$												$\underline{271}$			
${ }_{\sim} \mathrm{Fr}_{r}$						$\underline{90}$	118								
U H H		$\underline{52}$						133							
－1H2		$\underline{52}$						134							
U，L，		$\underline{52}$						$\underline{133}$							
U，L？		$\underline{52}$						$\underline{133}$							
$u L$ п		$\underline{50}$													
$u \mathrm{Lr}$		$\underline{75}$													
uLt												$\underline{270}$			
un5					86		107								
二口H I		$\underline{53}$						144							
ual l		$\underline{53}$						144							
U口P		$\underline{50}$													
$\triangle P L$												$\underline{260}$			
urES											$\underline{246}$	$\underline{259}$			
－5b												$\underline{259}$			
－5，											187				
$45 L$											$\underline{247}$	$\underline{259}$			
$\triangle 5 P$											185				
－5t												$\underline{259}$			

Glossary

Display terminal

The display terminal menus are shown in square brackets.
For example: [Communication]
The codes are shown in round brackets.
For example: [ם 17 -
Parameter names are displayed on the display terminal in square brackets.
For example: [Fallback Speed]
Parameter codes are displayed in round brackets.
For example: L F F
E

Error
Discrepancy between a detected (computed, measured, or signaled) value or condition and the specified or theoretically correct value or condition.

F

Factory setting

Factory settings when the product is shipped

Fault

Fault is an operating state. If the monitoring functions detect an error, a transition to this operating state is triggered, depending on the error class. A "Fault reset" is required to exit this operating state after the cause of the detected error has been removed. Further information can be found in the pertinent standards such as IEC 61800-7, ODVA Common Industrial Protocol (CIP).

Fault Reset

A function used to restore the drive to an operational state after a detected error is cleared by removing the cause of the error so that the error is no longer active.

M

Monitoring function

Monitoring functions acquire a value continuously or cyclically (for example, by measuring) in order to check whether it is within permissible limits. Monitoring functions are used for error detection. Glossary

P

Parameter

Device data and values that can be read and set (to a certain extent) by the user.

PELV
Protective Extra Low Voltage, low voltage with isolation. For more information: IEC 60364-4-41

PLC
Programmable logic controller

Power stage
The power stage controls the motor. The power stage generates current for controlling the motor.

W

Warning

If the term is used outside the context of safety instructions, a warning alerts to a potential problem that was detected by a monitoring function. A warning does not cause a transition of the operating state.

[^0]: (1) Hexadecimal values are displayed on the Graphic display terminal

 Example:
 SFFE $=0 \times 0008$ in Hexadecimal
 SFFE = Bit 3

[^1]: These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

 To change the assignment of this parameter, press the ENT key for 2 s .

[^2]: \square In 3-wire control, the assignment of inputs LI1 to LI6 shifts.

[^3]: \star
 These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

[^4]: \star
 These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

[^5]:

 These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

 Parameter that can be modified during operation or when stopped.

