CM2 Register List Change Summary:

Changes from Z30 to Z31

- Add registers 1900-1959 for Date/Time of Min and Max Generic Demand
- Register 2019 is deleted
- Register 2027 allows format of Energy Display
- Register 2039 allows selection of Event Log format
- Register 2083 provides Day of Week
- Register 2099 allows trim of master time base.
- Register 2123-2124 allows entry of CT phase shift correction
- Register 2200-2299 provides Generic Demand for 20 metering values
- Event 47 reports suspension of the Surge/Sag system
- Add command 4913 for Hi-Density WFC
- Add command 5112 for reset of Generic Demand

Changes from Z31 to Z32

- Added definition for bits 3 and 4 to register 2038

CM2 REGISTER MAP

REGISTER MAP		
	0001-999	Used as shadow of CM1 registers no extra RAM needed
VR	1000-1117	Real Time metering
VR	1118-1190	Reserved for future metering values
VR	1191-1199	Analog Input Metered Values
NVR	1200-1315	Minimum Instantaneous Metering
NVR	1316-1390	Reserved for future minimum values
NVR	1391-1399	Analog Input Minimum Values
NVR	1400-1515	Maximum Instantaneous Metering
NVR	1516-1590	Reserved for future maximum values
NVR	1591-1599	Analog Input Maximum Values
NVR	1600-1663	Energy
	1664-1699	Reserved
NVR	1700-1752	Demand, Peak Demand
	1753-1799	Reserved
NVR	1800-1871	Date/time Compressed 3 register format (Note: existing CM1 6 register format date/time registers are supported only with CM1 registers)
NVR	1872-1999	Reserved for future date/time stamping

CM2 REGISTER MAP (cont.)

NVR	$2000-2121$	Unique code for each register, defining System Connection, E,I,P Scale Factors, Label \& Nameplate, Configuration, Energy level setpoints, Event Counters, Coeff Gain/Offset, Status In/Out, Utility, ETC.
NVR	$2122-2129$	Reserved (Future Configuration)
NVR	$2130-2139$	Production / Calibration Process History Registers
NVR	$2122-2129$	Reserved (Future Configuration)
NVR	$2200-2299$	Generic Demand
NVR	$2350-2399$	Development Diagnostic Registers
NVR	$2400-2441$	Status Inputs
NVR	$2442-2499$	Reserved for future status inputs
NVR	$2500-2535$	Discrete Outputs
NVR	$2536-2599$	Reserved for future Discrete Outputs
NVR	$2600-2699$	Analog Outputs
NVR	$2700-2849$	Analog Inputs
NVR	$2900-2999$	Status Input Demand Metering
NVR	$3000-3999$	CUL Application Registers
VR	$4000-5199$	FFT Spectral Components for 31 harmonics
Not Used		

CM2 REGISTER MAP (cont.)

NVR	$5600-5749$	High Speed Surge/Sag Events
NVR	$5750-5899$	Event Queues / Counters
NVR	$5900-6669$	Pre-defined Events
NVR	$6670-6799$	User Defined Events
NVR	$6800-6999$	Application S/W Registers
NVR	$7000-7399$	File Access Header Block
VR	$7700-7999$	Command Interface
VR	$8000-8171$	Reserved
	$8172-8192$	Sy/Max compatibility

REAL TIME METERED VALUES

1000		Update Interval	R	N	N	1000 ths of a second	0 to 10,000

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

		Phase B				in 10ths		
1012		Current Unbal. Phase C	R	N	N	Percent in 10ths	0 to +/-1000	Percent Current Unbalance, Phase C
1013		Current Unbal. Worst	R	N	N	Percent in 10ths	0 to +/-1000	Percent Current Unbalance, Worst Depends on Absolute Value
1014	8	Voltage, Phase A to B	R	N	D	Volts/Scale Factor D	0 to 32,767	Measured RMS Voltage Between Phases A and B.
1015	9	Voltage, Phase B to C	R	N	D	Volts/Scale Factor D	0 to 32,767	Measured RMS Voltage Between Phases B and C.
1016	10	Voltage, Phase C to A	R	N	D	Volts/Scale Factor D	0 to 32,767	Measured RMS Voltage Between Phases C and A.
1017		Voltage L-L, 3 Phase Average	R	N	D	Volts/Scale Factor D	0 to 32,767	Average of the 3 Phase Line-Line RMS Voltages
1018	11	Voltage, Phase A to Neutral	R	N	D	Volts/Scale Factor D	$\begin{array}{r} 0 \text { to } 32,767 \\ (4-\mathrm{wi} \end{array}$	Measured RMS Voltage Between Phase A and Neutral. mode only, in 3-wire mode the value is set to $-32,768$)
1019	12	Voltage, Phase B to Neutral	R	N	D	Volts/Scale Factor D	$\begin{array}{r} 0 \text { to } 32,767 \\ \text { (4-wi } \end{array}$	Measured RMS Voltage Between Phase B and Neutral. mode only, in 3-wire mode the value is set to $-32,768$)
1020	13	Voltage, Phase C to Neutral	R	N	D	Volts/Scale Factor D	$\begin{array}{r} 0 \text { to } 32,767 \\ \text { (4-wi } \end{array}$	Measured RMS Voltage Between Phase C and Neutral. mode only, in 3-wire mode the value is set to $-32,768$)
1021		Voltage L-N, 3 Phase Average	R	N	D	Volts/Scale Factor D	$0 \text { to } 32,767$ if in	Average of the 3 Phase Line-Neutral RMS Voltages wire mode, else -32,768.
1022		Voltage Unbal. Phase A-B	R	N	N	Percent in 10ths	0 to +/-1000	Percent Voltage Unbalance, Phase A-B

Printed: 4-Jun-99 Metered.doc Rev: Z32 Revised: 05/26/99 4:16 PM

Proprietary Document: Property of Square d Co.

Not to be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1023		Voltage Unbal. Phase B-C	R	N	N	Percent in 10ths	0 to $+/-1000$	Percent Voltage Unbalance, Phase B-C
1024		Voltage Unbal. Phase C-A	R	N	N	Percent in 10ths	0 to $+/-1000$	Percent Voltage Unbalance, Phase C-A
1025		Voltage Unbal. L-L Worst	R	N	N	Percent in 10ths	0 to $+/-1000$	Percent Voltage Unbalance, Worst Line-Line, depends on Absolute Value
1026		Voltage Unbal. Phase A	R	N	N	Percent in 10ths	0 to $+/-1000$	Percent Voltage Unbalance, Phase A if in 4 wire mode, else -32,768.
1027		Voltage Unbal. Phase B	R	N	N	Percent in 10ths	0 to $+/-1000$	Percent Voltage Unbalance, Phase B if in 4 wire mode, else $-32,768$.
1028		Voltage Unbal. Phase C	R	N	N in 10ths	Percent	$\begin{aligned} & 0 \text { to }+/-1000 \\ & \text { if in } 4 \end{aligned}$	Percent Voltage Unbalance, Phase C wire mode, else -32,768.
1029		Voltage L-N. Unbal Worst	R	N	N	Percent in 10ths	0 to +/-1000	Percent Voltage Unbalance, Worst L-N, if in 4 wire mode, else - 32,768 . Based on Absolute Value
1030		Reserved						
1031	15	True Power, Factor A	R	N	$\begin{aligned} & \mathrm{N} \\ & \text { in 1000th } \end{aligned}$	hs to +100	$\begin{array}{r} -100 \text { to }+1000 \\ \text { compl } \end{array}$	"True" Power Factor for Phase A, derived using the e harmonic content of the real and apparent power for 4 -wire systems else $-32,768$. Scale is 100ths if CM1 Register is used
1032	16	True Power, Factor B	R	N	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	"True" Power Factor for Phase B, derived using the complete harmonic content of the real and apparent power for 4 -wire systems else - 32,768 . Scale is 100ths if CM1 Register

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled U	Units	Range	Register Description
1033	17	True Power, Factor C	R	N	N in 1000th	s to +100	$-100 \text { to }+1000$	is used "True" Power Factor for Phase C, derived using the e harmonic content of the real and apparent power for 4-wire systems else - 32,768 . Scale is 100ths if CM1 Register is used
1034	14	True Power, Factor 3 Total	R	N	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	"True" Total Power Factor for all 3 Phases, derived using the complete harmonic content of the total real and apparent power. Scale is 100 ths if CM1 Register is used
1035		Displacement Power Factor, A	R	N	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Displacement Power Factor for Phase A, derived using only the fundamental frequency of the real and apparent power for 4 -wire systems else $-32,768$
1036		Displacement Power Factor, B	R	N	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Displacement Power Factor for Phase B, derived using only the fundamental frequency of the real and apparent power for 4 -wire systems else $-32,768$
1037		Displacement Power Factor, C	R	N	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Displacement Power Factor for Phase C, derived using only the fundamental frequency of the real and apparent power for 4 -wire systems else $-32,768$
1038		Displacement Power Factor, 3 Total	R	N	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Displacement Power Factor for all three phases derived using only the fundamental frequency of the real and apparent power
1039		Real Power, Phase A	R	N	E \quad k	kW/Scale Factor E	0 to +/-32,767	Real Power on Phase A (PA) 4-wire / -32,768 3 wire
1040		Real Power, Phase B	R	N	E \quad k	kW/Scale Factor E	0 to +/-32,767	Real Power on Phase B (PB) 4-wire / -32,768 3 wire
1041		Real Power, Phase C	R	N	E \quad k	kW/Scale Factor E	0 to +/-32,767	Real Power on Phase C (PC) 4-wire / -32,768 3 wire
1042	18	Real Power,	R	N	E	kW/Scale	0 to +/-32,767	Sum of the three real phase powers $(\mathrm{PA}+\mathrm{PB}+\mathrm{PC}) 4$-wire

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

		3 Total			Factor E		3 wire $=3$ phase real power
1043		Reactive Power, R Phase A	N	E	kVAr/Scale Factor E	0 to +/-32,767	Reactive Power on Phase A (QA) 4-wire / -32,768 3 wire
1044		Reactive Power, R Phase B	N	E	kVAr/Scale Factor E	0 to +/-32,767	Reactive Power on Phase B (QB) 4-wire / -32,768 3 wire
1045		Reactive Power, R Phase C	N	E	kVAr/Scale Factor E	0 to $+/-32,767$	Reactive Power on Phase C (QC) 4-wire / -32,768 3 wire
1046	19	Reactive Power, R 3 Phase Total	N	E	kVAr/Scale Factor E	0 to +/-32,767	Sum of the three reactive phase powers ($\mathrm{QA}+\mathrm{QB}+\mathrm{QC}$) 3 wire $=3$ phase real power
1047		Apparent Power, R Phase A	N	E	kVA/Scale Factor E	0 to $+32,767$	Apparent Power on Phase A (SA) 4-wire / -32,768 3 wire
1048		Apparent Power, R Phase B	N	E	kVA/Scale Factor E	0 to $+32,767$	Apparent Power on Phase B (SB) 4-wire / -32,768 3 wire
1049		Apparent Power, R Phase C	N	E	kVA/Scale Factor E	0 to $+32,767$	Apparent Power on Phase C (SC) 4-wire / -32,768 3 wire
1050	20	Apparent Power, R 3 Phase Total	N	E	kVA/Scale Factor E	0 to $+32,767$	Sum of the three apparent phase powers (SA+SB+SC) 3 wire $=3$ phase real power

POWER QUALITY

1051	THD A Current	R	N	N	\% in 10ths	0 to 32,767
1052	THD B Current	R	N	N	\% in 10ths	0 to 32,767
1053	THD C Current	R	N	N	\% in 10ths	0 to 32,767
1054	THD Neut. Curr.R	N	N	\% in 10ths	0 to 32,767	

Total Harmonic Distortion (THD), Phase A Current
Total Harmonic Distortion (THD), Phase B Current
Total Harmonic Distortion (THD), Phase C Current
Total Harmonic Distortion (THD), Neutral Current

Printed: 4-Jun-99 Metered.doc Rev: Z32 Revised: 05/26/99 4:16 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

1055	THD A Voltage	R	N	N	$\%$ in 10ths	0 to 32,767	Total Harmonic Distortion (THD), Phase A-N for 4-wire systems else -32,768
1056	THD B Voltage	R	N	N	$\%$ in 10ths	0 to 32,767	Total Harmonic Distortion (THD), Phase B-N for 4-wire systems else -32,768
1057	THD C Voltage	R	N	N	$\%$ in 10ths	0 to 32,767	Total Harmonic Distortion (THD), Phase C-N for 4-wire systems else -32,768
1058	THD A-B Voltage	R	N	N	\% in 10ths	0 to 32,767	Total Harmonic Distortion (THD), A-B Voltage
1059	THD B-C Voltage	R	N	N	$\%$ in 10ths	0 to 32,767	Total Harmonic Distortion (THD), B-C Voltage
1060	THD C-A Voltage	R	N	N	$\%$ in 10ths	0 to 32,767	Total Harmonic Distortion (THD), C-A Voltage
1061	thd A Current	R	N	N	$\%$ in 10ths	0 to 10,000	Total Harmonic Distortion (thd), Phase A Current
1062	thd B Current	R	N	N	\% in 10ths	0 to 10,000	Total Harmonic Distortion (thd), Phase B Current
1063	thd C Current	R	N	N	$\%$ in 10ths	0 to 10,000	Total Harmonic Distortion (thd), Phase C Current
1064	thd Neut. Curr.	R	N	N	\% in 10ths	0 to 10,000	Total Harmonic Distortion (thd), Neutral Current in 4-Wire Mode, else -32,768
1065	thd A Voltage	R	N	N	$\%$ in 10ths	0 to 10,000	Total Harmonic Distortion (thd), Phase A-N Voltage for 4-wire systems else -32,768
1066	thd B Voltage	R	N	N	$\%$ in 10ths	0 to 10,000	Total Harmonic Distortion (thd), Phase B-N Voltage

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

1067	thd C Voltage	R	N	N	$\%$ in 10ths	0 to 10,000	Total Harmonic Distortion (thd), Phase C-N Voltage for 4-wire systems else -32,768
1068	thd A-B Voltage	R	N	N	\% in 10ths	0 to 32,767	Total Harmonic Distortion (thd), A-B Voltage
1069	thd B-C Voltage	R	N	N	\% in 10ths	0 to 32,767	Total Harmonic Distortion (thd), B-C Voltage
1070	thd C-A Voltage	R	N	N	\% in 10ths	0 to 32,767	Total Harmonic Distortion (thd), C-A Voltage
1071	K-Factor A	R	N	N	In 10ths	0 to 10,000	Transformer K-Factor, Phase A
1072	K-Factor B	R	N	N	In 10ths	0 to 10,000	Transformer K-Factor, Phase B
1073	K-Factor C	R	N	N	In 10ths	0 to 10,000	Transformer K-Factor, Phase C
1074	Crest Factor A	R	N	N	In 100ths	0 to 10,000	Transformer Crest Factor, Phase A
1075	Crest Factor B	R	N	N	In 100ths	0 to 10,000	Transformer Crest Factor, Phase B if applicable, else -32,68
1076	Crest Factor C	R	N	N	In 100ths	0 to 10,000	Transformer Crest Factor, Phase C
1077	Crest Factor Neutral	R	N	N	In 100ths	0 to 10,000	Transformer Crest Factor, Neutral Where Applicable, else -32,768
1078	A Current Fundamental RMS Magnitude	R	N	A	Amps/Scale Factor A	0 to 32,767	Phase A Current Fundamental RMS Magnitude
1079	A Current Fundamental Coincident Angle	R	N	N	10ths of Degrees	0 to 3,599	Phase A Current Fundamental Angle Referenced to A-N/A-B Voltage Angle
1080	B Current Fundamental RMS Magnitude	R	N	A	Amps/Scale Factor A	0 to 32,767	Phase B Current Fundamental RMS Magnitude

Printed: 4-Jun-99 Metered.doc Rev: Z32 Revised: 05/26/99 4:16 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1081	B Current Fundamental Coincident Angle	R	N	N	10ths of Degrees	0 to 3,599	Phase B Current Fundamental Angle Referenced to A-N/A-B Voltage Angle
1082	C Current Fundamental RMS Magnitude	R	N	A	Amps/Scale Factor A	0 to 32,767	Phase C Current Fundamental RMS Magnitude
1083	C Current Fundamental Coincident Angle	R	N	N	10ths of Degrees	0 to 3,599	Phase C Current Fundamental Angle Referenced to A-N/A-B Voltage Angle
1084	Neutral Current Fundamental RMS Magnitude	R	N	A	Amps/Scale Factor B	0 to 32,767	Neutral Current Fundamental RMS magnitude when applicable, else -32,768
1085	Neutral Current Fundamental Angle	R	N	N	10ths of Degrees	0 to 3,599	Neutral Current Fundamental Angle when applicable, else -32,768
1086	Ground Current Fundamental RMS Magnitude	R	N	A	Amps/Scale Factor C	$0 \text { to } 32,767$	Ground Current Fundamental RMS magnitude pplicable, else -32,768
1087	Ground Current Fundamental Angle	R	N	N	10ths of Degrees	0 to 3,599	Ground Current Fundamental angle when applicable, else -32,768
1088	A Voltage Fundamental RMS Magnitude	R	N	D	Volts/Scale Factor D	$0 \text { to } 32,767$	Phase A-N Voltage Fundamental RMS Magnitude else $-32,768$
1089	A Voltage Fundamental	R	N	N	10ths of Degrees	0 to 3,599	Phase A-N Voltage Fundamental Angle, 4 wire, else -32,768 Referenced to itself

Proprietary Document: Property of Square d Co.
NOT TO be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Coincident Angle

1090	B Voltage Fundamental RMS Magnitude	R	N	D	Volts/Scale Factor D	$0 \text { to } 32,767$	Phase B-N Voltage Fundamental RMS Magnitude else -32,768
1091	B Voltage Fundamental Coincident Angle	R	N	N	10ths of Degrees	0 to 3,599	Phase B-N Voltage Fundamental Angle, 4 wire, else -32,768 Referenced to A-N Voltage Angle
1092	C Voltage Fundamental RMS Magnitude	R	N	D	Volts/Scale Factor D	$0 \text { to } 32,767$	Phase C-N Voltage Fundamental RMS Magnitude else $-32,768$
1093	C Voltage Fundamental Coincident Angle		N	N	10ths of Degrees	0 to 3,599	Phase C-N Voltage Fundamental Angle, 4 wire, else -32,768 Referenced to A-N Voltage Angle
1094	A-B Voltage Fundamental RMS Magnitude	R	N	D	Volts/Scale Factor D	0 to 32,767	Phase A-B Voltage Fundamental RMS Magnitude
1095	A-B Voltage Fundamental Angle	R	N	N	10ths of Degrees	0 to 3,599	Phase A-B Voltage Fundamental Angle, Referenced to A-N (4 wire) or A-B (3 wire) Voltage Angle
1096	B-C Voltage Fundamental RMS Magnitude	R	N	D	Volts/Scale Factor D	0 to 32,767	Phase B-C Voltage Fundamental RMS Magnitude
1097	B-C Voltage Fundamental Angle	R	N	N	10ths of Degrees	0 to 3,599	Phase B-C Voltage Fundamental Angle, Referenced to A-N (4 wire) or A-B (3 wire) Voltage Angle
1098	C-A Voltage \quad R	R	N	D	Volts/Scale	0 to 32,767	Phase C-A Voltage Fundamental RMS Magnitude

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register CM/2	Number $\mathrm{CM} / 1$	Register Name	Type	Saved	Scaled	Units	Range	Register Description
		Fundamental RMS Magnitude				Factor D		
1099		C-A Voltage Fundamental Angle	R	N	N	10ths of Degrees	0 to 3,599	Phase C-A Voltage Fundamental Angle, Referenced to A-N (4 wire) or A-B (3 wire) Voltage Angle
1100		Phase A Fundamental Real Power	R	N	E	KW/Scale Factor E	0 to +/- 32,767	Fundamental Real Power, Phase A 4 wire, else - 32,768
1101		Phase B Fundamental Real Power	R	N	E	KW/Scale Factor E	0 to +/- 32,767	Fundamental Real Power, Phase B 4 wire, else -32,768
1102		Phase C Fundamental Real Power	R	N	E	KW/Scale Factor E	0 to +/- 32,767	Fundamental Real Power, Phase C 4 wire, else -32,768
1103		Fundamental Real Power 3 Phase Total	R	N	E	KW/Scale Factor E	0 to +/- 32,767	Fundamental Real Power, 3 Phase Total
1104		Phase A Fundamental Reactive Power	R	N	E	KVAr/Scale Factor E	0 to +/- 32,767	Fundamental Reactive Power, Phase A 4 wire, else -32,768
1105		Phase B Fundamental Reactive Power	R	N	E	KVAr/Scale Factor E	0 to +/- 32,767	Fundamental Reactive Power, Phase B 4 wire, else -32,768
1106		Phase C Fundamental Reactive Power	R	N	E	KVAr/Scale Factor E	0 to +/- 32,767	Fundamental Reactive Power, Phase C 4 wire, else - 32,768

Printed: 4-Jun-99 Metered.doc Rev: Z32 Revised: 05/26/99 4:16 PM

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All Rights Reserved © 1993

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1107	Fundamental Reactive Power 3 Phase Total	R	N	E	KVAr/Scale Factor E	0 to +/- 32,767	Fundamental Reactive Power, 3 Phase Total
1108	Harmonic Factor, A	R	N	N	Percent in 10ths	0 to 1000	Harmonic Factor for phase A - equal to True A PF/Displacement A PF, 4 wire, else - 32,768
1109	Harmonic Factor, B	R	N	N	Percent in 10ths	0 to 1000	Harmonic Factor for phase B - equal to True B PF/Displacement B PF, 4 wire, else -32,768
1110	Harmonic Factor, C	R	N	N	Percent in 10ths	0 to 1000	Harmonic Factor for phase C - equal to True C PF/Displacement C PF, 4 wire, else -32,768
1111	Harmonic Factor, 3 Phase Total	R	N	$\begin{aligned} & \mathrm{N} \\ & \text { in 10ths } \end{aligned}$	Percent	$\begin{aligned} & 0 \text { to } 1000 \\ & \text { True }] \end{aligned}$	Harmonic Factor for 3 phase total - equal to tal PF/Displacement Total PF
1112	Harmonic Power Phase A		N	E	KW/Scale	0 to +/-32,767	Harmonic Power Phase A, 4-wire, else - 32,768
1113	Harmonic Power Phase B		N	E	KW/Scale	0 to +/-32,767	Harmonic Power Phase B, 4-wire, else -32,768
1114	Harmonic Power Phase C		N	E	KW/Scale	0 to +/-32,767	Harmonic Power Phase C, 4-wire, else -32,768
1115	Harmonic Power 3 Phase Total		N	E	KW/Scale	0 to +/-32,767	Harmonic Power 3 Phase Total,
1116	Harmonic Power Flow Direction Bit Map for	R	N	N	none	$\begin{aligned} & \text { Byte } 0 \text { : } \\ & 0 \text { to } 7 \\ & \text { Byte } 1 \text { : } \end{aligned}$	Direction of Harmonic Power Flow Bit Map Byte 0 represents kW, Byte 1 represents kVAR Bit 0 represents Phase A, Bit 1 phase B and

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993
$\mathrm{A}, \mathrm{B}, \mathrm{C} \quad 0$ to 7
1117
Phase Rotation R N N none

Direction

Reserved for future metered values
CUL User Defined R \quad R Non Metering interval quantities

Reserved for Future Metered Values

Analog Input 1 Present Value	R	N	Y	None
Analog Input 2 Present Value	R	N	Y	None
Analog Input 3 Present Value	R	N	Y	None
Analog Input 4 Present Value	R	N	Y	None
Reserved for future analog inputs				

$-32,767$ to	The present value of the analog input 1 register after being scaled as specified..
$-32,767$ $+32,767$ to The present value of the analog input 2 register after being scaled as specified.. $-32,767$ to The present value of the analog input 3 register $+32,767$ after being scaled as specified..	
$-32,767$ to	The present value of the analog input 4 register after being scaled as specified..

Proprietary document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SqUARE D Co. All Rights Reserved © 1993

REAL TIME METERED VALUES							
MINIMUM							
1200		Minimum update R Interval	Y	N	1000ths of a second	0 to 10,000	The minimum amount of time between the last update of metered values and the update previous to that
1201	38	Minimum Freq. R	Y	N	Hertz/Scale Factor F	$\begin{aligned} & 2300 \text { to } 6700,(50 / 60) \\ & 3500 \text { to } 4500(400) \end{aligned}$	Frequency of circuit being monitored. If the frequency is out of range this register will have a value of 0 .
1202	39	Minimum Temp. R	Y	N	Degrees Cent. in 100ths	$-10,000$ to $+10,000$	Minimum Temperature inside of the Circuit Monitor enclosure
1203	40	Minimum Curr. R Phase A	Y	A	Amps/Scale Factor A	0 to 32,767	Minimum Measured RMS Phase A Current
1204	41	Minimum Curr. R Phase B	Y	A	Amps/Scale Factor A	0 to 32,767	Minimum Measured RMS Phase B Current
1205	42	Minimum Curr. R Phase C	Y	A	Amps/Scale Factor A	0 to 32,767	Minimum Measured RMS Phase C Current
1206		Minimum Curr. R Neutral (I4)	Y	B	Amps/Scale Factor B	0 to 32,767	Minimum Measured RMS Neutral Current, if applicable, else -32,768
1207		Minimum Curr. R Ground (I5)	Y	C	Amps/Scale Factor C	0 to 32,767	Minimum Calculated RMS Current from IN - (IA $+\mathrm{IB}+\mathrm{IC}$) if applicable, else -32,768
1208	43	Minimum Curr. R 3 - Phase Average	Y	A	Amps/Scale Factor A	0 to 32,767 of IA	Minimum Calculated Arithmetic mean of the RMS values , and IC
1209	44	Minimum Curr. R Apparent RMS	Y	A	Amps/Scale Factor A	0 to 32,767 divi	Minimum Peak instantaneous value of IA, IB, or IC by the square root of 2
1210		Minimum Curr. R Unbalance, Phase A	Y	N	Percent in 10ths	0 to +/-1000	Minimum Percent Current Unbalance, phase A
1211		Minimum Curr. R Unbalance, Phase B Program.	Y	N	Percent in 10ths	0 to +/-1000	Minimum Percent Current Unbalance, phase B

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
1212		Minimum Curr. R Unbalance, Phase C	Y	N	Percent in 10ths	0 to +/-1000	Minimum Percent Current Unbalance, phase C
1213		Min. Current R Unbalance Worst	Y	N	Percent in 10ths	0 to +/-1000	Minimum Current Unbalance Worst
1214	45	Minimum Volt. R Phase A to B	Y	D	Volts/Scale Factor D	0 to 32,767	Minimum Measured RMS Voltage Between Phases A and B.
1215	46	Minimum Volt. R Phase B to C	Y	D	Volts/Scale Factor D	0 to 32,767	Minimum Measured RMS Voltage Between Phases B and C.
1216	47	Minimum Vol. R Phase C to A	Y	D	Volts/Scale Factor D	0 to 32,767	Minimum Measured RMS Voltage Between Phases C and A.
1217		Min Volt L-L, \quad R 3 Phase Average	Y	D	Volts/Scale Factor D	0 to 32,767	Minimum of the average of the 3 Phase Line-Line RMS Voltages
1218	48	Minimum Volt. R Phase A to Neutral	Y	D	Volts/Scale Factor D	$\begin{array}{r} 0 \text { to } 32,767 \\ \text { (4-w } \end{array}$	Minimum Measured RMS Voltage Between Phase A and Neutral. mode only, in 3-wire mode the value is set to $-32,768$)
1219	49	MinimumVolt. R Phase B to Neutral	Y	D	Volts/Scale Factor D	$\begin{array}{r} 0 \text { to } 32,767 \\ \text { (4-w } \end{array}$	Minimum Measured RMS Voltage Between Phase B and Neutral. mode only, in 3-wire mode the value is set to $-32,768$)
1220	50	Minimum Volt. R Phase C to Neutral	Y	D	Volts/Scale Factor D	$\begin{array}{r} 0 \text { to } 32,767 \\ \text { (4-w } \end{array}$	Minimum Measured RMS Voltage Between Phase C and Neutral. mode only, in 3-wire mode the value is set to $-32,768$)
1221		Min Volt L-N, R 3 Phase Average	Y	D	Volts/Scale Factor D	$\begin{array}{r} 0 \text { to } 32,767 \\ \text { if in } \end{array}$	Minimum of the average of the 3 Phase Line-Neutral RMS Voltages wire mode, else -32,768.
1222		Min Volt Unbal R Phase A-B	Y	N	Percent in 10ths	0 to +/-1000	Minimum Percent Voltage Unbalance, Phase A-B
1223		Min Volt Unbal R Phase B-C	Y	N	Percent in 10ths	0 to +/-1000	Minimum Percent Voltage Unbalance, Phase B-C

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1224	Min Volt Unbal. Phase C-A	R	Y	N	Percent in 10ths	0 to $+/-1000$	Minimum Percent Voltage Unbalance, Phase C-A
1225	Min Volt Unbal. L-L Worst	R	Y	N	Percent in 10ths	0 to $+/-1000$	Minimum Percent Voltage Unbalance, Worst Line-Line, depends on Absolute Value
1226	Min Volt Unbal. Phase A	R	Y	N	Percent in 10ths	0 to $+/-1000$	Minimum Percent Voltage Unbalance, Phase A if in 4 wire mode, else $-32,768$.
1227	Min Volt Unbal. Phase B	R	Y	N	Percent in 10ths	0 to $+/-1000$	Minimum Percent Voltage Unbalance, Phase B if in 4 wire mode, else $-32,768$.
1228	Min Volt Unbal. Phase C	R	Y	$\begin{aligned} & \mathrm{N} \\ & \text { in 10ths } \end{aligned}$	Percent	$\begin{array}{r} 0 \text { to }+/-1000 \\ \text { if in } \end{array}$	Minimum Percent Voltage Unbalance, Phase C ire mode, else -32,768.
1229	Min Volt L-N. Unbal Worst	R	Y	N	Percent in 10ths	0 to $+/-1000$	Minimum Percent Voltage Unbalance, Worst L-N, if in 4 wire mode, else -32,768. Based on Absolute Value
1230	Reserved						

POWER
Program.
1231
1232
Minimum True,
Power Factor C

51

Minimum True,
Power Factor,
3 Total

Minimum Displ. R
in 1000ths

Power Factor, B

Minimum Displ.
Y
N
in 1000ths
in 1000ths
Minimum Displ. R Y
-100 to +1000

$$
\text { to }+100
$$

-100 to +1000 to +100

Minimum "True" Power Factor for Phase A, derived using the complete harmonic content of the real and apparent power for 4-wire systems, else -32,768. Scale is 100ths if CM1 Register is used

Minimum "True" Power Factor for Phase B, derived using the complete harmonic content of the real and apparent power for 4 -wire systems, else -32,768. Scale is 100ths if CM1 Register is used

Minimum "True" Power Factor for Phase C, derived using the complete harmonic content of the real and apparent power for 4-wire systems, else - 32,768 . Scale is 100ths if CM1 Register is used

Minimum "True" Total Power Factor for all 3 Phases, derived using the complete harmonic content of the total real and apparent power. Scale is 100ths if CM1 Register is used

Minimum Displacement Power Factor for Phase A, derived using only the fundamental frequency of the real and apparent power for 4-wire systems, else -32,768

Minimum Displacement Power Factor for Phase B, derived using only the fundamental frequency of the real and apparent power for 4-wire systems, else -32,768

Minimum Displacement Power Factor for Phase C, derived using only the fundamental frequency of the real and apparent power for 4-wire systems, else -32,768

Minimum Displacement Power Factor for all three phases derived using only the fundamental freq. of the real and apparent power

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1239		Min. Real Power Phase A	R	Y	E	kW/Scale Factor E	0 to $+/-32,767$	Minimum Real Power on Phase A (PA) 4-wire/-32,768 3 wire
1240		Min. Real Power Phase B	R	Y	E	kW/Scale Factor E	0 to +/-32,767	Minimum Real Power on Phase B (PB)4-wire/-32,768 3 wire
1241		Min. Real Power Phase C	R	Y	E	kW/Scale Factor E	0 to +/-32,767	Minimum Real Power on Phase C (PC)4-wire/-32,768 3 wire
1242	55 Power 3	Min. Real Phase Total	R	Y	E Factor E	kW/Scale	$\begin{array}{r} 0 \text { to }+/-32,767 \\ (\mathrm{PA}+\mathrm{F} \end{array}$	Minimum Sum of the three real phase powers 4-wire $+\mathrm{PC}) / 3$ wire $=\min 3$ phase total real power
1243		Min. Reactive Power Phase A	R	Y	E	kVAr/Scale Factor E	0 to $+/-32,767$	Minimum Reactive Power on Phase A (QA) 4-wire/-32,768 3 wire
1244		Min. Reactive Power Phase B	R	Y	E	kVAr/Scale Factor E	0 to $+/-32,767$	Minimum Reactive Power on Phase B (QB) 4-wire/-32,768 3 wire
1245		Min. Reactive Power Phase C	R	Y	E	kVAr/Scale Factor E	0 to +/-32,767	Minimum Reactive Power on Phase C (QC) 4-wire/-32,768 3 wire
1246	56	Min. Reactive Power 3 Phase T		Y	E	kVAr/Scale Factor E	0 to +/-32,767	Minimum Sum of the three reactive phase powers $(\mathrm{QA}+\mathrm{QB}+\mathrm{QC})$
1247		Min. Apparent Power Phase A	R	Y	E	kVA/Scale Factor E	0 to $+32,767$	Minimum Apparent Power on Phase A (SA) 4-wire/-32,768 3 wire
1248		Min. Apparent Power Phase B	R	Y	E	kVA/Scale Factor E	0 to $+32,767$	Minimum Apparent Power on Phase B (SB) 4-wire/-32,768 3 wire
1249		Min. Apparent Phase C	R	Y	E	kVA/Scale Factor E	0 to $+32,767$	Minimum Apparent Power on Phase C (SC) 4-wire/-32,768 3 wire

Proprietary Document: Property of Square d Co.
Not to be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

POWER QUALITY

1250	57	Min. Apparent Power 3 Phase To		Y	E	kVA/Scale Factor E	0 to $+32,767$	Minimum Sum of the three apparent phase powers (SA+SB+SC)
1251		Minimum THD Phase A current	R	Y	N	$\%$ in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (THD), Phase A Current
1252		Minimum THD Phase B current	R	Y	N	\% in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (THD), Phase B Current
1253		Minimum THD Phase C current	R	Y	N	$\%$ in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (THD), Phase C Current
1254		Minimum THD Neutral Current	R	Y	N	$\%$ in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (THD), Neutral Current in 4-Wire Mode, else - 32,768
1255		Minimum THD Phase A Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (THD), Phase A-N for 4-wire, else - 32,768
1256		Minimum THD Phase B Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (THD), Phase B-N for 4-wire, else -32,768
1257		Minimum THD Phase C Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (THD), Phase C-N for 4-wire, else -32,768
1258		Minimum THD A-B Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (THD), A-B Voltage
1259		Minimum THD B-C Voltage	R	Y	N	\% in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (THD), B-C Voltage
1260		Minimum THD C-A Voltage	R	Y	N	\% in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (THD), C-A Voltage
1261		Minimum thd Phase A current	R	Y	N	$\%$ in 10ths	0 to 10,000	Minimum Total Harmonic Distortion (thd), Phase A Current

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1262		Minimum thd Phase B current	R	Y	N	\% in 10ths	0 to 10,000	Minimum Total Harmonic Distortion (thd), Phase B Current
1263		Minimum thd Phase C current	R	Y	N	$\%$ in 10ths	0 to 10,000	Minimum Total Harmonic Distortion (thd), Phase C Current
1264		Minimim thd Neutral Current	R	Y	N	$\%$ in 10ths	0 to 10,000	Minimum Total Harmonic Distortion (thd), Neutral Current in 4-Wire Mode, else -32,768
1265		Minimum thd Phase A Voltage	R	Y	N	\% in 10ths	0 to 10,000	Minimum Total Harmonic Distortion (thd), Phase A-N Voltage for 4-wire, else - 32,768
1266		Minimum thd Phase B Voltage	R	Y	N	\% in 10ths	0 to 10,000	Minimum Total Harmonic Distortion (thd), Phase B-N Voltage for 4-wire, else - 32,768
1267		Minimum thd Phase C Voltage	R	Y	N	$\%$ in 10ths	0 to 10,000	Minimum Total Harmonic Distortion (thd), Phase C-N Voltage for 4-wire, else - 32,768
1268		Minimum thd A-B Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (thd), A-B Voltage
1269		Minimum thd B-C Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (thd), B-C Voltage
1270		Minimum thd C-A Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Minimum Total Harmonic Distortion (thd), C-A Voltage
1271		Min. K-Factor A	R	Y	N	In 10ths	0 to 10,000	Minimum Transformer K-Factor, Phase A
1272		Min.K-Factor B	R	Y	N	In 10ths	0 to 10,000	Minimum Transformer K-Factor, Phase B
1273		Min. K-Factor C	R	Y	N	In 10ths	0 to 10,000	Minimum Transformer K-Factor, Phase C
1274		Minimum Crest Factor, Phase A	R	Y	N	In 100ths	0 to 10,000	Minimum Transformer Crest Factor, Phase A

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1275		Minimum Cres Factor Phase B	R	Y	N	In 100ths	0 to 10,000	Minimum Transformer Crest Factor, Phase B if applicable, else -32,68
1276		Minimum Crest Factor Phase C	R	Y	N	In 100ths	0 to 10,000	Minimum Transformer Crest Factor, Phase C
1277		Minimum Crest Factor Neutral	R	Y	N	In 100ths	0 to 10,000	Minimum Transformer Crest Factor, Neutral When applicable, else -32,768
1278		Min. A Current Fundamental RMS Magnitude	R	Y	A	Amps/Scale Factor A	$\begin{array}{r} 0 \text { to } 32,767 \\ \mathrm{Co} \end{array}$	Minimum Phase A Current Fundamental RMS Magnitude ent with any magnitude that falls below the lowest min.
1279		Min. A Current Fundamental Coincident Angle	R	Y	N	Degrees in 10ths	0 to 3,599	Phase A Current Fundamental Angle Coincident with minimum fundamental current
1280		Min. B Current Fundamental RMS Magnitude	R	Y	A	Amps/Scale Factor A	$\begin{array}{r} 0 \text { to } 32,767 \\ \mathrm{Co} \end{array}$	Minimum Phase B Current Fundamental RMS Magnitude ent with any magnitude that falls below the lowest min.
1281		Min. B Current Fundamental Coincident Angle		Y	N	Degrees in 10ths	0 to 3,599	Phase B Current Fundamental AngleCoincident with minimum fundamental current
1282		Min.C Current Fundamental RMS Magnitude	R	Y	A	Amps/Scale Factor A	$\begin{array}{r} 0 \text { to } 32,767 \\ \text { Co } \end{array}$	Minimum Phase C Current Fundamental RMS Magnitude ent with any magnitude that falls below the lowest min.
1283		Min. C Current Fundamental Coincident Angle	R	Y	N	Degrees in 10ths	0 to 3,599	Phase C Current Fundamental Angle Coincident with minimum fundamental current
1284		Min. Neutral Curr. Fundamental		Y	A	Amps/Scale Factor B	0 to 32,767	Minimum Neutral Current Fundamental RMS magnitude When applicable, else -32,768

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register Number CM/2 CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
1285	Min. Neutral R Curr. Fundamental Angle	Y	N	10ths of Degrees	0 to 3,599	Minimum Neutral Current Fundamental Angle When applicable, else -32,768
1286	Min. Ground \quad R Curr. Fundamental RMS Magnitude	Y	A	Amps/Scale Factor C	$\begin{array}{r} 0 \text { to } 32,767 \\ \text { W1 } \end{array}$	Minimum Ground Current Fundamental RMS magnitude pplicable, else -32,768
1287	Min. Ground \quad R Curr. Fundamental Angle	Y	N	10ths of Degrees	0 to 3,599	Minimum Ground Current Fundamental angle When applicable, else -32,768
1288	Min. A Voltage R Fundamental RMS Magnitude	Y	D	Volts/Scale Factor D	$0 \text { to } 32,767$	Phase A-N Voltage Fundamental RMS Magnitude ent with any magnitude that falls below the lowest min. 4-wire, else - 32,768
1289	Min. A Voltage R Fundamental Coincident Angle	Y	N	Degrees in 10ths	0 to 3,599	Phase A-N Voltage Fundamental Angle Coincident with minimum fundamental voltage. 4-wire, else -32,768
1290	Min. B Voltage R Fundamental RMS Magnitude	Y	D	Volts/Scale Factor D	$0 \text { to 32,767 }$	Phase B-N Voltage Fundamental RMS Magnitude ent with any magnitude that falls below the lowest min. 4-wire, else -32,768
1291	Min. B Voltage R Fundamental Coincident Angle	Y	N	Degrees in 10ths	0 to 3,599	Phase B-N Voltage Fundamental Angle Coincident with minimum fundamental voltage 4-wire, else -32,768
1292	Min. C Voltage R Fundamental RMS Magnitude	Y	D	Volts/Scale Factor D	$0 \text { to } 32,767$	Phase C-N Voltage Fundamental RMS Magnitude coincident with gnitude that falls below the lowest min. 4-wire, else -32,768
1293	Min. C Voltage R Fundamental Coincident Angle	Y	N	Degrees in 10ths	0 to 3,599	Phase C-N Voltage Fundamental Angle Coincident with Minimum fundamental voltage 4-wire, else -32,768

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range

Printed: 4-Jun-99 Min_Max.doc Rev: Z32 Revised: 05/26/99 4:17 PM

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register $\mathrm{CM} / 2$	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1303		Min. Fund. Real Power Three Phase Total	R	Y	E	KW/Scale Factor E	0 to +/- 32,767	Minimum Fundamental Real Power, 3 Phase Total
1304		Min. Phase A Fundamental Reactive Power	R	Y	E	KW/Scale Factor E	0 to +/- 32,767	Minimum Fundamental Reactive Power, Phase A 4-wire, else -32,768
1305		Min. Phase B Fundamental Reactive Power	R	Y	E	KW/Scale Factor E	0 to +/-32,767	Minimum Fundamental Reactive Power, Phase B 4-wire, else -32,768
1306		Min. Phase C Fundamental Reactive Power	R	Y	E	KW/Scale Factor E	0 to +/- 32,767	Minimum Fundamental Reactive Power, Phase C 4-wire, else -32,768
1307		Min.Fund. Reactive Power 3 Phase Total	R	Y	E	KW/Scale Factor E	0 to +/- 32,767	Minimum Fundamental Reactive Power, 3 Phase Total
1308		Min. Harmonic Factor, Phase A	R	Y	N	Percent in 10ths	0 to 1000	Minimum Harmonic Factor for phase A - equal to True A PF/Displacement A PF, 4 wire, else -32,768
1309		Min. Harmonic Factor, Phase B	R	Y	N	Percent in 10ths	0 to 1000	Minimum Harmonic Factor for phase B - equal to True B PF/Displacement B PF, 4 wire, else $-32,768$
1310		Min. Harmonic Factor, Phase C	R	Y	N	Percent in 10ths	0 to 1000	Minimum Harmonic Factor for phase C - equal to True C PF/Displacement C PF, 4 wire, else -32,768
1311		Min. Harmonic Factor, 3 Phase Total	R	Y	$\begin{aligned} & \mathrm{N} \\ & \text { in 10ths } \end{aligned}$	Percent	$\begin{aligned} & 0 \text { to } 1000 \\ & \text { True } 3 \end{aligned}$	Minimum Harmonic Factor for 3 phase total - equal to PF/Displacement 3 PF
1312		Min. Harmonic Power Phase A	R	Y	E	KW/Scale Factor E	0 to $+/-32,767$	Minimum Harmonic Power Phase A, 4-wire, else -32,768
1313		Min. Harmonic Power Phase B	R	Y	E	KW/Scale Factor E	0 to $+/-32,767$	Minimum Harmonic Power Phase B, 4-wire, else -32,768

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1314		Min. Harmonic Power Phase C	R	Y	E	KW/Scale Factor E	0 to $+/-32,767$	Minimum Harmonic Power Phase C, 4-wire, else -32,768
1315		Min. Harmonic Power, 3 Phase T		Y	E	KW/Scale Factor E	0 to +/-32,767	Minimum Harmonic Power 3 Phase Total,
$\begin{aligned} & 1316- \\ & 1349 \end{aligned}$		Reserved for future metered value minimums						
$\begin{aligned} & 1350- \\ & 1389 \end{aligned}$		CUL User Defined R Metering Minimum Quantities		N	N	None	0-+/-32,767	Definition for each register is crreated by the CUL User.
1390		Reserved for future metered value minimums						
1391		Analog Input 1 Minimum Value	R	Y	Y	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	The minimum value of the analog input 1 register since last reset of $\mathrm{min} / \mathrm{max}$ parameters
1392		Analog Input 2 Minimum Value	R	Y	Y	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	The minimum value of the analog input 2 register since last reset of $\mathrm{min} / \mathrm{max}$ parameters
1393		Analog Input 3 Minimum Value	R	Y	Y	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	The minimum value of the analog input 3 register since last reset of $\mathrm{min} / \mathrm{max}$ parameters
1394		Analog Input 4 Minimum Value	R	Y	Y	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	The minimum value of the analog input 4 register since last reset of $\mathrm{min} / \mathrm{max}$ parameters
$\begin{aligned} & 1395- \\ & 1399 \end{aligned}$		Reserved for future analog I/O minimums						

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

REAL TIME METERED VALUES

MAXIMUM

1400		$\begin{aligned} & \text { Max. update } \\ & \text { Interval } \end{aligned}$	Y	N	1000ths of a second	0 to 10,000	The Maximum amount of time between the last update of metered values and the update previous to that
1401	61	Maximum Freq. R	Y	N	Hertz/Scale Factor F	$\begin{aligned} & 2300 \text { to } 6700,(50 / 60) \\ & 3500 \text { to } 4500(400) \end{aligned}$	Frequency of circuit being monitored. If the frequency is out of range this register will have a value of 0 .
1402	62	Maximum Temp. R	Y	N	Degrees Cent. in 100ths	$-10,000$ to $+10,000$	Maximum Temperature inside of the Circuit Monitor enclosure
1403	63	$\begin{aligned} & \text { Max. Current } \\ & \text { Phase AR } \end{aligned}$	Y	A	Amps/Scale Factor A	0 to 32,767	Maximum Measured RMS Phase A Current
1404	64	Max. Current \quad R Phase BR	Y	A	Amps/Scale Factor A	0 to 32,767	Maximum Measured RMS Phase B Current
1405	65	Max. Current \quad R Phase CR	Y	A	Amps/Scale Factor A	0 to 32,767	Maximum Measured RMS Phase C Current
1406		Max. Current R Neutral (I4)	Y	B	Amps/Scale Factor B	0 to 32,767	Maximum Measured RMS Neutral Current, if applicable, else -32,768
1407		Max. Current $\quad \mathrm{R}$ Ground (I5)	Y	C	Amps/Scale Factor C	0 to 32,767	Maximum Calculated RMS Current from IA+IB+IC+IN, if applicable, else - 32,768
1408	66	Max. Current \quad R 3 - Phase Average	Y	A	Amps/Scale Factor A	0 to 32,767 of I	Maximum Calculated Arithmetic mean of the RMS values , and IC
1409	67	Max. Current, $\quad \mathrm{R}$ Apparent RMS	Y	A	Amps/Scale Factor A	0 to 32,767 divid	Maximum Peak instantaneous value of IA, IB, or IC by the square root of 2
1410		Max. Current $\quad \mathrm{R}$ Unbalance, Phase A	Y	N	Percent in 10ths	0 to $+/-1000$	Maximum Percent Current Unbalance, Phase A

Printed: 4-Jun-99 Min_Max.doc Rev: Z32 Revised: 05/26/99 4:17 PM

Proprietary document: Property of Square d co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1411		Max. Current Unbalance, Phase		Y	N	Percent in 10ths	0 to +/-1000	Maximum Percent Current Unbalance, Phase B
1412		Max. Current Unbalance Phase C	R	Y	N	Percent in 10ths	0 to +/-1000	Maximum Percent Current Unbalance, Phase C
1413		Max. Current Unbalance Worst	R	Y	N	Percent in 10ths	0 to $+/-1000$	Maximum Current Unbalance Worst
1414	68	Max.Voltage Phase A to B	R	Y	D	Volts/Scale Factor D	0 to 32,767	Maximum Measured RMS Voltage Between Phases A and B.
1415	69	Max. Voltage Phase B to C	R	Y	D	Volts/Scale Factor D	0 to 32,767	Maximum Measured RMS Voltage Between Phases B and C.
1416	70	Max. Voltage Phase C to A	R	Y	D	Volts/Scale Factor D	0 to 32,767	Maximum Measured RMS Voltage Between Phases C and A.
1417		Max Volt L-L, 3 Phase Average	R	Y	D	Volts/Scale Factor D	0 to 32,767	Maximum of the average of the 3 Phase Line-Line RMS Voltages
1418	71	Max. Voltage Phase A to Neutra		Y	D	Volts/Scale Factor D	$\begin{array}{r} 0 \text { to 32,767 } \\ \text { (4-w } \end{array}$	Maximum Measured RMS Voltage Between Phase A and Neutral. mode only, in 3-wire mode the value is set to $-32,768$)
1419	72	Max. Voltage Phase B to Neutral		Y	D	Volts/Scale Factor D	$0 \text { to } 32,767$ (4-w	Maximum Measured RMS Voltage Between Phase B and Neutral. mode only, in 3-wire mode the value is set to $-32,768$)
1420	73	Max. Voltage Phase C to Neutral		Y	D	Volts/Scale Factor D	$\begin{array}{r} 0 \text { to 32,767 } \\ \text { (4-w } \end{array}$	Maximum Measured RMS Voltage Between Phase C and Neutral. mode only, in 3-wire mode the value is set to $-32,768$)
1421		Max Volt L-N, 3 Phase Average	R	Y	D	Volts/Scale Factor D	$\begin{array}{r} 0 \text { to } 32,767 \\ \text { if in } \end{array}$	Maximum of the average of the 3 Phase Line-Neutral RMS Voltages wire mode, else -32,768.
1422		Max Volt Unbal Phase A-B	R	Y	N	Percent in 10ths	0 to +/-1000	Maximum Percent Voltage Unbalance, Phase A-B
1423		Max Volt Unbal	R	Y	N	Percent	0 to $+/-1000$	Maximum Percent Voltage Unbalance, Phase B-C

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

	Phase B-C			in 10ths		
1424	Max Volt Unbal. R Phase C-A	Y	N	Percent in 10ths	0 to $+/-1000$	Maximum Percent Voltage Unbalance, Phase C-A
1425	Max Volt Unbal. R L-L Worst	Y	N	Percent in 10ths	0 to $+/-1000$	Maximum Percent Voltage Unbalance, Worst Line-Line, depends on Absolute Value
1426	Max Volt Unbal. R Phase A	Y	N	Percent in 10ths	0 to $+/-1000$	Maximum Percent Voltage Unbalance, Phase A if in 4 wire mode, else $-32,768$.
1427	Max Volt Unbal. R Phase B	Y	N	Percent in 10ths	0 to $+/-1000$	Maximum Percent Voltage Unbalance, Phase B if in 4 wire mode, else $-32,768$.
1428	Max Volt Unbal. R Phase C	Y	$\begin{aligned} & \text { N } \\ & \text { in 10ths } \end{aligned}$	Percent	$\begin{array}{r} 0 \text { to }+/-1000 \\ \text { if in } \end{array}$	Maximum Percent Voltage Unbalance, Phase C ire mode, else -32,768.
1429	Max Volt L-N. R Unbal Worst	Y	N	Percent in 10ths	0 to $+/-1000$	Maximum Percent Voltage Unbalance, Worst L-N, if in 4 wire mode, else -32,768. Based on Absolute Value
1430	Reserved					

1431	75	Maximum True, R Power Factor A	Y	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Maximum "True" Power Factor for Phase A, derived using the complete harmonic content of the real and apparent power for 4 -wire systems, else $-32,768$. Scale is 100ths if CM1 Register is used
1432	76	Maximum True, R Power Factor B	Y	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Maximum "True" Power Factor for Phase B, derived using the complete harmonic content of the real and apparent power for 4 -wire systems, else $-32,768$. Scale is 100ths if CM1 Register is used
1433	77	Maximum True, R Power Factor C	Y	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Maximum "True" Power Factor for Phase C, derived using the complete harmonic content of the real and apparent power for 4 -wire systems, else $-32,768$. Scale is 100ths if CM1 Register is used
1434	74	Maximum True, R Power Factor 3 Phase total	Y	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Maximum "True" Total Power Factor for all 3 Phases, derived using the complete harmonic content of the total real and apparent power. Scale is 100ths if CM1 Register is used
1435		Maximum Displ. R Power Factor Phase A	Y	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Maximum Displacement Power Factor for Phase A, derived using only the fundamental frequency of the real and apparent power for 4-wire systems, else - 32,768
1436		Maximum Displ. R Power Factor, Phase B	Y	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Maximum Displacement Power Factor for Phase B, derived using only the fundamental frequency of the real and apparent power for 4-wire systems, else -32,768
1437		Maximum Displ. R Power Factor Phase C	Y	N	in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Maximum Displacement Power Factor for Phase C, derived using only the fundamental frequency of the real and apparent power for 4-wire systems, else -32,768
1438		Maximum Displ. R Power Factor 3 Phase Total	Y	N	Percent in 1000ths	$\begin{aligned} & -100 \text { to }+1000 \\ & \text { to }+100 \end{aligned}$	Maximum Displacement Power Factor for all three phases derived using only the fundamental freq. of the real and apparent power

Proprietary document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1439		Max. Real Power Phase A	R	Y	E	kW/Scale Factor E	0 to +/-32,767	Maximum Real Power on Phase A (PA)/4 wire / -32,768 3 wire
1440		Max. Real Power Phase B	R	Y	E	kW/Scale Factor E	0 to +/-32,767	Maximum Real Power on Phase B (PB)/4 wire / -32,768 3 wire
1441		Max. Real Power Phase C	R	Y	E	kW/Scale Factor E	0 to +/-32,767	Maximum Real Power on Phase C (PC)/4 wire / -32,768 3 wire
1442	78 Power 3	Max. Real Total	R	Y	E Factor E	kW/Scale	$\begin{array}{r} 0 \text { to }+/-32,767 \\ (\text { PA }+ \text { P } \end{array}$	Maximum Sum of the three real phase powers 4 wire $+\mathrm{PC}) / 3$ wire $=\max 3$ phase total real power
1443		Max. Reactive Power Phase A	R	Y	E	kVAr/Scale Factor E	0 to +/-32,767	Maximum Reactive Power on Phase A (QA) 4 wire / - 32,768 for 3 wire
1444		Max. Reactive Power Phase B	R	Y	E	kVAr/Scale Factor E	0 to +/-32,767	Maximum Reactive Power on Phase B (QB) 4 wire / - 32,768 for 3 wire
1445		Max. Reactive Power Phase C	R	Y	E	kVAr/Scale Factor E	0 to +/-32,767	Maximum Reactive Power on Phase C (QC) 4 wire / - 32,768 for 3 wire
1446	79	Max. Reactive Power 3 Phase T		Y	E	kVAr/Scale Factor E	0 to +/-32,767	Maximum Sum of the three reactive phase powers $(\mathrm{QA}+\mathrm{QB}+\mathrm{QC})$
1447		Max. Apparent Power Phase A	R	Y	E	kVA/Scale Factor E	0 to $+32,767$	Maximum Apparent Power on Phase A (SA) 4 wire / - 32,768 for 3 wire
1448		Max. Apparent Power Phase B	R	Y	E	kVA/Scale Factor E	0 to $+32,767$	Maximum Apparent Power on Phase B (SB) 4 wire / - 32,768 for 3 wire
1449		Max. Apparent Power Phase C	R	Y	E	kVA/Scale Factor E	0 to $+32,767$	Maximum Apparent Power on Phase C (SC) 4 wire / - 32,768 for 3 wire
1450	80	Max. Apparent Power 3 Phase T		Y	E	kVA/Scale Factor E	0 to $+32,767$	Maximum Sum of the three apparent phase powers (SA+SB+SC)

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1451		Maximum THD Phase A current	R	Y	N	\% in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (THD), Phase A Current
1452		Maximum THD Phase B current	R	Y	N	$\%$ in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (THD), Phase B Current
1453		Maximum THD Phase C current	R	Y	N	$\%$ in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (THD), Phase C Current
1454		Maximum THD Neutral Current	R	Y	N	\% in 10ths	0 to 10,000	Maximum Total Harmonic Distortion (THD), Neutral Current for 4 wire, else - 32,768
1455		Maximum THD Phase A Voltage	R	Y	N	\% in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (THD), Phase A-N for 4 wire, else - 32,768
1456		Maximum THD Phase B Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (THD), Phase B-N for 4 wire, else - 32,768
1457		Maximum THD Phase C Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (THD), Phase C-N for 4 wire, else -32,768
1458		Maximum THD A-B Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (THD), A-B Voltage
1459		Maximum THD B-C Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (THD), B-C Voltage
1460		Maximum THD C-A Voltage	R	Y	N	\% in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (THD), C-A Voltage
1461		Maximum thd Phase A current	R	Y	N	\% in 10ths	0 to 10,000	Maximum Total Harmonic Distortion (thd), Phase A Current
1462		Maximum thd Phase B current	R	Y	N	$\%$ in 10ths	0 to 10,000	Maximum Total Harmonic Distortion (thd), Phase B Current

Printed: 4-Jun-99 Min_Max.doc Rev: Z32 Revised: 05/26/99 4:17 PM

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1463		Maximum thd Phase C current	R	Y	N	$\%$ in 10ths	0 to 10,000	Maximum Total Harmonic Distortion (thd), Phase C Current
1464		Maximum thd Neutral Current	R	Y	N	$\%$ in 10ths	0 to 10,000	Maximum Total Harmonic Distortion (thd), Neutral Current for 4 wire, else - 32,768
1465		Maximum thd Phase A Voltage	R	Y	N	$\%$ in 10ths	0 to 10,000	Maximum Total Harmonic Distortion (thd), Phase A-N for 4-wire, else - 32,768
1466		Maximum thd Phase B Voltage	R	Y	N	$\%$ in 10ths	0 to 10,000	Maximum Total Harmonic Distortion (thd), Phase B-N for 4-wire, else -32,768
1467		Maximum thd Phase C Voltage	R	Y	N	$\%$ in 10ths	0 to 10,000	Maximum Total Harmonic Distortion (thd), Phase C-N for 4-wire, else -32,768
1468		Maximum thd A-B Voltage	R	Y	N	\% in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (thd), A-B Voltage
1469		Maximum thd B-C Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (thd), B-C Voltage
1470		Maximum thd C-A Voltage	R	Y	N	$\%$ in 10ths	0 to 32,767	Maximum Total Harmonic Distortion (thd), C-A Voltage
1471		Max. K-Factor Phase A	R	Y	N	In 10ths	0 to 10,000	Maximum Transformer K-Factor, Phase A
1472		Max. K-Factor Phase B	R	Y	N	In 10ths	0 to 10,000	Maximum Transformer K-Factor, Phase B
1473		Max. K-Factor Phase C	R	Y	N	In 10ths	0 to 10,000	Maximum Transformer K-Factor, Phase C
1474		Maximum Crest Factor Phase A	R	Y	N	In 100ths	0 to 10,000	Maximum Transformer Crest Factor, Phase A

PROPRIETARY DOCUMENT: PROPERTY OF SQUARE D CO.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1475		Maximum Crest Factor Phase B	R	Y	N	In 100ths	0 to 10,000	Maximum Transformer Crest Factor, Phase B if applicable, else -32,68
1476		Maximum Crest Factor Phase C	R	Y	N	In 100ths	0 to 10,000	Maximum Transformer Crest Factor, Phase C
1477		Maximum Crest Factor Neutral	R	Y	N	In 100ths	0 to 10,000	Maximum Transformer Crest Factor, Neutral when applicable, else -32,768
1478		Max. A Current Fundamental RMS Magnitude	R	Y	A	Amps/Scale Factor A	$\begin{array}{r} 0 \text { to } 32,767 \\ \mathrm{Co} \end{array}$	Maximum Phase A Current Fundamental RMS Magnitude ent with any magnitude surpassing any phase maximum
1479		Max. A Current Fundamental Coicident Angle	R	Y	N	Degrees in 10ths	0 to 3,599	Phase A Current Fundamental Angle coincident with maximum fundamental current
1480		Max. B Current Fundamental RMS Magnitude	R	Y	A	Amps/Scale Factor A	$\begin{array}{r} 0 \text { to } 32,767 \\ \mathrm{Co} \end{array}$	Maximum Phase B Current Fundamental RMS Magnitude ent with any magnitude surpassing any phase maximum
1481		Max. B Current Fundamental Coincident Angle	R	Y	N	Degrees in 10ths	0 to 3,599	Phase B Current Fundamental Angle coincident with maximum fundamental current
1482		Max.C Current Fundamental RMS Magnitude	R	Y	A	Amps/Scale Factor A	$\begin{array}{r} 0 \text { to } 32,767 \\ \mathrm{Co} \end{array}$	Maximum Phase C Current Fundamental RMS Magnitude ent with any magnitude surpassing any phase maximum
1483		Max. C Current Fundamental Coincident Angle	R	Y	N	Degrees in 10ths	0 to 3,599	Phase C Current Fundamental Angle coincident with maximum fundamental current
1484		Max.Neutral Curr. Fundamenta		Y	A	Amps/Scale Factor B	0 to 32,767	Maximum Neutral Current Fundamental RMS magnitude when applicable, else -32,768

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register Number CM/2 CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
1485	Max. Neutral \quad R Curr. Fundamental Angle	Y	N	10ths of Degrees	0 to 3,599	Maximum Neutral Current Fundamental Angle when applicable, else -32,768
1486	Max. Ground \quad R Curr. Fundamental RMS Magnitude	Y	A	Amps/Scale Factor C	$\begin{array}{r} 0 \text { to } 32,767 \\ \text { wh } \end{array}$	Maximum Ground Current Fundamental RMS magnitude pplicable, else -32,768
1487	Max. Ground \quad R Curr. Fundamental Angle	Y	N	10ths of Degrees	0 to 3,599	Maximum Ground Current Fundamental angle when applicable, else -32,768
1488	Max. A Voltage R Fundamental RMS Magnitude	Y	D	Volts/Scale Factor D	$0 \text { to } 32,767$	Maximum Phase A-N Voltage Fundamental RMS Magnitude ent with any magnitude surpassing any phase maximum 4 -wire, else - 32,768
1489	Max. A Voltage R Fundamental Coincident Angle	Y	N	Degrees in 10ths	0 to 3,599	Phase A-N Voltage Fundamental Angle coincident with maximum fundamental voltage 4-wire, else -32,768
1490	Max. B Voltage R Fundamental RMS Magnitude	Y	D	Volts/Scale Factor D	$\begin{array}{r} 0 \text { to } 32,767 \\ \mathrm{Coi} \end{array}$	Maximum Phase B-N Voltage Fundamental RMS Magnitude ent with any magnitude surpassing any phase maximum 4-wire, else -32,768
1491	Max. B Voltage R Fundamental Coincident Angle	Y	N	Degrees	0 to 3,599	Phase B-N Voltage Fundamental Angle coincident with Maximum fundamental voltage 4-wire, else -32,768
1492	Max. C Voltage R Fundamental RMS Magnitude	Y	D	Volts/Scale Factor D	$0 \text { to 32,767 }$ Coi	Maximum Phase C-N Voltage Fundamental RMS Magnitude ent with any magnitude surpassing any phase maximum 4-wire, else -32,768
1493	Max. C Voltage R Fundamental Coincident Angle	Y	N	Degrees in 10ths	0 to 3,599	Phase C-N/C-A Voltage Fundamental Angle coincident with Maximum fundamental voltage

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register CM/2	r Number CM/1	Register Name			Saved	Scaled	Units	Range	Register Description
1494		Max. A-B Volt. Fundamental RMS Magnitude	R	Y	Y	D	Volts/Scale Factor D	0 to 32,767	Maximum Phase A-B Voltage Fundamental RMS Magnitude
1495		Max. A-B Volt. Fundamental Angle	R	Y	Y	N	10ths of Degrees	0 to 3,599	Maximum Phase A-B Voltage Fundamental Angle, Referenced to A-N (4 wire) or A-B (3 wire) Voltage Angle
1496		Max. B-C Volt. Fundamental RMS Magnitude	R	Y	Y	D	Volts/Scale Factor D	0 to 32,767	Maximum Phase B-C Voltage Fundamental RMS Magnitude
1497		Max. B-C Volt. Fundamental Angle	R	Y	Y	N	10ths of Degrees	0 to 3,599	Maximum Phase B-C Voltage Fundamental Angle, Referenced to A-N (4 wire) or A-B (3 wire) Voltage Angle
1498		Max. C-A Volt. Fundamental RMS Magnitude	R	Y	Y	D	Volts/Scale Factor D	0 to 32,767	Phase C-A Voltage Fundamental RMS Magnitude
1499		Max. C-A Volt. Fundamental Angle	R	Y	Y	N	10ths of Degrees	0 to 3,599	Phase C-A Voltage Fundamental Angle, Referenced to A-N (4 wire) or A-B (3 wire) Voltage Angle
1500		Max.Phase A Fundamental Real Power	R		Y	E	KW/Scale Factor E	0 to +/- 32,767	Maximum Fundamental Real Power, Phase A 4-wire, else -32,768
1501		Max. Phase B Fundamental Real Power	R	Y	Y	E	KW/Scale Factor E	0 to +/- 32,767	Maximum Fundamental Real Power, Phase B 4-wire, else -32,768
1502		Max. Phase C Fundamental Real Power	R		Y	E	KW/Scale Factor E	0 to +/- 32,767	Maximum Fundamental Real Power, Phase C 4-wire, else -32,768

Printed: 4-Jun-99 Min_Max.doc Rev: Z32 Revised: 05/26/99 4:17 PM

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1503		Max.Fund. Real Power 3 Phase Total	R	Y	E	KW/Scale Factor E	0 to +/- 32,767	Maximum Fundamental Real Power, 3 Phase Total
1504		Max. Phase A Fundamental Reactive Power	R	Y	E	KW/Scale Factor E	0 to +/- 32,767	Maximum Fundamental Reactive Power, Phase A 4-wire, else - 32,768
1505		Max. Phase B Fundamental Reactive Power	R	Y	E	KW/Scale Factor E	0 to +/-32,767	Maximum Fundamental Reactive Power, Phase B 4-wire, else -32,768
1506		Max. Phase C Fundamental Reactive Power	R	Y	E	KW/Scale Factor E	0 to +/- 32,767	Maximum Fundamental Reactive Power, Phase C 4-wire, else - 32,768
1507		Max. Fund. Reactive Power 3 Phase Total	R	Y	E	KW/Scale Factor E	0 to +/- 32,767	Maximum Fundamental Reactive Power, 3 Phase Total
1508		Max. Harmonic Factor, Phase A	R	Y	N	Percent in 10ths	0 to 1000	Maximum Harmonic Factor for phase A - equal to True A PF/Displacement A PF 4-wire, else -32,768
1509		Max. Harmonic Factor, Phase B	R	Y	N	Percent in 10ths	0 to 1000	Maximum Harmonic Factor for phase B - equal to True B PF/Displacement B PF 4-wire, else -32,768
1510		Max. Harmonic Factor, Phase C	R	Y	N	Percent in 10ths	0 to 1000	Maximum Harmonic Factor for phase C - equal to True C PF/Displacement C PF 4-wire, else -32,768
1511		Max. Harmonic Factor, 3 Phase Total	R	Y	N	Percent in 10ths	0 to 1000	Maximum Harmonic Factor for 3 phase total - equal to True Total PF/Displacement Total PF

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1512	Max. Harmonic Power Phase A	R	Y	E	KW/Scale Factor E	0 to $+/-32,767$	Minimum Harmonic Power Phase A, 4-wire, else -32,768
1513	Max. Harmonic Power Phase B	R	Y	E	KW/Scale Factor E	0 to +/-32,767	Minimum Harmonic Power Phase B, 4-wire, else -32,768
1514	Max. Harmonic Power Phase C	R	Y	E	KW/Scale Factor E	0 to +/-32,767	Minimum Harmonic Power Phase C, 4-wire, else -32,768
1515	Max. Harmonic Power, 3 Phase T		Y	E	KW/Scale Factor E	0 to +/-32,767	Minimum Harmonic Power 3 Phase Total,
$\begin{aligned} & 1516- \\ & 1549 \end{aligned}$	Reserved for future metered value maximums						
$\begin{aligned} & 1550- \\ & 1589 \end{aligned}$	CUL User Defined Metering Maximu Quantities		N	N	None	0 to +/-32,767	Definition for each user is created by the CUL User
1590	Reserved for future metered value maximums						
1591	Analog Input 1 Maximum Value	R	Y	Y	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	The maximum value of the analog input 1 register since last reset of $\mathrm{min} / \mathrm{max}$ parameters
1592	Analog Input 2 Maximum Value	R	Y	Y	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	The maximum value of the analog input 2 register since last reset of $\mathrm{min} / \mathrm{max}$ parameters
1593	Analog Input 3 Maximum Value	R	Y	Y	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	The maximum value of the analog input 3 register since last reset of $\mathrm{min} /$ max parameters
1594	Analog Input 4 Maximum Value	R	Y	Y	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	The maximum value of the analog input 4 register since last reset of $\mathrm{min} / \mathrm{max}$ parameters

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All Rights Reserved © 1993

ENERGY VALUES

Each energy is kept in 4 registers, except Incremental which is kept in 3 registers, modulo 10,000 per register ACCUMULATED ENERGY

1600		Unused						
$\begin{aligned} & 1601- \\ & 1604 \end{aligned}$		Real Energy In 3 Phase Total	R	Y	N	WH	0 to 9,999, $999,999,999,999$	Sum of the three real phase Energies into the load
$\begin{aligned} & 1605- \\ & 1608 \end{aligned}$		Reactive Energy In 3 Phase Total	R	Y	N	VArH	0 to 9,999,999,999,999,999	Sum of the three reactive phase energies into the load, using either the fundamental or total energy.
$\begin{aligned} & 1609- \\ & 1612 \end{aligned}$		Real Energy Out 3 Phase Total	R	Y	N	WH	0 to 9,999,999, 999,999,999	Sum of the three real phase Energies out of the load
$\begin{aligned} & 1613- \\ & 1616 \end{aligned}$		Reactive Energy Out 3 Phase Total	R	Y	N	VArH	0 to 9,999, 999, $999,999,999$	Sum of the three reactive phase energies out of the load, using either the fundamental or total energy.
$\begin{aligned} & 1617- \\ & 1620 \end{aligned}$		Apparent Energy, 3 Phase Total	R	Y	N	VAH	0 to $9,999,999,999,999,999$	Sum of the three apparent phase Energies
1621-	$24-$	Real	R	Y	N	WH	0 to $+/-9,999,999,999,999,999$	Real Energy into the load - Real Energy Out of the Load or
1624	27	Energy Signed/Absolute 3 Phase Total						Real Energy into the load + Real Energy Out of the Load or user selectable

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Program.

Register Number Register Name CM/2 CM/1	Type	Saved	Scaled	Units	Range	Register Description	
$1625-28-$	Reactive	R	Y	N	VArH	0 to $+/-9,999,999,999,999,999$	Reactive Energy into the load - Reactive Energy
1628	31	Energy Signed/Absolute			Out of the Load or Reactive Energy into the 3 Phase Total		

CONDITIONAL ACCUMULATED ENERGY

Register Number	Register Name	Type	Saved	Program.		Range	
				Scaled	Units		Register Description
$\begin{aligned} & 1629- \\ & 1632 \end{aligned}$	Conditional Real Energy In, 3 Phase Total	R	Y	N	WH	0 to 9,999, 999, $999,999,999$	Sum of the three real Conditional phase Energies into the load
$\begin{aligned} & 1633- \\ & 1636 \end{aligned}$	Conditional Reactive Energy In 3 Phase Total	R	Y	N	VArH	0 to 9,999, $999,999,999,999$	Sum of the three reactive Conditional phase energies into the load, using either the fundamental or total energy.
$\begin{aligned} & 1637- \\ & 1640 \end{aligned}$	Conditional Real Energy Out, 3 Phase Tota		Y	N	WH	0 to 9,999, $999,999,999,999$	Sum of the three real Conditional phase Energies out of the load
$\begin{aligned} & 1641- \\ & 1644 \end{aligned}$	Conditional Reactive Energy Out 3 Phase Total	R	Y	N	VArH	0 to $9,999,999,999,999,999$ energy.	Sum of the three reactive Conditional phase energies into the load, using either the fundamental or total
$\begin{aligned} & 1645- \\ & 1648 \end{aligned}$	Conditional Apparent Energy 3 Phase Total	R	Y	N	VAH	0 to 9,999, $999,999,999,999$	Sum of the three apparent Conditional phase Energies

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993

Program.

Register Number Register Name Type Saved Scaled Units Range

 CM/2 CM/1INCREMENTAL ACCUMULATED ENERGY

					Program			
Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1700		Present Current Demand 3 Phase Average	R	N	Y	Amps/Scale Factor A	0 to 32,767	Present current demand, 3 Phase Average Average of 3 phase thermal demand currents
1701	32	Present Current Demand Phase A	R	N	Y	Amps/Scale Factor A	0 to 32,767	Present current demand, thermal, Phase A
1702	33	Present Current Demand Phase B		N	Y	Amps/Scale Factor A	0 to 32,767	Present current demand, thermal, Phase B
1703	34	Present Current Demand Phase C	R	N	Y	Amps/Scale Factor A	0 to 32,767	Present current demand, thermal, Phase C
1704		Present Current Demand Neutral	R	N	Y	Amps/Scale Factor B	0 to 32,767	Present current demand, thermal, Neutral, if applicable, else - 32,768
1705		Thermal K-Factor Demand, Phase A		N	N	In 10ths	0 to 10,000	Thermal K-Factor demand, phase A, over the demand interval
1706		Thermal K-Factor Demand, Phase B		N	N	In 10ths	0 to 10,000	Thermal K-Factor demand, phase B, over the demand interval
1707		Thermal K-Factor Demand, Phase C	R	N	N	In 10ths	0 to 10,000	Thermal K-Factor demand, phase C, over the demand interval

Proprietary document: Property of Square d Co.
 NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. AlL RIGHTS RESERVED © 1993

Register CM/2		Register Name	Type	Saved	Scaled	Units	Range	Register Description
CURRENT DEMAND (continued)								
1708		Peak Current Deman 3 Phase Averag	R	Y	Y	Amps/Scale Factor A	0 to 32,767	Peak current demand, 3 Phase Average
1709	84	Peak Current Demand Phase		Y	Y	Amps/Scale Factor A	0 to 32,767	Peak current demand, Phase A
1710	85	Peak Current Demand Phase		Y	Y	Amps/Scale Factor A	0 to 32,767	Peak current demand, Phase B
1711	86	Peak Current Demand Phase	R	Y	Y	Amps/Scale Factor A	0 to 32,767	Peak current demand, Phase C
1712		Peak Current Demand Neutra	R	Y	Y	Amps/Scale Factor A	0 to 32,767	Peak Current Demand, Neutral if applicable, else -32,768
1713		K-Factor Demand Phase A Coinci Peak Product		Y	N	In 10ths	0 to 10,000	K-Factor demand, phase A, over the demand interval coincident with the peak of the product of K-Factor Demand and square of Current Demand
1714		Current Demand Phase A Coinci Peak Product		Y	Y	Amps/Scale Factor A	0 to 32,767	Current demand, Phase A coincident with peak of the product of K-Factor Demand and the square of Current Demand

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993

Register Number CM/2 CM/1		Register Name	Type	Saved	Program.		Range	Register Description	
		Scaled			Units				
1715			K-Factor Demand Phase B Coinci Peak Product		Y	N	In 10ths	0 to 10,000	K-Factor demand, phase B, over the demand interval coincident with the peak of the product of K-Factor Demand and square of Current Demand
1716		Current Demand Phase B Coinci Peak Product		Y	Y	Amps/Scale Factor A	0 to 32,767	Current demand, Phase B coincident with the peak of the product of K-Factor Demand and the square of Current Demand	
1717		K-Factor Demand Phase C Coinci Peak Product		Y	N	In 10ths	0 to 10,000	K-Factor demand, phase C, over the demand interval coincident with the peak of the product of K-Factor Demand and square of Current Demand	
1718		Current Demand Phase C Coinci Peak Product		Y	Y	Amps/Scale Factor A	0 to 32,767	Current demand, Phase C coincident with the peak of the product of K-Factor Demand and the square of Current Demand	
$\begin{aligned} & 1719- \\ & 1729 \end{aligned}$		Reserved							

Register Number Register Name Type Saved Scaled Units Range Register Description

CM/2 CM/1

POWER DEMAND $\quad * *$ Reactive Demand may be calculated either using the fundamental only (default) or using total harmonics, user selectable.

1730		Average Power Factor Over Interval	R	N	Y	Percent in 1000ths	$\begin{aligned} & -100 \text { to } 1000 \\ & \text { to }+100 \end{aligned}$	Average True Power Factor over the last completed Demand Interval i.e. (Demand kW)/(Demand kVA). Updated every sub-interval
1731	35	Present Real Power, Demand, 3 Phase	R Total	N	E	kW/Scale Factor E	0 to +/-32,767	Present Real Power Demand, 3 phase total for the last completed demand interval. Updated every sub-interval
1732		Present Reactive Power, Demand, 3 Phase	R Total	N	E	kVAr/Scale Factor E	0 to +/-32,767	Present Reactive Power Demand, 3 phase totals for the last completed demand interval, using either the fundamental or total energy. updated every sub-interval.
1733		Present Apparent Power D Demand, 3 Phase	R Demand Total	N	E	kVA/Scale Factor E	0 to 32,767	Present Apparent Power Demand, 3 phase total for the last completed demand interval. Updated ever sub-interval.
1734	37	Peak Real Power Demand 3 Phase Total	R	Y	E	kW/Scale Factor E	0 to +/-32,767	Peak Real Power Demand, 3 phase total
1735	83	Average Power Factor, for Peak Real	R	Y	Y	Percent in 1000ths	$\begin{aligned} & -100 \text { to } 1000 \\ & \text { to }+100 \end{aligned}$	Average True Power Factor at time of Peak Real Demand
1736		Reactive Power Demand for Peak Real	R	Y	Y	kVAr/Scale Factor E	0 to +/-32,767	Reactive Powrer Demand coincident with peak real power demand
1737		Apparent Power Demand for Peak Real	R	Y	Y	kVA/Scale Factor E	0 to 32,767	Apparent Power Demand coincident with peak real power demand

Printed: 4-Jun-99 Demand.doc Rev: Z32 Revised: 05/26/99 4:10 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Program.
Register Number Register Name Type Saved Scaled Units Range Register Description CM/2 CM/1

POWER DEMAND (continued)

1738	Peak Reactive Power Demand, 3 Phase Total		Y	E	kVAr/Scale Factor E	0 to +/-32,767	Peak Reactive Power Demand, 3 phase total
1739	Average Power Factor for Peak Reactive	R	Y	Y	Percent in 1000ths	$\begin{aligned} & -100 \text { to } 1000 \\ & \text { to }+100 \end{aligned}$	Average True Power Factor at time of Peak Reactive Demand
1740	Real Power Demand for Peak Reactive		Y	Y	kW/Scale Factor E	0 to +/-32,767	Real Power Demand coincident with peak reactive power demand
1741	Apparent Power Demand for Peak Reactive		Y	Y	kVA/Scale Factor E	0 to 32,767	Apparent Power Demand coincident with peak reactive power demand
1742	Peak Apparent Power Demand, 3 Phase Total		Y	E	kVA/Scale Factor E	0 to 32,767	Peak Apparent Power Demand, 3 phase total
1743	Average Power Factor, for Peak Apparent	R	Y	Y	Percent in 1000ths	$\begin{aligned} & -100 \text { to } 1000 \\ & \text { to }+100 \end{aligned}$	Average True Power Factor at time of Peak Apparent Demand
1744	Real Power Demand for Peak Apparent		Y	Y	kW/Scale Factor E	0 to +/-32,767	Real Power Demand coincident with peak apparent power demand

Printed: 4-Jun-99 Demand.doc Rev: Z32 Revised: 05/26/99 4:10 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Program.

Register $\mathrm{CM} / 2$	Number CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
1745		Reactive Power Demand for Peak Apparent	Y	Y	kVAr/Scale Factor E	0 to $+/-32,767$	Reactive Power Demand coincident with peak apparent power demand
1746	36	Predicted \quad R Real Power Demand, 3 Phase Total	N	E	kW/Scale Factor E	0 to $+/-32,767$	Predicted Real Power Demand, 3 phase total Average of last four 15s granules
1747		Predicted Reactive Power Demand, 3 Phase Total	N	E	kVAr/Scale Factor E	0 to 32,767	Predicted Reactive Power Demand, 3 phase total, using either the fundamental or total energy.
1748		Predicted Apparent Power Demand, 3 Phase Total	N	E	kVA/Scale Factor E	0 to 32,767	Predicted Apparent Power Demand, 3 phase total
1749		Max. Real $\quad \mathrm{R}$ Power 3 phase Demand over last inc. energy interval	Y	E	kW/Scale Factor E	0 to 32,767	Maximum Real Power 3 Phase Demand calculation over the last incremental energy interval
1750		Max. Reactive R Power 3 phase Demand over last inc. energy interval	Y	E	kVAr/Scale Factor E	0 to 32,767	Maximum Reactive Power 3 Phase Demand calculation over the last incremental energy interval
1751		Max. Apparent \quad R Power 3 phase Demand over last inc. energy interval	Y	E	kVA/Scale Factor E	0 to 32,767	Maximum Apparent Power 3 Phase Demand calculation over the last incremental energy interval
1752		Time Remaining R in Sub Demand	Y	N	Seconds	0 to 3600	Time remaining in the power sub demand interval for demand intervals without external synch pulse,

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Program.
Register Number Register Name Type Saved Scaled Units CM/2 CM/1

Interval
Range
Register Description
otherwise -32,768.

Printed: 4-Jun-99 Demand.doc Rev: Z32 Revised: 05/26/99 4:10 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

DATE/TIME								
Compressed (3 registers)				Program				
Register	Number	Register Name	Type	Saved	Scaled	Units	Range	Register Description
CM/2	CM/1							
$\begin{aligned} & 1800- \\ & 1802 \end{aligned}$	88- 90	Last Restart Date/Time	R	Y	N	Month,Day,Yr, Hr, MinSec	*See below	Date and Time of Last Restart compressed form
$\begin{aligned} & 1803- \\ & 1805 \end{aligned}$	$\begin{aligned} & 91- \\ & 93 \end{aligned}$	Date/Time Demand of Peak Current Phase A	R	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Date/Time of Peak demand current, A, compressed form
$\begin{aligned} & 1806- \\ & 1808 \end{aligned}$	$\begin{aligned} & 94- \\ & 96 \end{aligned}$	Date/Time Demand of Peak Current Phase B	R	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Date/Time of Peak demand current, B, compressed form
$\begin{aligned} & 1809- \\ & 1811 \end{aligned}$	$\begin{aligned} & 97- \\ & 99 \end{aligned}$	Date/Time Demand of Peak Current Phase C	R	Y	N	$\begin{aligned} & \text { Month,Day,Yr, } \\ & \text { Hr,Min,Sec } \end{aligned}$	Same as Regs \# 1800-1802	Date/Time of Peak demand current, C, compressed form
$\begin{aligned} & 1812- \\ & 1814 \end{aligned}$	$\begin{aligned} & 100- \\ & 102 \end{aligned}$	Date/Time of Peak Demand (Average Real Power)	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time of Peak Real Demand Power, 3 phase total, compressed form
$\begin{aligned} & 1815- \\ & 1817 \end{aligned}$	$\begin{aligned} & 103- \\ & 105 \end{aligned}$	Date/Time of Last Reset of Peak Demand C		Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Date/Time of last reset of Peak Demand Current compressed form
$\begin{aligned} & 1818- \\ & 1820 \end{aligned}$	$\begin{aligned} & 106- \\ & 108 \end{aligned}$	Date/Time of last Min/Max Cl of Instantaneous	R ear	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Date/Time of last Min/Max Clear of Instantaneous values compressed form

Proprietary Document: Property of Square d Co.

NOT TO be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993
*Register 1800, Month (high byte) = 1-12, Day (low byte) $=1-31$, Register 1801, Year (high byte) $=0-199$), Hour (low byte) $=0-23$, Register 1802, Minutes (high byte) $=0-59$, Seconds (low byte) $=0-59$. The year is zero based on the year 1900 in anticipation of the 21 st century, (e.g. 1989 wou ld be represented as 89 and 2009 would be represented as 109).

$\begin{aligned} & 1821- \\ & 1823 \end{aligned}$	$\begin{aligned} & 109- \\ & 111 \end{aligned}$	Date/Time of \quad R Last Write to Circuit Tracker ${ }^{\text {TM }}$ Setpoint Register	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Date/Time of Last Write to Circuit Tracker ${ }^{\text {TM }}$ Setpoint Register compressed form
$\begin{aligned} & 1824- \\ & 1826 \end{aligned}$	$\begin{aligned} & 112- \\ & 114 \end{aligned}$	Date/Time when R Peak Demand was last cleared	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time when Peak Demand (Average Real Power) was last Cleared. compressed form
$\begin{aligned} & 1827- \\ & 1829 \end{aligned}$	$\begin{aligned} & 115- \\ & 117 \end{aligned}$	Date/Time when R Accumulated Energy Last Cleared	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time when Accumulated Energy Last Cleared compressed form
$\begin{aligned} & 1830- \\ & 1832 \end{aligned}$	$\begin{aligned} & 118- \\ & 120 \end{aligned}$	Date/Time when R Control Power Failed Last	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time when the Control Power failed last compressed form
$\begin{aligned} & 1833- \\ & 1835 \end{aligned}$	$\begin{aligned} & 124- \\ & 126 \end{aligned}$	Date/Time R When Level 1 Energy Mgmt. Setpt. Alarm Period was La	Y ered	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time When Level 1 Energy Management Set-Point Alarm Period was last entered. compressed form
$\begin{aligned} & 1836- \\ & 1838 \end{aligned}$	$\begin{aligned} & 127- \\ & 129 \end{aligned}$	Date/Time R When Level 2 Energy Mgmt. Setpt. Alarm Period was La	Y ered	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time When Level 2 Energy Management Set-Point Alarm Period was last entered. compressed form
$\begin{aligned} & 1839- \\ & 1841 \end{aligned}$	$\begin{aligned} & 130- \\ & 132 \end{aligned}$	Date/Time \quad R When Level 3 Energy Mgmt. Setpt.	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Date/Time When Level 3 Energy Management Set-Point Alarm Period was last entered. compressed

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 1842- \\ & 1844 \end{aligned}$	$\begin{aligned} & 228- \\ & 230 \end{aligned}$	Present/Set Date/Time	R/(W*)	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Present/Set Date/Time in compressed form * Only the ghosted CM1 registers are R/W, the CM2 Registers are Read only
$\begin{aligned} & 1845- \\ & 1847 \end{aligned}$	$\begin{aligned} & 232- \\ & 234 \end{aligned}$	Calibration	R	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Date and Time of Calibration compressed form
$\begin{aligned} & 1848- \\ & 1850 \end{aligned}$		Date/Time of Peak K-Factor Demand A Product	R	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Date/Time of the Peak of the product of K-factor demand and current demand, phase A in compressed form
$\begin{aligned} & 1851- \\ & 1853 \end{aligned}$		Date/Time of Peak K-Factor Demand B Product	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time of the Peak of the product of K-factor demand and current demand, phase B in compressed form
$\begin{aligned} & 1854- \\ & 1856 \end{aligned}$		Date/Time of Peak K-Factor Demand C Product	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time of the Peak of the product of K-factor demand and current demand, phase C in compressed form
$\begin{aligned} & 1857- \\ & 1859 \end{aligned}$		Date/Time of Peak Reactive Demand Power	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time of Peak Reactive Demand Power, 3 phase total, compressed form
$\begin{aligned} & 1860- \\ & 1862 \end{aligned}$		Date/Time of Peak Apparent Demand Power	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time of Peak Apparent Demand Power, 3 phase total, compressed form
$\begin{aligned} & 1863- \\ & 1865 \end{aligned}$		Incremental Energy Start Time	$\mathrm{e}^{\mathrm{R} / \mathrm{W}}$	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \#	Incremental Energy start time of day compressed form (month, day and year are used only

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
		of Day					1800-1802	to start accumulation, after that only $\mathrm{Hr}, \mathrm{Min}, \& \mathrm{Sec}$ are used).
$\begin{aligned} & 1866- \\ & 1868 \end{aligned}$		Date/Time when Conditional Energy Last Cleared		Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time when Conditional Energy Last Cleared compressed form
$\begin{aligned} & 1869- \\ & 1871 \end{aligned}$		Incremental Energy Last Updat Date/Time		Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Incremental Energy Last Update Date/Time
$\begin{aligned} & 1872- \\ & 1874 \end{aligned}$		Date/Time of Peak 3 phase Avg Current Demand		Y	$\begin{aligned} & \mathrm{N} \\ & \mathrm{Hr}, \mathrm{Min}, \end{aligned}$	Month,Day,Yr, Sec Regs \#	Same as $1800-1802$	Date/Time of Peak 3 phase Average Current Demand sed form
$\begin{aligned} & 1875- \\ & 1877 \end{aligned}$		Date/Time of Peak Neutral Current Demand	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time of Peak Neutral Current Demand compressed form
$\begin{aligned} & 1878- \\ & 1880 \end{aligned}$		Date/Time of Max Real PowerDemand during last inc. energy interval	R	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Date/Time of Max Real Power Demand during the last completed incremental energy interval. Compressed form
$\begin{aligned} & 1881- \\ & 1883 \end{aligned}$		Date/Time of Max Reactive PowerDemand during last inc. energy interval	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Regs \# 1800-1802	Date/Time of Max Reactive Power Demand during the last completed incremental energy interval. Compressed form
$\begin{aligned} & 1884- \\ & 1886 \end{aligned}$		Date/Time of Max Apparent PowerDemand during last inc. energy interval	R	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Date/Time of Max Apparent Power Demand during the last completed incremental energy interval. Compressed form

Proprietary document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993
Register Number Register Name Type Saved Scaled Units Range Register Description

$\begin{aligned} & 1887- \\ & 1892 \end{aligned}$	Reserved						
$\begin{aligned} & 1893- \\ & 1898 \end{aligned}$	Present Date/Time 6 Reg format	R	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Regs \# 1800-1802	Present date/time 6 register format
$\begin{aligned} & 1900- \\ & 1902 \end{aligned}$	Date/Time of Max Generic Demand \#1	R	Y	N	Month,Day, Yr $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Reg. \# 1893	Date/Time of Max Generic Demand \#1
$\begin{aligned} & 1903- \\ & 1905 \end{aligned}$	Date/Time of Min Generic Demand \#1	R	Y	N	Month,Day, Yr Hr,Min,Sec	Same as Reg. \# 1893	Date/Time of Min Generic Demand \#1
$\begin{aligned} & 1906- \\ & 1908 \end{aligned}$	Date/Time of Max Generic Demand \#2	R	Y	N	Month,Day,Yr Hr,Min,Sec	Same as Reg. \# 1893	Date/Time of Max Generic Demand \#2
$\begin{aligned} & 1909- \\ & 1911 \end{aligned}$	Date/Time of Min Generic Demand \#2	R	Y	N	Month,Day, Yr $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Reg. \# 1893	Date/Time of Min Generic Demand \#2
$\begin{aligned} & 1912- \\ & 1914 \end{aligned}$	Date/Time of Max Generic Demand \#3	R	Y	N	Month,Day,Yr $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Reg. \# 1893	Date/Time of Max Generic Demand \#3
$\begin{aligned} & 1915- \\ & 1917 \end{aligned}$	Date/Time of Min Generic Demand \#3	R	Y	N	Month,Day, Yr Hr,Min,Sec	Same as Reg. \# 1893	Date/Time of Min Generic Demand \#3
$\begin{aligned} & 1918- \\ & 1920 \end{aligned}$	Date/Time of Max Generic Demand \#4	R	Y	N	Month,Day,Yr $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Reg. \# 1893	Date/Time of Max Generic Demand \#4

Printed: 4-Jun-99 Date-tim.doc Rev: Z32 Revised: 05/26/99 3:57 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Registe CM/2	Number Register Name CM/1	Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 1921- \\ & 1923 \end{aligned}$	Date/Time of Min Generic Demand \#4	R	Y	N	Month,Day,Yr $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Reg. \# 1893	Date/Time of Min Generic Demand \#4
$\begin{aligned} & 1924- \\ & 1926 \end{aligned}$	Date/Time of Max Generic Demand \#5	R	Y	N	Month,Day,Yr $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Reg. \# 1893	Date/Time of Max Generic Demand \#5
$\begin{aligned} & 1927- \\ & 1929 \end{aligned}$	Date/Time of Min Generic Demand \#5	R	Y	N	Month,Day,Yr $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Reg. \# 1893	Date/Time of Min Generic Demand \#5
$\begin{aligned} & 1930- \\ & 1932 \end{aligned}$	Date/Time of Max Generic Demand \#6	R	Y	N	Month,Day, Yr Hr,Min,Sec	Same as Reg. \# 1893	Date/Time of Max Generic Demand \#6
$\begin{aligned} & 1933- \\ & 1935 \end{aligned}$	Date/Time of Min Generic Demand \#6	R	Y	N	Month,Day,Yr Hr,Min,Sec	Same as Reg. \# 1893	Date/Time of Min Generic Demand \#6
$\begin{aligned} & 1936- \\ & 1938 \end{aligned}$	Date/Time of Max Generic Demand \#7	R	Y	N	Month,Day,Yr $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Reg. \# 1893	Date/Time of Max Generic Demand \#7
$\begin{aligned} & 1939- \\ & 1941 \end{aligned}$	Date/Time of Min Generic Demand \#7	R	Y	N	Month,Day, Yr $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Reg. \# 1893	Date/Time of Min Generic Demand \#7
$\begin{aligned} & 1942- \\ & 1944 \end{aligned}$	Date/Time of Max Generic Demand \#8	R	Y	N	Month,Day,Yr Hr,Min,Sec	Same as Reg. \# 1893	Date/Time of Max Generic Demand \#8
1945-	Date/Time of	R	Y	N	Month,Day,Yr	Same as	Date/Time of Min Generic Demand \#8

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
1947		Min Generic Demand \#8				Hr,Min,Sec	$\begin{aligned} & \text { Reg. \# } \\ & 1893 \end{aligned}$	
$\begin{aligned} & 1948- \\ & 1950 \end{aligned}$		Date/Time of Max Generic Demand \#9	R	Y	N	Month,Day,Yr Hr,Min,Sec	Same as Reg. \# 1893	Date/Time of Max Generic Demand \#9
$\begin{aligned} & 1951- \\ & 1953 \end{aligned}$		Date/Time of Min Generic Demand \#9	R	Y	N	Month,Day,Yr Hr,Min,Sec	Same as Reg. \# 1893	Date/Time of Min Generic Demand \#9
$\begin{aligned} & 1954- \\ & 1956 \end{aligned}$		Date/Time of Max Generic Demand \#10	R	Y	N	Month,Day, Yr Hr,Min,Sec	Same as Reg. \# 1893	Date/Time of Max Generic Demand \#10
$\begin{aligned} & 1957- \\ & 1959 \end{aligned}$		Date/Time of Min Generic Demand \#10	R	Y	N	Month,Day,Yr Hr,Min,Sec	Same as Reg. \# 1893	Date/Time of Min Generic Demand \#10
$\begin{aligned} & 1988- \\ & 1990 \end{aligned}$		Date/Time of Last Write Register Group 2000-2999	R	Y	N	Sec, Min, Hour Day, Month, Yr	Same as Regs \# 1800-1802	Date/Time of Last Write to Register Group 2000-2999
1991		Source of Last Write to Register Group 2000-2999	R	Y	N	None	0-4	Date/Time of Last Write to Register Group 2000-2999 External Change Source: $\begin{aligned} & 1=\text { Comms } \\ & 2=\text { Commands } \mathrm{i} / \mathrm{f} \\ & 3=\text { Front Panel } \\ & 4=\text { CUL } \end{aligned}$
$\begin{aligned} & 1992- \\ & 1994 \end{aligned}$		Date/Time of Last Write to Register Group	R	Y	N	Sec, Min, Hour Day, Monty, Yr	Same as Reg \# 1800-1802	Date/Time of Last Write to Register Group 5600-6999

	5600-6999					
1995	Source of Last R Write to Register Group 5600-6999	Y	N	None	0-4	Date/Time of Last Write to Register Group 5600-6999 External Change Source $\begin{aligned} & 1=\text { Comms } \\ & 2=\text { Commands } i / f \\ & 3=\text { Front Panel } \\ & 4=\text { CUL } \end{aligned}$
$\begin{aligned} & 1996- \\ & 1998 \end{aligned}$	Date/Time of Last Write to Register Group 7000-7399	Y	N	Sec, Min, Hour Day, Monty, Y	Same as Reg \# 1800-1802	Date/Time of Last Write to Register Group 7000-7399
1999	Source of Last R Write to Register Group 7000-7399	Y	N	None	0-4	Date/Time of Last Write to Register Group 7000-7399 External Change Source $\begin{aligned} & 1=\text { Comms } \\ & 2=\text { Commands i/f } \\ & 3=\text { Front Panel } \\ & 4=\text { CUL } \end{aligned}$

Date/Time of Last Write to Register Group 5600-6999 External Change Source
1 = Comms
$2=$ Commands i / f
$3=$ Front Panel
$4=$ CUL

	5600-6999					
1995	Source of Last R Write to Register Group 5600-6999	Y	N	None	0-4	Date/Time of Last Write to Register Group 5600-6999 External Change Source $\begin{aligned} & 1=\text { Comms } \\ & 2=\text { Commands } i / f \\ & 3=\text { Front Panel } \\ & 4=\text { CUL } \end{aligned}$
$\begin{aligned} & 1996- \\ & 1998 \end{aligned}$	Date/Time of Last Write to Register Group 7000-7399	Y	N	Sec, Min, Hour Day, Monty, Y	Same as Reg \# 1800-1802	Date/Time of Last Write to Register Group 7000-7399
1999	Source of Last R Write to Register Group 7000-7399	Y	N	None	0-4	Date/Time of Last Write to Register Group 7000-7399 External Change Source $\begin{aligned} & 1=\text { Comms } \\ & 2=\text { Commands i/f } \\ & 3=\text { Front Panel } \\ & 4=\text { CUL } \end{aligned}$

DATE/TIME
expanded (6 registers) - These registers do not really "exist", instead they are calculated from the compressed format registers when a communications read request occurs. Therefore they may not be used for any on-board event or logic operations.

N/A	$700-$ 705	Last Restart Date/Time	R	Y	N	Sec, Min, Hour Day, Month, Yr	*See below	Date and Time of Last Restart expanded form

Register Number Register Name Type Saved Scaled Units Range Register Description

		Peak Current Phase B				700-705	
N/A	$\begin{aligned} & 718- \\ & 723 \end{aligned}$	Date/Time R Demand of Peak Current Phase C	Y	N	Sec, Min, Hour Day, Month, Yr	Same as Reg \# 700-705	Date/Time of Peak demand current, C, expanded form
N/A	$\begin{aligned} & 724- \\ & 729 \end{aligned}$	Date/Time of R Peak Demand (Average Real Power)	Y	N	Sec, Min, Hour Day, Month, Yr	Same as Reg \# 700-705	Date/Time of Peak Real Demand Power, 3 phase total, expanded form
N/A	$\begin{aligned} & 730- \\ & 735 \end{aligned}$	$\begin{aligned} & \text { Date/Time of } \quad \text { R } \\ & \text { Last Reset of } \\ & \text { Peak Demand Current } \end{aligned}$	Y	N	Sec, Min, Hour Day, Month, Yr	Same as Reg \# 700-705	Date/Time of last reset of Peak Demand Current expanded form
N/A	$\begin{aligned} & 736- \\ & 741 \end{aligned}$	Date/Time of $\quad \mathrm{R}$ last Min/Max Clear of Instantaneous Values	Y	N	Sec, Min, Hour Day, Month, Yr	Same as Reg \# 700-705	Date/Time of last Min/Max Clear of Instantaneous values expanded form

DATE/TIME (continued)
expanded (6 registers) - These registers do not really "exist", instead they are calculated from the compressed format registers when a communications read request occurs. Therefore they may not be used for any on-board event or logic operations
*Seconds $(\operatorname{Reg} 700)=0-59$, Minutes $(\operatorname{Reg} 701)=0-59$, Hours $(\operatorname{Reg} 702)=0-23$,
Day $(\operatorname{Reg} 703) 1-31$, Month $(\operatorname{Reg} 704)=1-12$, Year $(\operatorname{Reg} 705)=1900-2099$
The date and time are mapped from CM Registers 1800-1802.

N/A	$\begin{aligned} & 742- \\ & 747 \end{aligned}$	Date/Time of $\quad \mathrm{R}$ Last Write to Circuit Tracker ${ }^{\text {TM }}$ Setpoint Register	Y	N	Sec, Min, Hour Day, Month, Yr		Date/Time of Last Write to Circuit Tracker ${ }^{\text {TM }}$ Setpoint Register expanded form
N/A	748-	Date/Time when R	Y	N	Sec, Min, Hour	Same as	Date/Time

Register CM/2	Number CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
	753	Peak Demand was last cleared			Day, Month, Yr	$\begin{aligned} & \text { Reg \# } \\ & 700-705 \end{aligned}$	Cleared. expanded form
N/A	$\begin{aligned} & 754- \\ & 759 \end{aligned}$	Date/Time when R Accumulated Energy Last Cleared	Y	N	Sec, Min, Hour Day, Month, Yr	Same as Reg \# 700-705	Date/Time when Accumulated Energy Last Cleared expanded form
N/A	$\begin{aligned} & 760- \\ & 765 \end{aligned}$	Date/Time when R Control Power Failed Last	Y	N	Sec, Min, Hour Day, Month, Yr	Same as Reg \# 700-705	Date/Time when the Control Power failed last expanded form
N/A	$\begin{aligned} & 766- \\ & 771 \end{aligned}$	Date/Time When Level 1 Energy Mgmt. Setpt. Alarm Period was Last		N	Sec, Min, Hour Day, Month, Yr	Same as Reg \#	Date/Time When Level 1 Energy Management Set-Point Alarm Period was last entered. expanded form
N/A	$\begin{aligned} & 772- \\ & 777 \end{aligned}$	Date/Time When Level 2 Energy Mgmt. Setpt. Alarm Period was Last	Y tered	N	Sec, Min, Hour Day, Month, Yr	Same as Reg \# 700-705	Date/Time When Level 2 Energy Management Set-Point Alarm Period was last entered expanded form
N/A	$\begin{aligned} & 778- \\ & 783 \end{aligned}$	Date/Time R When Level 3 Energy Mgmt. Setpt. Alarm Period was Last	Y tered	N	Sec, Min, Hour Day, Month, Yr	Same as Reg \# 700-705	Date/Time When Level 3 Energy Management Set-Point Alarm Period was last entered expanded form
N/A	$\begin{aligned} & 784- \\ & 789 \end{aligned}$	$\begin{aligned} & \text { Present/Set } \quad \text { R/W } \\ & \text { Date/Time } \end{aligned}$	Y	N	Sec, Min, Hour Day, Month, Yr	Same as Reg \# 700-705	Present/Set Date/Time, expanded form
N/A	$\begin{aligned} & 790- \\ & 795 \end{aligned}$	Date/Time of $\quad \mathrm{R}$ Calibration	Y	N	Sec, Min, Hour Day, Month, Yr	Same as Reg \# 700-705	Date and Time of Calibration expanded form

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

		Register Name Type	Saved	Scaled	Units	Range	Register Description
CM/2	CM/1						
2000	200	System Con. CM1R/W	Y	N	None		System Connection 3-wire, 4-wire
2001		System Con. CM2R/W	Y	N	None		System Connection 3-wire, 4-wire with subordinate
2002	201	CT Rat. 3-phase R/W primary ratio term	Y	N	None	1 to 32,767	CT rating, 3 phase primary ratio term
2003		CT Rat. 3-phase R/W secondary ratio term	Y	N	None	1 to 5	CT rating, 3 phase secondary ratio term
2004		CT Rat. Neut. R/W Primary Ratio Term	Y	N	None	1 to 32,767	CT Rating Neutral primary ratio term
2005		CT Rat. Neut. R/W Secondary Ratio Term	Y	N	None	1 to 5	CT Rating Neutral secondary ratio term
2006	202	PT Rat. 3-phase R/W primary ratio term	Y	Y	None/ Scale Factor	1 to 32,767	PT Rating 3-phase primary ratio term used in conjunction with register 2007 PT Rat. 3-phase scale factor
2007		PT Rat. 3-phase R/W primary scale factor	Y	N	None	0 to 2	PT Rating 3-phase primary scale factor. Default value: 0.
2008		PT Rat. 3-phase R/W secondary ratio term	Y	N	None	1 to 600	PT Rating 3-phase secondary ratio term
2009		CT Ratio \quad R Correction Factors Phase A	Y	N	10,000 ths	5,000-20,000	CT Ratio and Correction Factors, Phase A
2010		CT Ratio \quad R Correction Factors Phase B	Y	N	10,000 ths	5,000-20,000	CT Ratio and Correction Factors, Phase B
2011		CT Ratio R Correction Factors Phase C	Y	N	10,000 ths	5,000-20,000	CT Ratio and Correction Factors, Phase C
2012		CT Ratio R	Y	N	10,000 ths	5,000-20,000	CT Ratio and Correction Factors, Phase Neutral/Ground

[^0]Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

		Correction Factors Neutral /Ground					
2013		PT RatioR Y Correction Factors Phase A	N		10,000 ths	5,000-20,000 P	PT Ratio and Correction Factors, Phase A
2014		PT RatioR Y Correction Factors Phase B	N		10,000 ths	5,000-20,000 P	PT Ratio and Correction Factors, Phase B
2015		PT RatioR Y Correction Factors Phase C	N		10,000 ths	5,000-20,000 P	PT Ratio and Correction Factors, Phase C
2016		Nominal System R/W Frequency	Y	N			Nominal System Frequency
2017	87	SY/Max Device R Address	Y	N	None	0 to 89	SY/Max Device Address
2018		Sy/Max Device R Baud Rate	Y	N	Baud	$\begin{aligned} & 1200,2400 \\ & 4800,9600 \\ & 19,200 \end{aligned}$	00 Sy/Max Device Baud Rate
2019		Not Used					
2020		Scale Group A: R Ammeter Per Phase	Y	N	None	-2 to 1	Scale Group A: Ammeter Per Phase $\begin{aligned} & -2=\text { scale by } 0.01 \\ & -1=\text { scale by } 0.10 \\ & 0=\text { scale by } 1.00 \text { (default) } \\ & 1=\text { scale by } 10.0 \end{aligned}$
2021		Scale Group B: R Ammeter Neutral	Y	N	None	-2 to 1	Scale Group B: Ammeter Neutral -2 = scale by 0.01 $-1=$ scale by 0.10 $0=$ scale by 1.00 (default)

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993
Scale Group C: R Y N

Ammeter Ground
Scale Group D: R Y

Voltmeter
wattmeter,
kVarmeter, kVa
Scale Group F: R Y
Frequency

Scaling Error
Y

None

None

None

Units
Range Register Description

1 = scale by 10.0
-2 to 1

1 to 2

1 to 2

0 to 1 F

Scale Group C: Ammeter Ground
-2 = scale by 0.01
$-1=$ scale by 0.10
$0=$ scale by 1.00 (default)
1 = scale by 10.0
Scale Group D: Voltmeter
$-1=$ scale by 0.10
$0=$ scale by 1.00 (default)
$1=$ scale by 10.0
$2=$ scale by 100 .
Scale Group E: kWattmeter, kVarmeter, kVA
-3 = scale by .001
$-2=$ scale by 0.01
$-1=$ scale by 0.10
$0=$ scale by 1.00 (default)
1 = scale by 10.0
2 = scale by 100 .
3 = scale by 1000
Scale Group F: Frequency (Determined by CM)
-2 = scale by 0.01 (default)
$-1=$ scale by 0.10
Possible Scaling Error: selected scale may result in overrange.
Bit 0 is set if any other bits are set
Bit 1 is set for possible phase current scale error
Bit 2 is set for possible N or G current scale error
Bit 3 is set for possible phase voltage scale error
Bit 4 is set for possible power scale error
Select precision of energy display
$0=$ Autorange

Printed: 4-Jun-99 Config.doc Rev: Z32 Revised: 05/26/99 3:24 PM

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
							$\begin{aligned} & 10=000000 \text { kilo } \\ & 11=00000.0 \text { kilo } \\ & 12=0000.00 \text { kilo } \\ & 13=000.000 \text { kilo } \\ & 20=000000 \text { mega } \\ & 21=00000.0 \text { mega } \\ & 22=0000.00 \text { mega } \\ & 23=000.000 \text { mega } \end{aligned}$ All other values will default to autorange.
2028	Command Password	R	Y	N	None	0 to +/-32,767	Command Password (computed by the CM2)
2029	Display Setup Config. Password	R/W	Y	N	None	0 to 9998	Full Access Front Panel Setup Password
2030237	Command Reg.	R/W	N	N	None	0 to FFFF	Command Register for CM/1 compatible functions
2031	Reset Access Password	R/W	Y	N	None	$\begin{aligned} & 0 \text { to } 9998 \\ & \text { or }-32,768 \end{aligned}$	Limited Front Panel Reset Password. When set to - 32,768 the Configuration password is used to access Resets.
2032	Limited Access Disable Bit Mask	R/W	Y	N	None	0 to F (Hex)	Limited Front Panel Reset Disable Bit Mask. A $1=$ Disable. Bit $0=$ Disable Demand Amps Reset Capability Bit 1 = Disable Demand Power Reset Capability Bit 2 = Disable Energy Reset Capability Bit $3=$ Disable Min/Max Reset Capability
2033	Select FFT Hold Time	R/W	Y	N	None	1-60	Select FFT Hold Time. Range 1-60 (default 60). User supplied value to specify the number of metering intervals the FFT values are to be held stable (for retrieval).
2034	Select FFT Component Ratio	R/W	Y	N	None	0-1	$\begin{aligned} & \text { Select FFT Component Ratio } \\ & 0=\% \text { of Fundamental (default) } \\ & 1=\% \text { of RMS } \end{aligned}$
2035	Enable	R/W	Y	N	None	0-2	Enable Presentation of FFT Component Values.

Printed: 4-Jun-99 Config.doc Rev: Z32 Revised: 05/26/99 3:24 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Registe CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
		Presentation of FFT Component Values						$\begin{aligned} & 0=\text { none (i.e. disable) } \\ & 1=\text { volts only } \\ & 2=\text { volts and amps } \end{aligned}$
2036		Remaining FFT Hold Time	R/W	Y	N	None	0-60	Remaining FFT Hold Time Range $0-60$. This value is set $=$ R2033 when FFT values are stable. It then counts down to indicate the remaining FFT hold time. The user may " stretch" the hold time by writing larger (but $<=60$) values into this register when it is not equal 0 . A value of 0 is placed in this register when the values are not stable.
2037		FFT Presentation Status	R	N	N	None	0-1	FFT Presentation Status $\begin{aligned} & 0=\text { Processing } \\ & 1=\text { Hold } \end{aligned}$
2038		System Inhibit Flags	R/W	Y	N	None	0-7	System Inhibit Flags Bit 0 - Any Other Bit Set $=1$ 1-S/S Disabled = 1 2 - CUL Stopped = 1 3- S/S Suspended Temp $=1$ 4- S/S Suspended Perm = 1
2039		Select Event Log Format	R/W	Y	N	None	0-1	Select Event Log Format $0=$ Priority not stored $1=$ Priority stored
$\begin{aligned} & 2040- \\ & 2041 \end{aligned}$	$\begin{aligned} & 218- \\ & 219 \end{aligned}$	CM Label	R/W	Y	N	None	Any Valid Alpha-Numeric	CM Label
2042-	220-	CM Nameplate	R/W	Y	N	None	Any Valid	CM Nameplate
2049	227						Alpha-Numeric	
2050	203	Voltage Gain A-N	R	Y	N	in 10,000ths	8,000 to 12,000	Voltage Gain, A-N

Printed: 4-Jun-99 Config.doc Rev: Z32 Revised: 05/26/99 3:24 PM

Proprietary Document: Property of Square d Co.
NOT TO be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Register Number Register Name CM/2 CM/1			Type	Saved	Scaled	Units	Range	Register Description
2051	205	Voltage Gain B-N	R	Y	N	in 10,000ths	8,000 to 12,000	Voltage Gain, B-N
2052	207	Voltage Gain C-N	R	Y	N	in 10,000ths	8,000 to 12,000	Voltage Gain, C-N
2053	209	Current Gain Phase A	R	Y	N	in 10,000ths	8,000 to 12,000	Current Gain, Phase A
2054	211	Current Gain Phase B	R	Y	N	in 10,000ths	8,000 to 12,000	Current Gain, Phase B
2055	213	Current Gain, Phase C	R	Y	N	in 10,000ths	8,000 to 12,000	Current Gain, Phase C
2056		Current Gain Neutral	R	Y	N	in 10,000ths	8,000 to 12,000	Current Gain, Neutral
2057		Temperature Gain	R	Y	N	in 10,000ths	8,000 to 12,000	Temperature Gain
2058		Temperature at Time of Cal.	R	Y	N	Degress Cent. in 100ths	$\begin{aligned} & -10,000 \text { to } \\ & +10,000 \text { calibrate } \end{aligned}$	The temperature at the time the circuit monitor was
2059		reserved						
2060	204	Voltage Offset A-N	R	Y	N	in 10,000ths	0 to +/-30,000	Voltage Offset, A-N
2061	206	Voltage Offset B-N	R	Y	N	in 10,000ths	0 to $+/-30,000$	Voltage Offset, B-N
2062	208	Voltage Offset C-N	R	Y	N	in 10,000ths	0 to $+/-30,000$	Voltage Offset, C-N

Register Number Register Name CM/2 CM/1	Type	Saved	Scaled	Units	Range	Register Description		
2063	210	Current Offset Phase A	R	Y	N	in 10,000 ths	0 to $+/-30,000$	Current Offset, Phase A

Printed: 4-Jun-99 Config.doc Rev: Z32 Revised: 05/26/99 3:24 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All Rights Reserved © 1993

Multiples Default Value: 0 min .

Current Demand/K-Factor Demand Interval in minutes Default value: 15 min .

Circuit Monitor Energy Accumulation Mode Selections Bit Map. bit 0 indicates real \& reactive energy accumulation method
a 0 indicates absolute
a 1 indicates signed
Operating Mode R \quad Y
Selections Bit map
bit 0 indicates real \& reactive energy accumulation method:
a 0 indicates absolute (default)
a 1 indicates signed
bit 2 indicates $\mathrm{VAr} / \mathrm{PF}$ sign convention:
a 0 indicates CM1 convention (default)
a 1 indicates alternate convention
bit 4 indicates external power demand synch. driver source
if applicable:
a 0 Specifies Input 1 as the source (default)
Specifies Command Interface as the source
bit 6 indicates status of conditional energy accumulation:
a 0 indicates Cond Energy Accum is off (default)
a 1 indicates Cond Energy Accum is
bit 8 Unused
bit 10 indicates whether front panel setup is enabled a 0 indicates front panel setup is enabled (default
a 1 indicates front panel setup is disabled
bit 12 indicates user specified normal phase rotation:
a 0 indicates ABC rotation (default)
a 1 indicates CBA rotation
bit 1 indicates Reactive Energy and Demand accumulation method:
a 0 specifies fundamental only (default)
a 1 specifies to include harmonic cross products -
(displacement\&distortion)
bit 3 indicates Demand Power calculation method:
a 0 indicates Thermal Demand (default)
a 1 indicates a Block/Rolling Interval Demand
bit 5 indicates which mechanism controls cond. energy:
a 0 indicates status inputs (default)
a 1 indicates command I/F
bit 7 is unused
bit 9 indicates whether front comm port is enabled a 0 indicates front comm port is enabled (default)
a 1 indicates front comm port is disabled
bit 11 indicates Symax UART parity selection

$$
\begin{aligned}
& 0-\text { Even } \\
& 1 \text { - None }
\end{aligned}
$$

All other bits are unused

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Status

Metering	R	Y	N	None

None Configuration

0 to FFFF
Present status of unit metering configuration - sets a bit to indicate if a metering configuration register has been changed but is not yet active.
bit 0 is set to a 1 if any of the other bits are set to a 1 . bit 1 is set to a 1 if the scale factors have been changed but are not yet active.
bit 2 is set to a 1 if the PT Primary or Secondary has been changed but is not yet active. bit 3 is set to a 1 if the Phase CT Primary or Secondary has been changed but is not yet active. bit 4 is set to a 1 if the Neutral CT Primary or Secondary has been changed but is not yet active. bit 5 is set to a 1 if any of the PT/CT correction factors have been changed but are not yet active.
bit 6 is set to a 1 if the System Type has been changed but is not yet active.
bit 7 is set to a 1 if the Nominal System Frequency has been changed but is not yet active.
bit 8 is set to a 1 if the any of the logical phase associations have been changed but but are not yet active.
bit 9 is set to a 1 if the $\mathrm{VAr} / \mathrm{PF}$ convention has been changed but but are not yet active.
bit 10 is set to a 1 if the any of the Energy configurations have been changed but but are not yet active.
bit 11 is set to a 1 if the any of the demand configurations have been changed but but are not yet active.
Bits 12 and 13 are reserved.

Registe CM/2	Number M/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
2083		Day of Week R	Y	N	None	0 to 6	Day of Week, Sunday $=0$
2084		Number of PLOS R system restarts	Y	N	None	0 to 32,767	Number of PLOS system restarts
2085	242	Square-D $\quad R$ Product ID Number equal to 460 for CM2 Model A	Y	N	None	0 to 3000	Square-D Product ID Number equal to 460 for CM2 Model A
2086		Installed R Option Bit map	Y	N	None	0 to 32	```Installed Option Bit map : I/O etc a \(00000(0)=\) None a 00001 (1) \(=1\) input/ 1pulse output a 01111 (15) \(=8\) inputs / 2 pulse outputs a 10011 (19) \(=4\) inputs / 1 pulse output / 3 Relays a 00110 (6) = Analog I/O 1 in / 120 ma out / 4 status in / 1 pulse output / 3 Relays a 00010 (2) = Analog I/O \(1 \mathrm{in} / 11 \mathrm{ma}\) out \(/ 4\) status in / 1 pulse output / 3 Relays a \(11110(30)=\) Analog I/O 4 in / 420 ma out / 4 status in / 1 pulse output / 3 Relays a \(11010(26)=\) Analog I/O 4 in / 4 1ma out / 4 status in / 1 pulse output / 3 Relays all others are reserved```

Printed: 4-Jun-99 Config.doc Rev: Z32 Revised: 05/26/99 3:24 PM

Proprietary Document: Property of Square d Co.

NOT TO be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Register Number Register Name CM/2 CM/1	Type	Saved	Scaled	Units	Range	Register Description	
2099		Master Time Base Adjust	R/W	Y	N	None	$1-7$

Printed: 4-Jun-99 Config.doc Rev: Z32 Revised: 05/26/99 3:24 PM

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All Rights Reserved © 1993

Registe CM/2	Number $\mathrm{M} / 1$	Register Name	Type	Saved	Scaled	Units	Range	Register Description
		Invalid write responses						
2108	140	Number of Messages with illegal counts	R	Y	N	None	0 to 32,767	Number of Messages with illegal counts
2109	141	Number of Messages with frame error	R	Y	N	None	0 to 32,767	Number of Messages with frame error
2110		Number of Control Panel Failures	R/W	Y	N	None	0 to 32,767	Number of Control Power Failures
$\begin{aligned} & 2111- \\ & 2112 \end{aligned}$		Reserved						Reserved
2113	238	Circuit Tracker ${ }^{\text {TM }}$ SetPoint Register	R/W	Y	N	None	0 to +/-32,767	Circuit Tracker ${ }^{\text {TM }}$ SetPoint Register
2114	239	Level 1 Energy Management SetPoint	R / W	Y	Y	KW/Scale Factor E	0 to $+/-32,767$	Level 1 Energy Management Setpoint
2115	240	Level 2 Energy Management SetPoint	R/W	Y	Y	KW/Scale Factor E	0 to $+/-32,767$	Level 2 Energy Management Setpoint
2116	241	Level 3 Energy Management SetPoint	R/W	Y	Y	KW/Scale Factor E	0 to +/-32,767	Level 3 Energy Management Setpoint

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All Rights Reserved © 1993

Regist CM/2	Num	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2117	121	Level 1 Energy Management Set- Point Last Exceeded Level		Y	Y	KW/Scale Factor E	0 to $+/-32,767$	Level 1 Energy Management Setpoint Last Exceeded Level
2118	122	Level 2 Energy Management Set- Point Last Exceeded Level		Y	Y	KW/Scale Factor E	0 to +/-32,767	Level 2 Energy Management Setpoint Last Exceeded Level
2119	123	Level 3 Energy Management SetPoint Last Exceede	R ded Level	Y	Y	KW/Scale Factor E	0 to +/-32,767	Level 3 Energy Management Setpoint Last Exceeded Level
2120	142	Bitmap for Self-Test results	R	N	N	None	0 to FFFF	Bitmap for Selftest results Bit $0=$ Is set to " 1 " if any error occurs Bit $1=$ Real Time Clock Failure Bit $2=$ Interrrupt controller Failure Bit 3 = Basic RAM Memory Failure - Volatile RAM Bit 4 = Expanded RAM Memory Failure - NV RAM Bit $5=$ PLOS Memory Failure Bit $6=$ Programmable Logic Memory Failure Bit $7=$ UART Failure Bit $8=$ DMA Failure - Data Collection Bit $9=$ A/D Failure - Analog Channel Bit $10=$ Internal Serial EEPROM Failure Bit 11 = External I/O Serial EEPROM Failure Bit $14=$ Unit is in download alarm state 990 or 991 Bit $15=$ Unit is in download alarm state 992
2121	143	Bit Map for Energy Status	R	Y	N	None	0 to 000F	Bit Map for Mode Energy Status Bit 0 Any Energy Mgt. Setpoint exceeded Bit 9 Energy Mgt. Setpoint 1 exceeded Bit 10 Energy Mgt. Setpoint 2 exceeded Bit 11 Energy Mgt. Setpoint 3 exceeded

Printed: 4-Jun-99 Config.doc Rev: Z32 Revised: 05/26/99 3:24 PM

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

| Register Number Register Name
 CM/2 CM/1 | Type | Saved | Scaled | Range | Register Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2149							
*2150	Logical Phase A Voltage	R	Y	N	None	1-3	Logical Phase Voltage A Association where default = 1
*2151	Logical Phase B Voltage	R	Y	N	None	1-3	Logical Phase Voltage B Association where default $=2$
*2152	Logical Phase C Voltage	R	Y	N	None	1-3	Logical Phase Voltage C Association where default $=3$
*2153	Logical Phase A Current	R	Y	N	None	1-3	Logical Phase Current A Association where default = 1
*2154	Logical Phase B Current	R	Y	N	None	1-3	Logical Phase Current A Association where default = 2
*2155	Logical Phase C Current	R	Y	N	None	1-3	Logical Phase Current A Association where default $=3$
*2156	Logical Phase Neutral Current	R	Y	N	None	1-3	Logical Phase Current A Association where default $=4$
* not supported by Janus I Products							
$\begin{aligned} & 2157- \\ & 2169 \end{aligned}$	Not Used						
2170	Program Partition Select	R/W	Y	N	None	0-2	Program Partition Select 0 - no program selected 1 - program in standard partition (f6000, 8 k) 2 - program in extended partition $(60000,64 \mathrm{k})$
2171	Startup Control	R/W	Y	N	None	0-1	Startup Control

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All Rights Reserved © 1993

Register Number Register Name CM/2 CM/1	Type	Saved	Scaled	Units	Range

Printed: 4-Jun-99 Config.doc Rev: Z32 Revised: 05/26/99 3:24 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
							$\begin{aligned} & 2 \text { - PAUSE } \\ & 3 \text { - RUN } \end{aligned}$
2181	Error Number at last HALT	R	N	N	None	0-32,767	Error Number at last HALT
2182	Execution Line Number	R	N	N	None	1-32767	Present execution line number in RUN mode, or next line number when in PAUSE mode
2183	Peak Addition to Update Cycle Time	R	N	N	ms	500-5000	Peak Addition to update cycle time, Meter task.
2184	Peak Addition to Update Cycle Time	R	N	N	ms	500-5000	Peak Addition to update cycle time, Timer task.
2185	Peak Addition to Update Cycle Time	R	N	N	ms	500-5000	Peak Addition to update cycle time, Event task
$\begin{aligned} & 2186- \\ & 2187 \end{aligned}$	System Clock Tick Counter	R	N	N	20 ms	$\begin{aligned} & 0- \\ & 2,147,483,647 \end{aligned}$	Elapsed Time, in 20ms increments, since last unit reset.
$\begin{aligned} & 2188- \\ & 2195 \end{aligned}$	User Program Name	R	N	N	None		User program name (up to 16 ascii characters)
2196	User Program Version Number	R	N	N	None		User program version number (0-32767)
$\begin{aligned} & 2197- \\ & 2199 \end{aligned}$	User Program Date and Time	R	N	N	$\begin{aligned} & \text { Month,Dat,Yr. } \\ & \text { Hr,Min,Sec } \end{aligned}$		Date and time of last compressed form.
NOTE:	Changes in regist	ers 217	2173 w	not be	after the CM2 uniter	it is reset.	

Register Number CM/2 CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
2200	Generic Demand R/W (GD) Reset Command Selection	Y	N	None	0-1	$\begin{aligned} & \text { Select Reset Command: } \\ & 0=\text { CMD } 5110 \text { and CMD } 5112 \\ & 1=\text { CMD } 5112 \text { only } \end{aligned}$
2201	Generic Demand R/W Internal	Y	N	None	5-60	Generic demand internal board on thermal decay. Range is 5-60 minutes. Default is 5 minutes.
$\begin{aligned} & 2202- \\ & 2204 \end{aligned}$	$\begin{aligned} & \text { D/T of last R/W } \\ & \text { MIN/MAX Reset } \end{aligned}$	Y	N	Sec, Min, Hour Day, Month, Yr	Same as Reg \# 1800-1802	Date and Time of last reset for the Min/Max Generic Demand
$\begin{aligned} & 2205- \\ & 2224 \end{aligned}$	List of 20 regi- R / W sters selected for Generic Demand	Y	N	None	$\begin{aligned} & 1000-1199 \\ & 2000-2999 \\ & 3000-3999 \\ & 4000-5199 \end{aligned}$	List of 20 registers selected for generic demand. The first 8 will default to registers 1014-1021 (voltage)
$\begin{aligned} & 2225- \\ & 2229 \end{aligned}$	Not used					
2230	Present Generic R Demand \#1	Y	N	None		Present Generic Demand \#1
2231	$\begin{array}{lr} \text { Maximum } \\ \text { Generic Demand } \# 1 \end{array}$	Y	N	None		Maximum Generic Demand \#1
2232	Minimum Generic Demand $\# 1$	Y	N	None		Minimum Generic Demand \#1
2233	Present Generic R Demand \#2	Y	N	None		Present Generic Demand \#2
2234	$\begin{array}{lr} \text { Maximum } & \mathrm{R} \\ \text { Generic Demand } \# 2 \end{array}$	Y	N	None		Maximum Generic Demand \#2
2235	$\begin{array}{lr} \text { Minimum } & \mathrm{R} \\ \text { Generic Demand \#2 } \end{array}$	Y	N	None		Minimum Generic Demand \#2

Register Number CM/2 CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
2236	Present Generic R Demand \#3	Y	N	None		Present Generic Demand \#3
2237	Maximum Generic Demand \#3	Y	N	None		Maximum Generic Demand \#3
2238	$\begin{array}{lr} \text { Minimum } & R \\ \text { Generic Demand \#3 } \end{array}$	Y	N	None		Minimum Generic Demand \#3
2239	Present Generic R Demand \#4	Y	N	None		Present Generic Demand \#4
2240	$\begin{array}{lr} \text { Maximum } & \mathrm{R} \\ \text { Generic Demand } \# 4 \end{array}$	Y	N	None		Maximum Generic Demand \#4
2241	Minimum R Generic Demand \#4	Y	N	None		Minimum Generic Demand \#4
2242	Present Generic R Demand \#5	Y	N	None		Present Generic Demand \#5
2243	$\begin{array}{lr} \text { Maximum } & \mathrm{R} \\ \text { Generic Demand } \# 5 \end{array}$	Y	N	None		Maximum Generic Demand \#5
2244	Minimum $\quad R$ Generic Demand \#5	Y	N	None		Minimum Generic Demand \#5
2245	Present Generic R Demand \#6	Y	N	None		Present Generic Demand \#6
2246	Maximum R Generic Demand \#6	Y	N	None		Maximum Generic Demand \#6
2247	Minimum R	Y	N	None		Minimum Generic Demand \#6

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All Rights Reserved © 1993

Register Number CM/2 CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
	Generic Demand \#6					
2248	Present Generic R Demand \#7	Y	N	None		Present Generic Demand \#7
2249	$\begin{array}{lr} \text { Maximum } & \mathrm{R} \\ \text { Generic Demand \#7 } \end{array}$	Y	N	None		Maximum Generic Demand \#7
2250	Minimum \quad R Generic Demand \#7	Y	N	None		Minimum Generic Demand \#7
2251	Present Generic R Demand \#8	Y	N	None		Present Generic Demand \#8
2252	$\begin{array}{lr} \text { Maximum } & \mathrm{R} \\ \text { Generic Demand } \# 8 \end{array}$	Y	N	None		Maximum Generic Demand \#8
2253	$\begin{array}{lr} \text { Minimum } & \mathrm{R} \\ \text { Generic Demand } \# 8 \end{array}$	Y	N	None		Minimum Generic Demand \#8
2254	Present Generic R Demand \#9	Y	N	None		Present Generic Demand \#9
2255	$\begin{array}{lr} \text { Maximum } & \mathrm{R} \\ \text { Generic Demand } \# 9 \end{array}$	Y	N	None		Maximum Generic Demand \#9
2256	$\begin{array}{lr} \text { Minimum } & \mathrm{R} \\ \text { Generic Demand } \# 9 \end{array}$	Y	N	None		Minimum Generic Demand \#9
2257	Present Generic R Demand \#10	Y	N	None		Present Generic Demand \#10
2258	$\begin{array}{lc} \text { Maximum } & \mathrm{R} \\ \text { Generic Demand } & \# 10 \end{array}$	Y	N	None		Maximum Generic Demand \#10

Printed: 4-Jun-99 Config.doc Rev: Z32 Revised: 05/26/99 3:24 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All Rights Reserved © 1993

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2259	Minimum Generic Demand	$\begin{gathered} \mathrm{R} \\ \# 10 \end{gathered}$	Y	N	None		Minimum Generic Demand \#10
2260	Present Generic Demand \#11	R	Y	N	None		Present Generic Demand \#11
2261	Maximum Generic Demand	$\begin{gathered} \mathrm{R} \\ \# 11 \end{gathered}$	Y	N	None		Maximum Generic Demand \#11
2262	Minimum Generic Demand	$\begin{gathered} \mathrm{R} \\ \mathrm{Z} \text { \#11 } \end{gathered}$	Y	N	None		Minimum Generic Demand \#11
2263	Present Generic Demand \#12	R	Y	N	None		Present Generic Demand \#12
2264	Maximum Generic Demand	$\begin{gathered} \mathrm{R} \\ \# 12 \end{gathered}$	Y	N	None		Maximum Generic Demand \#12
2265	Minimum Generic Demand	$\begin{gathered} \mathrm{R} \\ \# 12 \end{gathered}$	Y	N	None		Minimum Generic Demand \#12
2266	Present Generic Demand \#13	R	Y	N	None		Present Generic Demand \#13
2267	Maximum Generic Demand	$\begin{gathered} \mathrm{R} \\ \# 13 \end{gathered}$	Y	N	None		Maximum Generic Demand \#13
2268	Minimum Generic Demand	$\begin{gathered} \mathrm{R} \\ \# 13 \end{gathered}$	Y	N	None		Minimum Generic Demand \#13
2269	Present Generic Demand \#14	R	Y	N	None		Present Generic Demand \#14
2270	Maximum Generic Demand	$\begin{gathered} \mathrm{R} \\ \# 14 \end{gathered}$	Y	N	None		Maximum Generic Demand \#14

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2271	Minimum Generic Demand	$\begin{gathered} \mathrm{R} \\ \# 14 \end{gathered}$	Y	N	None		Minimum Generic Demand \#14
2272	Present Generic Demand \#15	R	Y	N	None		Present Generic Demand \#15
2273	Maximum Generic Demand		Y	N	None		Maximum Generic Demand \#15
2274	Minimum Generic Demand	$\begin{gathered} \mathrm{R} \\ \# 15 \end{gathered}$	Y	N	None		Minimum Generic Demand \#15
2275	Present Generic Demand \#16	R	Y	N	None		Present Generic Demand \#16
2276	Maximum Generic Demand		Y	N	None		Maximum Generic Demand \#16
2277	Minimum Generic Demand		Y	N	None		Minimum Generic Demand \#16
2278	Present Generic Demand \#17	R	Y	N	None		Present Generic Demand \#17
2279	Maximum Generic Demand		Y	N	None		Maximum Generic Demand \#17
2280	Minimum Generic Demand		Y	N	None		Minimum Generic Demand \#17
2281	Present Generic Demand \#18	R	Y	N	None		Present Generic Demand \#18
2282	Maximum	R	Y	N	None		Maximum Generic Demand \#18

Proprietary document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All Rights Reserved © 1993

Register Number CM/2 CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
	Generic Demand \#18					
2283	$\begin{array}{lc} \text { Minimum } & \mathrm{R} \\ \text { Generic Demand } & \# 18 \end{array}$	Y	N	None		Minimum Generic Demand \#18
2284	Present Generic R Demand \#19	Y	N	None		Present Generic Demand \#19
2285	$\begin{array}{lc} \text { Maximum } & \mathrm{R} \\ \text { Generic Demand } \# 19 \end{array}$	Y	N	None		Maximum Generic Demand \#19
2286	Minimum \quad R Generic Demand $\# 19$	Y	N	None		Minimum Generic Demand \#19
2287	Present Generic R Demand \#20	Y	N	None		Present Generic Demand \#20
2288	$\begin{array}{lc} \text { Maximum } & \mathrm{R} \\ \text { Generic Demand \#20 } \end{array}$	Y	N	None		Maximum Generic Demand \#20
2289	$\begin{array}{lc} \text { Minimum } & \text { R } \\ \text { Generic Demand } & \text { \#20 } \end{array}$	Y	N	None		Minimum Generic Demand \#20
2300	Voltage A Surge R Extreme Value	Y	Y	Volts/Scale Factor D	0-32767	Voltage A Surge Extreme Value
$\begin{aligned} & 2301- \\ & 2302 \end{aligned}$	Voltage A Surge R Event Duration	Y	N	Cycles	1-99999999	Voltage A Surge Event Duration
2303	Voltage B Surge R Extreme Value	Y	Y	Volts/Scale Factor D	0-32767	Voltage B Surge Extreme Value
$\begin{aligned} & 2304- \\ & 2305 \end{aligned}$	Voltage B Surge R Event Duration	Y	N	Cycles	1-99999999	Voltage B Surge Event Duration

Register Number Register Name CM/2 CM/1	Type	Saved	Scaled	Units	Range	Register Description
2306	Voltage C Surge R Extreme Value	Y	Y		Volts/Scale Factor D	$0-32767$

Printed: 4-Jun-99 Config.doc Rev: Z32 Revised: 05/26/99 3:24 PM

Proprietary Document: Property of Square d Co.

NOT TO be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Register Number Register Name CM/2 CM/1	Type	Saved	Scaled	Units	Range	Register Description	
2324	Voltage B Sag Extreme Value	R	Y	Y		Volts/Scale Factor D	$0-32767$

NOT TO be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

2342- Not Used
2349

Proprietary Document: Property of Square d Co.

Not to be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Program.

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
STATUS INPUTS (CONTINUED)							
$\begin{aligned} & 2407- \\ & 2408 \end{aligned}$	Input 2 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Input 2
$\begin{aligned} & 2409- \\ & 2410 \end{aligned}$	Input 2 Count	R/W	Y	Y	Counts	0 to 99,999,999	A count of the number of times Input 2 has transitioned from off to on. Each register is Modulo 10,000.
2411 Timer	Input 2 On-	R/W	N	Y	Seconds	0 to 32,767	Represents the last completed on-time in seconds that input 2 has been in the on state.
$\begin{aligned} & 2412- \\ & 2413 \end{aligned}$	Input 3 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Input 3
$\begin{aligned} & 2414- \\ & 2415 \end{aligned}$	Input 3 Count	R/W	Y	Y	Counts/	0 to 99,999,999	A count of the number of times Input 3 has transitioned from off to on. Each register is Modulo 10,000.
2416 Timer	Input 3 On-	R/W	N	Y	Seconds	0 to 32,767	Represents the last completed on-time in seconds that input 3 has been in the on state.

Program.

CM/2 CM/1
 STATUS INPUTS (CONTINUED)

Register Number Register Name Type Saved Scaled Units

$\begin{aligned} & 2417- \\ & 2418 \end{aligned}$		Input 4 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Input 4
$\begin{aligned} & 2419- \\ & 2420 \end{aligned}$		Input 4 Count	R/W	Y	Y	Counts	0 to 99, 999,999	A count of the number of times Input 4 has transitioned from off to on. Each register is Modulo 10,000.
2421	Timer	Input 4 On-	R/W	N	Y	Seconds	0 to 32,767	Represents the last completed on-time in seconds that input 4 has been in the on state.
$\begin{aligned} & 2422- \\ & 2423 \end{aligned}$		Input 5 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Input 5
$\begin{aligned} & 2424- \\ & 2425 \end{aligned}$		Input 5 Count	R/W	Y	Y	Counts	0 to 99,999,999	A count of the number of times Input 5 has transitioned from off to on. Each register is Modulo 10,000.
2426	Timer	Input 5 On-	R/W	N	Y	Seconds	0 to 32,767	Represents the last completed on-time in seconds that input 5 has been in the on state.

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Program.
Register Number Register Name Type Saved Scaled Unit CM/2 CM/1

STATUS INPUTS (CONTINUED)

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPlICIT CONSENT OF SquARE D CO. All RIGHTS RESERVED © 1993

Program.
Register Number Register Name Type Saved Scaled Unit CM/2 CM/1

STATUS INPUTS (CONTINUED)

$\begin{aligned} & 2437- \\ & 2438 \end{aligned}$	Input 8 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Input 8
$\begin{aligned} & 2439- \\ & 2440 \end{aligned}$	Input 8 Count	R/W	Y	Y	Counts	0 to 99,999,999	A count of the number of times Input 8 has transitioned from off to on. Each register is Modulo 10,000.
2441	Input 8 On-	R/W	N	Y	Seconds	0 to 32,767	Represents the last completed on-time in second has been in the on state.

2442- Reserved for future status inputs
2499

Range
Register Description input 8 has been in the on state.

Register Number		Register Name	Type	Saved	Program.		Range	Register Description	
		Scaled			Units				
2500	235		Output Status	R	N	N	None	0000 to 00FF Hex	Bit Map of the states of the Outputs. A $1=O n, a 0=O f f$. Bit 0 represesents Output 0 , bit 7 represents Output 7. Register 235 is ghosted as Read Only and does not provide control.
2501		Output Control State Bit Mask	R	Y	N	None	0000 to FFFF Hex	Bit Map indicating active Relay Control states. The lower byte indicates the status of internal/external control. A $1=$ Relay Control is under internal control and a $0=$ Relay Control is under external control. The upper byte indicates the status of override control. A $1=$ Relay Control is in override and a $0=$ Relay Control is not in override. For each byte, Bits 0-7 represesent outputs $0-7$ respectively.	
$\begin{aligned} & 2502 \\ & 2503 \end{aligned}$		Output 0 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Output 0	
2504		Output 0 Mode Reg	R/W	Y	N	None	0 to 9	$\begin{aligned} & \text { Output } 0 \text { Mode Register: } 0=\text { Normal, } \\ & 1=\text { Latched, } 2=\text { Timed, } 3=\text { Absolute } \mathrm{kWH} \text { pulse, } \\ & 4=\text { Absolute } \mathrm{kVArH} \text { pulse, } 5=\mathrm{kVAH} \text { pulse } \\ & 6=\mathrm{kWH} \text { in pulse, } 7=\mathrm{kVar} \text { in pulse, } \\ & 8=\mathrm{kWH} \text { out pulse, } 9=\mathrm{kVAr} \text { out pulse. } \end{aligned}$	
2505		Output 0 Parameter Register	R/W	Y	N	Variable	0 to 32,767	This register specifies the time Output 0 is to remain closed for timed mode.	
2506		Output 0 kWH, kVArH or kVAH	R/W	Y	N	kWH/Pulse or kVArH/Pulse or kVAH/Pulse	0 to 32,767	This register specifies the $\mathrm{kWH}, \mathrm{kVArH}$ or kVAH per pulse for Output 0 when in those modes.	

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Program.
Register Number Register Name Type Saved Scaled Units CM/2 CM/1
/Pulse Register
OUTPUTS (continued)

$\begin{aligned} & 2507 \\ & 2508 \end{aligned}$	Output 1 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Output 1
2509	Output 1 Mode Reg	R/W	Y	N	None	0 to 9	Output 1 Mode Register: $0=$ Normal, $1=$ Latched, $2=$ Timed, $3=$ Absolute kWH pulse, $4=$ Absolute kVArH pulse, $5=\mathrm{kVAH}$ pulse $6=\mathrm{kWH}$ in pulse, $7=\mathrm{kVar}$ in pulse, $8=\mathrm{kWH}$ out pulse, $9=\mathrm{kVAr}$ out pulse.
2510	Output 1 Parameter Register	R/W	Y	N	Seconds	0 to 32,767	This register specifies the time Output 1 is to remain closed for timed mode.
2511	Output 1 kWH, kVArH or kVAH	R/W	Y	N	kWH/Pulse or kVArH/Pulse or kVAH/Pulse	0 to 32,767	This register specifies the $\mathrm{kWH}, \mathrm{kVArH}$ or kVAH per pulse for Output 1 when in those modes.

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Program.
Register Number Register Name Type Saved Scaled Unit CM/2 CM/1

OUTPUTS (continued)

$\begin{aligned} & 2512- \\ & 2513 \end{aligned}$	Output 2 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Output 2
2514	Output 2 Mode Reg	R/W	Y	N	None	0 to 9	Output 2 Mode Register: $0=$ Normal, $1=$ Latched, $2=$ Timed, $3=$ Absolute kWH pulse, $4=$ Absolute kVArH pulse, $5=\mathrm{kVAH}$ pulse $6=\mathrm{kWH}$ in pulse, $7=\mathrm{kVar}$ in pulse, $8=\mathrm{kWH}$ out pulse, $9=\mathrm{kVAr}$ out pulse.
2515	Output 2 Parameter Register	R/W	Y	N	Seconds	0 to 32,767	This register specifies the time Output 2 is to remain closed for timed mode.
2516	Output 2 kWH, kVArH or kVAH /Pulse Register	R/W	Y	N	kWH/Pulse or kVArH/Pulse or kVAH/Pulse in 10ths	0 to 32,767	This register specifies the $\mathrm{kWH}, \mathrm{kVArH}$ or kVAH per pulse for Output 2 when in those modes.

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Program.
Register Number Register Name Type Saved Scaled Units CM/2 CM/1

OUTPUTS (continued)

$\begin{aligned} & 2517 \\ & 2518 \end{aligned}$	Output 3 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Output 3
2519	Output 3 Mode Reg	R/W	Y	N	None	0 to 9	$\begin{aligned} & \text { Output } 3 \text { Mode Register: } 0=\text { Normal, } \\ & 1=\text { Latched, } 2=\text { Timed, } 3=\text { Absolute } \mathrm{kWH} \text { pulse, } \\ & 4=\text { Absolute } \mathrm{kVArH} \text { pulse, } 5=\mathrm{kVAH} \text { pulse } \\ & 6=\mathrm{kWH} \text { in pulse, } 7=\mathrm{kVar} \text { in pulse, } \\ & 8=\mathrm{kWH} \text { out pulse, } 9=\mathrm{kVAr} \text { out pulse. } \end{aligned}$
2520	Output 3 Parameter Register	R/W	Y	N	Seconds	0 to 32,767	This register specifies the time Output 3 is to remain closed for timed mode.
2521	Output 3 kWH, kVArH or kVAH /Pulse Register	R/W	Y	N	kWH/Pulse or kVArH/Pulse or kVAH/Pulse in 10ths	0 to 32,767	This register specifies the $\mathrm{kWH}, \mathrm{kVArH}$ or kVAH per pulse for Output 3 when in those modes.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Program.

Program.
Register Number Register Name Type Saved Scaled Units CM/2 CM/1

OUTPUTS (continued)

$\begin{aligned} & 2527 \\ & 2528 \end{aligned}$	Output 5 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Output 5
2529	Output 5 Mode Reg	R/W	Y	N	None	0 to 9	$\begin{aligned} & \text { Output } 5 \text { Mode Register: } 0=\text { Normal, } \\ & 1=\text { Latched, } 2=\text { Timed, } 3=\text { Absolute } \mathrm{kWH} \text { pulse, } \\ & 4=\text { Absolute } \mathrm{kVArH} \text { pulse, } 5=\mathrm{kVAH} \text { pulse } \\ & 6=\mathrm{kWH} \text { in pulse, } 7=\mathrm{kVar} \text { in pulse, } \\ & 8=\mathrm{kWH} \text { out pulse, } 9=\mathrm{kVAr} \text { out pulse. } \end{aligned}$
2530	Output 5 Parameter Register	R/W	Y	N	Seconds	0 to 32,767	This register specifies the time Output 5 is to remain closed for timed mode.
2531	Output 5 kWH, kVArH or kVAH /Pulse Register	R/W	Y	N	kWH/Pulse or kVArH/Pulse or kVAH/Pulse in 10ths	0 to 32,767	This register specifies the $\mathrm{kWH}, \mathrm{kVArH}$ or kVAH per pulse for Output 5 when in those modes.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Program.

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
OUTPUTS (continued)							
$\begin{aligned} & 2532 \\ & 2533 \end{aligned}$	Output 6 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Output 6
2534	Output 6 Mode Reg	R/W	Y	N	None	0 to 9	$\begin{aligned} & \text { Output } 6 \text { Mode Register: } 0=\text { Normal, } \\ & 1=\text { Latched, } 2=\text { Timed, } 3=\text { Absolute } \mathrm{kWH} \text { pulse, } \\ & 4=\text { Absolute } \mathrm{kVArH} \text { pulse, } 5=\mathrm{kVAH} \text { pulse } \\ & 6=\mathrm{kWH} \text { in pulse, } 7=\mathrm{kVar} \text { in pulse, } \\ & 8=\mathrm{kWH} \text { out pulse, } 9=\mathrm{kVAr} \text { out pulse. } \end{aligned}$
2535	Output 6 Parameter Register	R/W	Y	N	Seconds	0 to 32,767	This register specifies the time Output 6 is to remain closed for timed mode.
2536	Output 6 kWH, kVArH or kVAH /Pulse Register	R/W	Y	N	kWH/Pulse or kVArH/Pulse or kVAH/Pulse in 10ths	0 to 32,767	This register specifies the $\mathrm{kWH}, \mathrm{kVArH}$ or kVAH per pulse for Output 6 when in those modes.

Program.

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
OUTPUTS (continued)							
$\begin{aligned} & 2537 \\ & 2538 \end{aligned}$	Output 7 Label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Output 7
2539	Output 7 Mode Reg	R/W	Y	N	None	0 to 9	$\begin{aligned} & \text { Output } 7 \text { Mode Register: } 0=\text { Normal, } \\ & 1=\text { Latched, } 2=\text { Timed, } 3=\text { Absolute } \mathrm{kWH} \text { pulse, } \\ & 4=\text { Absolute } \mathrm{kVArH} \text { pulse, } 5=\mathrm{kVAH} \text { pulse } \\ & 6=\mathrm{kWH} \text { in pulse, } 7=\mathrm{kVar} \text { in pulse, } \\ & 8=\mathrm{kWH} \text { out pulse, } 9=\mathrm{kVAr} \text { out pulse. } \end{aligned}$
2540	Output 7 Parameter Register	R/W	Y	N	Seconds	0 to 32,767	This register specifies the time Output 7 is to remain closed for timed mode.
2541	Output 7 kWH, kVArH or kVAH /Pulse Register	R/W	Y	N	kWH/Pulse or kVArH/Pulse or kVAH/Pulse in 10ths	0 to 32,767	This register specifies the $\mathrm{kWH}, \mathrm{kVArH}$ or kVAH per pulse for Output 7 when in those modes.
$\begin{aligned} & 2542- \\ & 2599 \end{aligned}$	Reserved for fut	e Dis	te Outp				

					Program			
Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 2600- \\ & 2601 \end{aligned}$		Analog Output 1 label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Analog (0/4-20ma) Output 1
2602		Analog Output 1 Enable Reg	R/W	Y	N	None	0 or 1	Analog Output 1 Enable: $0=$ Off, $1=$ On.
2603		Analog Output 1 Register Number	R/W	Y	N	None	Any Valid Register	The number of the register which has it's value associated with analog output 1.
2604		Analog Output 1 Lower Limit	R/W	Y	N	Equal to Units of Output Reg	$-32,767 \text { to }$ Upper Limit	The lower limit of the designated output register considered to be the $0 / 4 \mathrm{~mA}$ equivalent.
2605		Analog Output 1 Upper Limit	R/W	Y	N	Equal to Units of Output Reg	Lower Limit to $+/-32,767$	The upper limit of the designated output register considered to be the 20 mA equivalent.
2606		Analog Output 1 Gain Adjustment	R/W	Y	N	in 10,000ths	$\begin{aligned} & 8000 \text { to } \\ & 12,000 \end{aligned}$	Analog Output 1 gain adjustment
2607		Analog Output 1 Offset Adjustmen	$\begin{aligned} & \text { R/W } \\ & \text { nt } \end{aligned}$	Y	N	in 10,000ths	0 to $+/-30,000$	Analog Output 1 offset adjustment for calibration

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. AlL RIGHTS RESERVED © 1993

Program.

Register Number CM/2 CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 2608- \\ & 2609 \end{aligned}$	Analog Output 2 R/W label	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Analog (0/4-20ma) Output 2
2610	Analog Output 2 R/W Enable Reg	Y	N	None	0 or 1	Analog Output 2 Enable: $0=$ Off, $1=$ On.
2611	Analog Output 2 R/W Register Number	Y	N	None	Any Valid Register	The number of the register which has it's value associated with analog output 2 .
2612	Analog Output 2 R/W Lower Limit	Y	N	Equal to Units of Output Reg	$-32,767 \text { to }$ Upper Limit	The lower limit of the designated output register considered to be the $0 / 4 \mathrm{~mA}$ equivalent.
2613	Analog Output 2 R/W Upper Limit	Y	N	Equal to Units of Output Reg	Lower Limit to +/-32,767	The upper limit of the designated output register considered to be the 20 mA equivalent.
2614	Analog Output 2 R/W Gain Adjustment	Y	N	in 10,000ths	$\begin{aligned} & 8000 \text { to } \\ & 12,000 \end{aligned}$	Analog Output 2 gain adjustment
2615	Analog Output 2 R/W Offset Adjustment	Y	N	in 10,000ths	0 to $+/-30,000$	Analog Output 2 offset adjustment for calibration

Proprietary Document: Property of SQuare d Co.

Not to be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Program.

Register $\mathrm{CM} / 2$	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 2616- \\ & 2617 \end{aligned}$		Analog Output 3 label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Analog (0/4-20ma) Output 3
2618		Analog Output 3 Enable Reg	R/W	Y	N	None	0 or 1	Analog Output 3 Enable: $0=$ Off, $1=$ On.
2619		Analog Output 3 Register Number	R/W	Y	N	None	Any Valid Register	The number of the register which has it's value associated with analog output 3.
2620		Analog Output 3 Lower Limit	R/W	Y	N	Equal to Units of Output Reg	$-32,767 \text { to }$ Upper Limit	The lower limit of the designated output register considered to be the $0 / 4 \mathrm{~mA}$ equivalent.
2621		Analog Output 3 Upper Limit	R/W	Y	N	Equal to Units of Output Reg	Lower Limit to $+/-32,767$	The upper limit of the designated output register considered to be the 20 mA equivalent.
2622		Analog Output 3 Gain Adjustment	R/W	Y	N	in 10,000ths	$\begin{aligned} & 8000 \text { to } \\ & 12,000 \end{aligned}$	Analog Output 3 gain adjustment
2623		Analog Output 3 Offset Adjustme	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \mathrm{nt} \end{aligned}$	Y	N	in 10,000ths	0 to $+/-30,000$	Analog Output 3 offset adjustment for calibration

Program.

Register Number CM/2 CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 2624- \\ & 2625 \end{aligned}$	Analog Output 4 R/W label	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Analog (0/4-20ma) Output 4
2626	Analog Output 4 R/W Enable Reg	Y	N	None	0 or 1	Analog Output 4 Enable: $0=$ Off, $1=$ On.
2627	Analog Output 4 R/W Register Number	Y	N	None	Any Valid Register	The number of the register which has it's value associated with analog output 4.
2628	Analog Output 4 R/W Lower Limit	Y	N	Equal to Units of Output Reg	$-32,767 \text { to }$ Upper Limit	The lower limit of the designated output register considered to be the $0 / 4 \mathrm{~mA}$ equivalent.
2629	Analog Output 4 R/W Upper Limit	Y	N	Equal to Units of Output Reg	Lower Limit to $+/-32,767$	The upper limit of the designated output register considered to be the 20 mA equivalent.
2630	Analog Output 4 R/W Gain Adjustment	Y	N	in 10,000 ths	$\begin{aligned} & 8000 \text { to } \\ & 12,000 \end{aligned}$	Analog Output 4 gain adjustment
2631	Analog Output 4 R/W Offset Adjustment	Y	N	in 10,000ths	0 to $+/-30,000$	Analog Output 4 offset adjustment for calibration
$\begin{aligned} & 2632- \\ & 2679 \end{aligned}$	Reserved for future ana	outputs				

Proprietary Document: Property of Square d Co.

Not to be used to furnish information to others without the explicit consent of Square D Co. All Rights Reserved © 1993

Register Number		Register Name	Type	Saved	Program.		Range	Register Description	
		Scaled			Units				
2680			Analog Output 1 Cal. Offset Value	R	Y	N	in 10,000ths	0 to +/-30,000	Analog Output 1 Calibration Offset Value.
2681		Analog Output 1 Cal. Gain Value		Y	N	in 10,000ths	8,000 to 12,000	Analog Output 1 Calibration Gain Value.	
2682		Analog Output 2 Cal. Offset Value		Y	N	in 10,000ths	0 to +/-30,000	Analog Output 2 Calibration Offset Value.	
2683		Analog Output 2 Cal. Gain Value		Y	N	in 10,000ths	8,000 to 12,000	Analog Output 2 Calibration Gain Value.	
2684		Analog Output 3 Cal. Offset Value		Y	N	in 10,000ths	0 to +/-30,000	Analog Output 3 Calibration Offset Value.	
2685		Analog Output 3 Cal. Gain Value		Y	N	in 10,000ths	8,000 to 12,000	Analog Output 3 Calibration Gain Value.	
2686		Analog Output 4 Cal. Offset Value		Y	N	in 10,000ths	0 to +/-30,000	Analog Output 4 Calibration Offset Value.	
2687		Analog Output 4 Cal. Gain Value		Y	N	in 10,000ths	8,000 to 12,000	Analog Output 4 Calibration Gain Value.	
$\begin{aligned} & 2688 \\ & 2699 \end{aligned}$		Reserved for futur	re anal	output	calibratio	constants (al	s a total of 20)		

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Program.

Register Number Register Name Type Saved Scaled Unit CM/2 CM/1

ANALOG INPUTS

$\begin{aligned} & 2700- \\ & 2701 \end{aligned}$	Analog Input 1 label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Analog Input 1
2702	Analog Input 1 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	Analog input 1 unit code register - used by software.
2703	Analog Input 1 Scale Code	R/W	Y	N	None	-3 to +3	Analog input 1 scale code register - used by software.
2704	Analog Input 1 Gain Selct	R/W	Y	N	None	0 or 1	Analog input 1 gain select register. A 0 specifies that the voltage gain; a 0 specifies current gain.
2705	Analog Input 1 Offset Voltage	R/W	Y	N	in 100ths	0 to 500	The analog input 1 voltage in hundreths of a volt equvialent to the offset value.
2706	Analog Input 1 Offset value	R/W	Y	N	None	$-32,767 \text { to }$ Full Scale	The value assigned to the analog input 1 register when the voltage is equal to the offset voltage.
2707	Analog Input 1 Full Scale Value	R/W	Y	N	None	Offset Value $32,767$	The value assigned to the analog input 1 present value register when the voltage is equal to full scale (5 V).
2708	Analog Input 1 Gain Adjustment	R/W	Y	N	in 10,000ths	$\begin{aligned} & 8000 \text { to } \\ & 12,000 \end{aligned}$	Analog input 1 gain adjustment
2709	Analog Input 1 Offset Adjustmen	R/W	Y	N	in 10,000ths	0 to +/-30,000	Analog input 1 offset adjustment for calibration

PROPRIETARY DOCUMENT: PROPERTY OF SQUARE D Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPlICIT CONSENT OF SquARE D CO. All RIGHTS RESERVED © 1993

				Program			
Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 2710- \\ & 2711 \end{aligned}$	Analog Input 2 label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Analog Input 2
2712	Analog Input 2 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	Analog input 2 unit code register - used by software.
2713	Analog Input 2 Scale Code	R/W	Y	N	None	-3 to +3	Analog input 2 scale code register - used by software.
2714	Analog Input 2 Gain Selct	R/W	Y	N	None	0 or 1	Analog input 2 gain select register. A 0 specifies that the voltage gain; a 0 specifies current gain.
2715	Analog Input 2 Offset Voltage	R/W	Y	N	in 100ths	0 to 500	The analog input 2 voltage in hundreths of a volt equvialent to the offset value.
2716	Analog Input 2 Offset value	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & \text { Full Scale } \end{aligned}$	The value assigned to the analog input 2 register when the voltage is equal to the offset voltage.
2717	Analog Input 2 Full Scale Value	R/W	Y	N	None	Offset Value $32,767$	The value assigned to the analog input 2 present value register when the voltage is equal to full scale (5 V).
2718	Analog Input 2 Gain Adjustment	R/W	Y	N	in 10,000ths	$\begin{aligned} & 8000 \text { to } \\ & 12,000 \end{aligned}$	Analog input 2 gain adjustment
2719	Analog Input 2 Offset Adjustment	$\begin{aligned} & \text { R/W } \\ & \text { nt } \end{aligned}$	Y	N	in 10,000ths	0 to $+/-30,000$	Analog input 2 offset adjustment for calibration

					Program			
Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 2720- \\ & 2721 \end{aligned}$		Analog Input 3 label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Analog Input 3
2722		Analog Input 3 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	Analog input 3 unit code register - used by software.
2723		Analog Input 3 Scale Code	R/W	Y	N	None	-3 to +3	Analog input 3 scale code register - used by software.
2724		Analog Input 3 Gain Selct	R/W	Y	N	None	0 or 1	Analog input 3 gain select register. A 0 specifies that the voltage gain; a 0 specifies current gain.
2725		Analog Input 3 Offset Voltage	R/W	Y	N	in 100ths	0 to 500	The analog input 3 voltage in hundreths of a volt equvialent to the offset value.
2726		Analog Input 3 Offset value	R/W	Y	N	None	$-32,767 \text { to }$ Full Scale	The value assigned to the analog input 3 register when the voltage is equal to the offset voltage.
2727		Analog Input 3 Full Scale Value	R/W	Y	N	None	Offset Value $32,767$	The value assigned to the analog input 3 present value register when the voltage is equal to full scale $(5 \mathrm{~V})$.
2728		Analog Input 3 Gain Adjustment	R/W	Y	N	in 10,000ths	$\begin{aligned} & 8000 \text { to } \\ & 12,000 \end{aligned}$	Analog input 3 gain adjustment
2729		Analog Input 3 Offset Adjustmen	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \mathrm{nt} \end{aligned}$	Y	N	in 10,000ths	0 to $+/-30,000$	Analog input 3 offset adjustment for calibration

					Program			
Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 2730- \\ & 2731 \end{aligned}$		Analog Input 4 label	R/W	Y	N	None	Alpha-Numeric 4 Char's (2 Reg's)	Label for Analog Input 4
2732		Analog Input 4 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \end{aligned}$	Analog input 4 unit code register - used by software.
2733		Analog Input 4 Scale Code	R/W	Y	N	None	-3 to +3	Analog input 4 scale code register - used by software.
2734		Analog Input 4 Gain Selct	R/W	Y	N	None	0 or 1	Analog input 4 gain select register. A 0 specifies that the voltage gain; a 0 specifies current gain.
2735		Analog Input 4 Offset Voltage	R/W	Y	N	in 100ths	0 to 500	The analog input 4 voltage in hundreths of a volt equvialent to the offset value.
2736		Analog Input 4 Offset value	R/W	Y	N	None	$-32,767 \text { to }$ Full Scale	The value assigned to the analog input 4 register when the voltage is equal to the offset voltage.
2737		Analog Input 4 Full Scale Value	R/W	Y	N	None	Offset Value $32,767$	The value assigned to the analog input 4 present value register when the voltage is equal to full scale $(5 \mathrm{~V})$.
2738		Analog Input 4 Gain Adjustment	R/W	Y	N	in 10,000ths	$\begin{aligned} & 8000 \text { to } \\ & 12,000 \end{aligned}$	Analog input 4 gain adjustment
2739		Analog Input 4 Offset Adjustmen	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \mathrm{nt} \end{aligned}$	Y	N	in 10,000ths	0 to $+/-30,000$	Analog input 4 offset adjustment for calibration

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 2740- \\ & 2799 \end{aligned}$		Reserved for futur	re analo	inputs	allows a	otal of 10)		
2800		Analog Input 1 Cal. Offset Value		Y	N	in 1,000ths	0 to $+/-3,000$	Analog Input 1 Calibration Offset Value.
2801		Analog Input 1 Voltage Cal. Gain Value	R	Y	N	in 10,000ths	8,000 to 12,000	Analog Input 1 Voltage Input Calibration Gain Value Used when Analog Input 1 is configured to measure Voltage.
2802		Analog Input 1 Current Cal. Gain Value	R	Y	N	in 10,000ths	8,000 to 12,000	Analog Input 1 Current Input Calibration Gain Value Used when Analog Input 1 is configured to measure Current.
2803		Analog Input 2 Cal. Offset Value	R	Y	N	in 1,000ths	0 to $+/-3,000$	Analog Input 2 Calibration Offset Value.
2804		Analog Input 2 Voltage Cal. Gain Value	R	Y	N	in 10,000ths	8,000 to 12,000	Analog Input 2 Voltage Input Calibration Gain Value Used when Analog Input 2 is configured to measure Voltage.
2805		Analog Input 2 Current Cal. Gain Value	R	Y	N	in 10,000ths	8,000 to 12,000	Analog Input 2 Current Input Calibration Gain Value Used when Analog Input 2 is configured to measure Current.

Program.

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2806		Analog Input 3 Cal. Offset Value	R	Y	N	in 1,000ths	0 to $+/-3,000$	Analog Input 3 Calibration Offset Value.
2807		Analog Input 3 Voltage Cal. Gain Value	R	Y	N	in 10,000ths	8,000 to 12,000	Analog Input 3 Voltage Input Calibration Gain Value Used when Analog Input 3 is configured to measure Voltage.
2808		Analog Input 3 Current Cal. Gain Value	R	Y	N	in 10,000ths	8,000 to 12,000	Analog Input 3 Current Input Calibration Gain Value Used when Analog Input 3 is configured to measure Current.
2809		Analog Input 4 Cal. Offset Value	R	Y	N	in 1,000ths	0 to $+/-3,000$	Analog Input 4 Calibration Offset Value.
2810		Analog Input 4 Voltage Cal. Gain Value	R	Y	N	in 10,000ths	8,000 to 12,000	Analog Input 4 Voltage Input Calibration Gain Value Used when Analog Input 4 is configured to measure Voltage.
2811		Analog Input 4 Current Cal. Gain Value	R	Y	N	in 10,000ths	8,000 to 12,000	Analog Input 4 Current Input Calibration Gain Value Used when Analog Input 4 is configured to measure Current.

2812- Reserved for future analog input calibration constants
2849

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2898	IPD Mode	R/W	Y	N	None	0 to 3	$\begin{aligned} & 0=\text { Slave to power demand } \\ & 1=\text { Slave to incr energy } \\ & 2=\text { Ext IN \#1 } \\ & 3=\text { Ext COMMS } \end{aligned}$
2899	\# of IPD Interval		N	N	None	0 to 32767	
2900	Channel 1 Demand Meter Bit Map	R/W	Y	N	None	0 to FF	Channel 1 Demand Meter Bit Map specifying which status inputs to totalize for this demand channel. Bit 0 represents input 1 , etc. A $0=$ exclude, $1=$ include. Default value is 0 .
2901	Channel 1 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \text { Used by } \end{aligned}$	Channel 1 Demand Meter Unit Code. Software Only.
2902	Channel 1 Scale Code	R/W	Y	N	None	-3 to 3	Channel 1 Demand Meter Scale Code. Used by Software Only.
2903	Channel 1 Weight Factor	R/W	Y	N	KW,KVAr,KVA per pulse	0 to 32,767	Channel 1 Weight Factor of each pulse in KW, KVAr, or KVA. This is a place holder for the user, the CM does not make any calculations with this number.
2904	Present Demand Pulse Count Channel 1	R	N	N	Counts	0 to 32,767	Total number of pulses counted on all specified inputs during present demand interval on Channel 1.
2905	Last Demand Pulse Count Channel 1	R	Y	N	Counts	0 to 32,767	Total number of pulses counted during the last completed demand interval on Input 1.
2906	Peak Demand Count Value Channel 1	R	Y	N	Counts	0 to 32,767	Peak Value of the channel 1 last demand count register since last demand reset.

Proprietary Document: Property of Square d Co.
Not to be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 2907- \\ & 2909 \end{aligned}$		Date/Time of Peak Demand Count Channel 1	R	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Date/Ti Regs \# 1800-1802	me of Peak Channel 1 Demand Count since last reset
2910		Channel 2 Demand Meter Bit Map	R/W	Y	N	None	0 to FF	Channel 2 Demand Meter Bit Map specifying which status inputs to totalize for this demand channel. Bit 0 represents input 1 , etc. A $0=$ exclude, $1=$ include. Default value is 0 .
2911		Channel 2 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \text { Used by } \end{aligned}$	Channel 2 Demand Meter Unit Code. Software Only.
2912		Channel 2 Scale Code	R/W	Y	N	None	-3 to 3	Channel 2 Demand Meter Scale Code. Used by Software Only.
2913		Channel 2 Weight Factor	R/W	Y	N	KW,KVAr,KVA per pulse	0 to 32,767	Channel 2 Weight Factor of each pulse in KW, KVAr, or KVA. This is a place holder for the user, the CM does not make any calculations with this number.
2914		Present Demand Pulse Count Channel 2	R	N	N	Counts	0 to 32,767	Total number of pulses counted on all specified inputs during present demand interval on Channel 2.
2915		Last Demand Pulse Count Channel 2	R	Y	N	Counts	0 to 32,767	Total number of pulses counted during the last completed demand interval on Input 1.
2916		Peak Demand Count Value Channel 2	R	Y	N	Counts	0 to 32,767	Peak Value of the channel 2 last demand count register since last demand reset.
$\begin{aligned} & 2917- \\ & 2919 \end{aligned}$		Date/Time of Peak Demand Count Channel 2	R	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Date/Ti Regs \# 1800-1802	me of Peak Channel 2 Demand Count since last reset

Proprietary document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2920	Channel 3 Demand Meter Bit Map	R/W	Y	N	None	0 to FF	Channel 3 Demand Meter Bit Map specifying which status inputs to totalize for this demand channel. Bit 0 represents input 1 , etc. A $0=$ exclude, $1=$ include. Default value is 0 .
2921	Channel 3 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \text { Used by } \end{aligned}$	Channel 3 Demand Meter Unit Code. Software Only.
2922	Channel 3 Scale Code	R/W	Y	N	None	-3 to 3	Channel 3 Demand Meter Scale Code. Used by Software Only.
2923	Channel 3 Weight Factor	R/W	Y	N	KW,KVAr,KVA per pulse	0 to 32,767	Channel 3 Weight Factor of each pulse in KW, KVAr, or KVA. This is a place holder for the user, the CM does not make any calculations with this number.
2924	Present Demand Pulse Count Channel 3	R	N	N	Counts	0 to 32,767	Total number of pulses counted on all specified inputs during present demand interval on Channel 3.
2925	Last Demand Pulse Count Channel 3	R	Y	N	Counts	0 to 32,767	Total number of pulses counted during the last completed demand interval on Input 1.
2926	Peak Demand Count Value Channel 3	R	Y	N	Counts	0 to 32,767	Peak Value of the channel 3 last demand count register since last demand reset.
$\begin{aligned} & 2927- \\ & 2929 \end{aligned}$	Date/Time of Peak Demand Count Channel 3	R	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	$\begin{aligned} & \text { Same as Date/Tim } \\ & \text { Regs \# } \\ & \text { 1800-1802 } \end{aligned}$	me of Peak Channel 3 Demand Count since last reset
2930	Channel 4 Demand Meter Bit Map	R/W	Y	N	None	0 to FF	Channel 4 Demand Meter Bit Map specifying which status inputs to totalize for this demand channel. Bit 0 represents input 1 , etc. A $0=$ exclude, $1=$ include. Default value is 0 .

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All Rights Reserved © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2931		Channel 4 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \text { Used by } \end{aligned}$	Channel 4 Demand Meter Unit Code. Software Only.
2932		Channel 4 Scale Code	R/W	Y	N	None	-3 to 3	Channel 4 Demand Meter Scale Code. Used by Software Only.
2933		Channel 4 Weight Factor	R/W	Y	N	KW,KVAr,KVA per pulse	0 to 32,767	Channel 4 Weight Factor of each pulse in $\mathrm{KW}, \mathrm{KVAr}$, or KVA. This is a place holder for the user, the CM does not make any calculations with this number.
2934		Present Demand Pulse Count Channel 4	R	N	N	Counts	0 to 32,767	Total number of pulses counted on all specified inputs during present demand interval on Channel 4.
2935		Last Demand Pulse Count Channel 4	R	Y	N	Counts	0 to 32,767	Total number of pulses counted during the last completed demand interval on Input 1.
2936		Peak Demand Count Value Channel 4	R	Y	N	Counts	0 to 32,767	Peak Value of the channel 4 last demand count register since last demand reset.
$\begin{aligned} & 2937- \\ & 2939 \end{aligned}$		Date/Time of Peak Demand Count Channel 4	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Date/Tim Regs \# 1800-1802	me of Peak Channel 4 Demand Count since last reset

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2940		Channel 5 Demand Meter Bit Map	R/W	Y	N	None	0 to FF	Channel 5 Demand Meter Bit Map specifying which status inputs to totalize for this demand channel. Bit 0 represents input 1 , etc. A $0=$ exclude, $1=$ include. Default value is 0 .
2941		Channel 5 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \text { Used by } \end{aligned}$	Channel 5 Demand Meter Unit Code. Software Only.
2942		Channel 5 Scale Code	R/W	Y	N	None	-3 to 3	Channel 5 Demand Meter Scale Code. Used by Software Only.
2943		Channel 5 Weight Factor	R/W	Y	N	KW,KVAr,KVA per pulse	0 to 32,767	Channel 5 Weight Factor of each pulse in KW, KVAr, or KVA. This is a place holder for the user, the CM does not make any calculations with this number.
2944		Present Demand Pulse Count Channel 5	R	N	N	Counts	0 to 32,767	Total number of pulses counted on all specified inputs during present demand interval on Channel 5.
2945		Last Demand Pulse Count Channel 5	R	Y	N	Counts	0 to 32,767	Total number of pulses counted during the last completed demand interval on Input 1.
2946		Peak Demand Count Value Channel 5	R	Y	N	Counts	0 to 32,767	Peak Value of the channel 5 last demand count register since last demand reset.
$\begin{aligned} & 2947- \\ & 2949 \end{aligned}$		Date/Time of Peak Demand Count Channel 5	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Date/Tim Regs \# 1800-1802	me of Peak Channel 5 Demand Count since last reset

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2950		Channel 6 Demand Meter Bit Map	R/W	Y	N	None	0 to FF	Channel 6 Demand Meter Bit Map specifying which status inputs to totalize for this demand channel. Bit 0 represents input 1 , etc. A $0=$ exclude, $1=$ include. Default value is 0 .
2951		Channel 6 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \text { Used by } \end{aligned}$	Channel 6 Demand Meter Unit Code. Software Only.
2952		Channel 6 Scale Code	R/W	Y	N	None	-3 to 3	Channel 6 Demand Meter Scale Code. Used by Software Only.
2953		Channel 6 Weight Factor	R/W	Y	N	KW,KVAr,KVA per pulse	0 to 32,767	Channel 6 Weight Factor of each pulse in KW, KVAr, or KVA. This is a place holder for the user, the CM does not make any calculations with this number.
2954		Present Demand Pulse Count Channel 6	R	N	N	Counts	0 to 32,767	Total number of pulses counted on all specified inputs during present demand interval on Channel 6.
2955		Last Demand Pulse Count Channel 6	R	Y	N	Counts	0 to 32,767	Total number of pulses counted during the last completed demand interval on Input 1.
2956		Peak Demand Count Value Channel 6	R	Y	N	Counts	0 to 32,767	Peak Value of the channel 6 last demand count register since last demand reset.
$\begin{aligned} & 2957- \\ & 2959 \end{aligned}$		Date/Time of Peak Demand Count Channel 6	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Date/Tim Regs \# 1800-1802	me of Peak Channel 6 Demand Count since last reset

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2960		Channel 7 Demand Meter Bit Map	R/W	Y	N	None	0 to FF	Channel 7 Demand Meter Bit Map specifying which status inputs to totalize for this demand channel. Bit 0 represents input 1 , etc. A $0=$ exclude, $1=$ include. Default value is 0 .
2961		Channel 7 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \text { Used by } \end{aligned}$	Channel 7 Demand Meter Unit Code. Software Only.
2962		Channel 7 Scale Code	R/W	Y	N	None	-3 to 3	Channel 7 Demand Meter Scale Code. Used by Software Only.
2963		Channel 7 Weight Factor	R/W	Y	N	KW,KVAr,KVA per pulse	0 to 32,767	Channel 7 Weight Factor of each pulse in KW, KVAr, or KVA. This is a place holder for the user, the CM does not make any calculations with this number.
2964		Present Demand Pulse Count Channel 7	R	N	N	Counts	0 to 32,767	Total number of pulses counted on all specified inputs during present demand interval on Channel 7.
2965		Last Demand Pulse Count Channel 7	R	Y	N	Counts	0 to 32,767	Total number of pulses counted during the last completed demand interval on Input 1.
2966		Peak Demand Count Value Channel 7	R	Y	N	Counts	0 to 32,767	Peak Value of the channel 7 last demand count register since last demand reset.
$\begin{aligned} & 2967- \\ & 2969 \end{aligned}$		Date/Time of Peak Demand Count Channel 7	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Date/Tim Regs \# 1800-1802	me of Peak Channel 7 Demand Count since last reset

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2970		Channel 8 Demand Meter Bit Map	R/W	Y	N	None	0 to FF	Channel 8 Demand Meter Bit Map specifying which status inputs to totalize for this demand channel. Bit 0 represents input 1 , etc. A $0=$ exclude, $1=$ include. Default value is 0 .
2971		Channel 8 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \text { Used by } \end{aligned}$	Channel 8 Demand Meter Unit Code. Software Only.
2972		Channel 8 Scale Code	R/W	Y	N	None	-3 to 3	Channel 8 Demand Meter Scale Code. Used by Software Only.
2973		Channel 8 Weight Factor	R/W	Y	N	KW,KVAr,KVA per pulse	0 to 32,767	Channel 8 Weight Factor of each pulse in KW, KVAr, or KVA. This is a place holder for the user, the CM does not make any calculations with this number.
2974		Present Demand Pulse Count Channel 8	R	N	N	Counts	0 to 32,767	Total number of pulses counted on all specified inputs during present demand interval on Channel 8.
2975		Last Demand Pulse Count Channel 8	R	Y	N	Counts	0 to 32,767	Total number of pulses counted during the last completed demand interval on Input 1.
2976		Peak Demand Count Value Channel 8	R	Y	N	Counts	0 to 32,767	Peak Value of the channel 8 last demand count register since last demand reset.
$\begin{aligned} & 2977- \\ & 2979 \end{aligned}$		Date/Time of Peak Demand Count Channel 8	R	Y	N	Month,Day,Yr, Hr,Min,Sec	Same as Date/Tim Regs \# 1800-1802	me of Peak Channel 8 Demand Count since last reset

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2980		Channel 9 Demand Meter Bit Map	R/W	Y	N	None	0 to FF	Channel 9 Demand Meter Bit Map specifying which status inputs to totalize for this demand channel. Bit 0 represents input 1 , etc. A $0=$ exclude, $1=$ include. Default value is 0 .
2981		Channel 9 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \text { Used by } \end{aligned}$	Channel 9 Demand Meter Unit Code. Software Only.
2982		Channel 9 Scale Code	R/W	Y	N	None	-3 to 3	Channel 9 Demand Meter Scale Code. Used by Software Only.
2983		Channel 9 Weight Factor	R/W	Y	N	KW,KVAr,KVA per pulse	0 to 32,767	Channel 9 Weight Factor of each pulse in $\mathrm{KW}, \mathrm{KVAr}$, or KVA. This is a place holder for the user, the CM does not make any calculations with this number.
2984		Present Demand Pulse Count Channel 9	R	N	N	Counts	0 to 32,767	Total number of pulses counted on all specified inputs during present demand interval on Channel 9.
2985		Last Demand Pulse Count Channel 9	R	Y	N	Counts	0 to 32,767	Total number of pulses counted during the last completed demand interval on Input 1.
2986		Peak Demand Count Value Channel 9	R	Y	N	Counts	0 to 32,767	Peak Value of the channel 9 last demand count register since last demand reset.
$\begin{aligned} & 2987- \\ & 2989 \end{aligned}$		Date/Time of Peak Demand Count Channel 9	R	Y	N	Month,Day,Yr, $\mathrm{Hr}, \mathrm{Min}, \mathrm{Sec}$	Same as Date/Tim Regs \# 1800-1802	me of Peak Channel 9 Demand Count since last reset

Register CM/2	Number $\mathrm{CM} / 1$	Register Name	Type	Saved	Scaled	Units	Range	Register Description
2990		Channel 10 Demand Meter Bit Map	R/W	Y	N	None	0 to FF	Channel 10 Demand Meter Bit Map specifying which status inputs to totalize for this demand channel. Bit 0 represents input 1 , etc. A $0=$ exclude, $1=$ include. Default value is 0 .
2991		Channel 10 Unit Code	R/W	Y	N	None	$\begin{aligned} & -32,767 \text { to } \\ & +32,767 \text { Used by } \end{aligned}$	Channel 10 Demand Meter Unit Code. Software Only.
2992		Channel 10 Scale Code	R/W	Y	N	None	-3 to 3	Channel 10 Demand Meter Scale Code. Used by Software Only.
2993		Channel 10 Weight Factor	R/W	Y	N	KW,KVAr,KVA per pulse	0 to 32,767	Channel 10 Weight Factor of each pulse in $\mathrm{KW}, \mathrm{KVAr}$, or KVA. This is a place holder for the user, the CM does not make any calculations with this number.
2994		Present Demand Pulse Count Channel 10	R	N	N	Counts	0 to 32,767	Total number of pulses counted on all specified inputs during present demand interval on Channel 10.
2995		Last Demand Pulse Count Channel 10	R	Y	N	Counts	0 to 32,767	Total number of pulses counted during the last completed demand interval on Input 1.
2996		Peak Demand Count Value Channel 10	R	Y	N	Counts	0 to 32,767	Peak Value of the channel 10 last demand count register since last demand reset.
$\begin{aligned} & 2997- \\ & 2999 \end{aligned}$		Date/Time of Peak Demand Count Channel 10	R	Y	N	Month,Day,Yr, Hr,Min,Sec	$\begin{aligned} & \text { Same as Date/Tim } \\ & \text { Regs \# } \\ & 1800-1802 \end{aligned}$	me of Peak Channel 10 Demand Count since last reset

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
$3000-$	CUL Application	R/W	Y	N	None	$+/-32767$	All CUL application registers are available for use by the CUL tasks. Therefore, the definition for values in this register group are unique to the application.

FFT SPECTRAL COMPONENTS

$4000-$	Spectral Components Phase A Voltage	R	N	N	Note (1)
4063	Spectral Components Phase A Current	R	N	N	Note (1)
4128					

Note (1): The spectral components for each metered channel are contained in 64 registers, organized as 32 pairs (the harmonics 0-31). Each register pair consists of: (1) The harmonic amplitude, expressed in hundreds of a percent of the fundamental amplitude value. (2) The angle of the component with reference to Phase A voltage, expressed in tenths of a degree.

Note (2)
Printed: 4-Jun-99 CULFFT.doc Rev: Z32 Revised: 05/26/99 4:09 PM

Proprietary Document: Property of Square D Co.

Not to be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
4464	copy of 2000-2016						
$\begin{aligned} & 4465- \\ & 4471 \end{aligned}$	Configuration Registers copy of 2020-2026						Note (2)
$\begin{aligned} & 4472- \\ & 4498 \end{aligned}$	Configuration Registers copy of 2050-2066						Note (2)
Note (2):	The configuration regist values into electrical un	lues,	use wh	a was c	ted for FF	lysis, ar	orded. They may be
4499	Reserved						
$\begin{aligned} & 4500- \\ & 4563 \end{aligned}$	Raw Data Samples, Phase A Voltage	R	N	N	Counts	0-4095	Note (3)
$\begin{aligned} & 4564- \\ & 4627 \end{aligned}$	Raw Data Samples, Phase A Current	R	N	N	Counts	0-4095	Note (3)
$\begin{aligned} & 4628- \\ & 4691 \end{aligned}$	Raw Data Samples, Phase B Voltage	R	N	N	Counts	0-4095	Note (3)
$\begin{aligned} & 4692- \\ & 4755 \end{aligned}$	Raw Data Samples, Phase B Current	R	N	N	Counts	0-4095	Note (3)
$\begin{aligned} & 4756- \\ & 4819 \end{aligned}$	Raw Data Samples, Phase C Voltage	R	N	N	Counts	0-4095	Note (3)
$\begin{aligned} & 4820- \\ & 4883 \end{aligned}$	Raw Data Samples, Phase C Current	R	N	N	Counts	0-4095	Note (3)
$\begin{aligned} & 4884- \\ & 4947 \end{aligned}$	Raw Data Samples, Phase N Current	R	N	N	Counts	0-4095	Note (3)

Note (3): The raw data samples for each metered channel are contained in 64 registers, providing a complete waveshape description for one cycle of the monitored power circuit. The values are unscaled, and must be converted to volt or amp values by use of configuration registers 4448-4498.

4948- Reserved
4999

Proprietary Document: Property of Square D Co.

Not to be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Register Number	Register Name	Type	Saved	Scaled	Units

5000-
5199

5200-
5599

Metered Value Registers
copy of 1000-1199

Reserved

The metered register values, present when data was collected for FFT analysis, are saved and recorded. They may be used in converting the spectral amplitude values into electrical units.
(Note: High Speed events are only applicable to Models CM2350 and above)

Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
5600	Bit Map of High Speed Active Alarms	R	N	N	None	0 to 000F	Bit Map of Active Standard Alarms Bit $0=1$ if any priority $1-3$ alarm is active Bit $1=1$ if a High priority (1) alarm is active Bit $2=1$ if a Medium priority (2) alarm is active Bit $3=1$ if a Low Priority (3) alarm is active
5601	Active High Speed Alarm Bit Map Registers	R	N	N	None	0 to FFFF	1 Register Bit Map of Active High Speed Alarms. Each bit position corresponds to an alarm/event number. Bit $0=$ high speed alarm 201, etc. A $0=$ Inactive, $1=$ active
5602	Latched Bit Map for High Speed Alarm Indication	R/W	N	N	None	$0 \text { to } 000 \mathrm{~F}$ cle	Latched Bit Map for Standard Alarm indication since by writing a zero. Bit $0=1$ if any priority 1-3 alarm has occured Bit $1=1$ if a High priority (1) alarm has occurred Bit $2=1$ if a Medium priority (2) alarm has occurred Bit $3=1$ if a Low Priority (3) alarm has occured
5603	Total High Speed Event Counter	R/W	Y	N	None	0 to 32,767	Total High Speed Event Counter, total of priority 1,2 or 3 high speed events.
5604	Pickup Mode Selection Bit Mask	R/W	Y	N	None	0 to 3FFF	Bit mask to select absolute or relative pickup test for the first 14 high speed events (201-214). Bit 0 is for event 201, etc. A $0=$ absolute, $1=$ relative.
5605	Number of Samples in Relative Threshold Average	R/W	Y	N	None	5 to 30	Number of update intervals (samples) used to compute the RMS average value applied in relative pickup event tests.

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993

High Speed Event Counters
Note: All Event Counters are Type: R/W, Saved: Y, Scaled: N, Units: None, Range: 0 to 32,767

High Speed Event Counter No. 201
High Speed Event Counter No. 202
High Speed Event Counter No. 203
High Speed Event Counter No. 204
High Speed Event Counter No. 205
High Speed Event Counter No. 206

High Speed Event Counter No. 207

High Speed Event Counter No. 208
High Speed Event Counter No. 209

High Speed Event Counter No. 210
High Speed Event Counter No. 211
High Speed Event Counter No. 212

High Speed Event Counter No. 213

High Speed Event Counter No. 214

High Speed Event Counter No. 201
High Speed Event Counter No. 202
High Speed Event Counter No. 203
High Speed Event Counter No. 204
High Speed Event Counter No. 205

High Speed Event Counter No. 206

High Speed Event Counter No. 207

High Speed Event Counter No. 208

High Speed Event Counter No. 209

High Speed Event Counter No. 210
High Speed Event Counter No. 211

High Speed Event Counter No. 212

High Speed Event Counter No. 213

High Speed Event Counter No. 214

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SqUARE D Co. All Rights Reserved © 1993
$5625 \quad$ High Speed Event Counter No. 215
5626- Not Used

High Speed Event Counter No. 215

Event Setup
Event \#201-215 Pre-defined High Speed Event Configuration Block Registers 5630-5734: Refer to Pre-defined event template.

Event \#	Description	Syst. 43	Syst. 42	Syst. 41	Syst. 40	Syst. 30	Register \#'s 201
Voltage Surge A-N/A-B Event Configuration Block	$\mathrm{A}-\mathrm{N}$	$\mathrm{A}-\mathrm{N}$	$\mathrm{A}-\mathrm{N}$	$\mathrm{A}-\mathrm{N}$	$\mathrm{A}-\mathrm{B}$	$5630-5636$	
202	Voltage Surge B-N Event Configuration Block	n / a	n / a	$\mathrm{B}-\mathrm{N}$	$\mathrm{B}-\mathrm{N}$	n / a	$5637-5643$
203	Voltage Surge C-N/C-B Event Configuration Block	$\mathrm{C}-\mathrm{N}$	$\mathrm{C}-\mathrm{N}$	$\mathrm{C}-\mathrm{N}$	$\mathrm{C}-\mathrm{N}$	$\mathrm{C}-\mathrm{B}$	$5644-5650$
204	Current Surge A Event Configuration Block	A	A	A	A	A	$5651-5657$
205	Current Surge B Event Configuration Block	B	B	B	B	n / a	$5658-5664$
206	Current Surge C Event Configuration Block	C	C	C	C	C	$5665-5671$
207	Current Surge N Event Configuration Block	N	n / a	N	n / a	n / a	$5672-5678$
208	Voltage Sag A-N/A-B Event Configuration Block	$\mathrm{A}-\mathrm{N}$	$\mathrm{A}-\mathrm{N}$	$\mathrm{A}-\mathrm{N}$	$\mathrm{A}-\mathrm{N}$	$\mathrm{A}-\mathrm{B}$	$5679-5685$
209	Voltage Sag B-N Event Configuration Block	n / a	n / a	$\mathrm{B}-\mathrm{N}$	$\mathrm{B}-\mathrm{N}$	n / a	$5686-5692$
210	Voltage Sag C-N/C-B Event Configuration Block	$\mathrm{C}-\mathrm{N}$	$\mathrm{C}-\mathrm{N}$	$\mathrm{C}-\mathrm{N}$	$\mathrm{C}-\mathrm{N}$	$\mathrm{C}-\mathrm{B}$	$5693-5699$
211	Current Sag A Event Configuration Block	A	A	A	A	A	$5700-5706$
212	Current Sag B Event Configuration Block	B	B	B	B	n / a	$5707-5713$
213	Current Sag C Event Configuration Block	C	C	C	C	C	$5714-5720$
214	Current Sag N Event Configuration Block	N	n / a	N	n / a	n / a	$5721-5727$
215	High Speed Voltage Sag Combination Event	$* 2$	$* 2$	$* 1$	$* 1$	$* 2$	$5728-5734$
216	Reserved						$5735-5741$

* The High Speed Voltage Sag Event Combination Events is based on a combination of the other applicable sag events as outlined in *1-*2 below. The pickup and dropout thresholds and time delays are not applicable to these two events themselves and are ignored for these events.
*1 - When events 208, 209, or 210 are true but not all three are true then event 215 will be true for system types 40 and 41 .

Proprietary Document: Property of Square d Co.

Not TO be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993
*2 - When events 208 or 210 are true but not both are true then event 215 will be true for system type 30,42 , and 43 .

EVENTS							
Register Number	Register Name	Type	Saved	Scaled	Units	Range	Register Description
CM/2 CM/1							
$\begin{aligned} & 5742- \\ & 5749 \end{aligned}$	Not Used						
$\begin{aligned} & 5750- \\ & 5759 \end{aligned}$	Priority 1 Event Queue	R/W	Y	N	None	0-110	Queue of last ten active priority 1 (high) events. $5750=$ most recent event \#.
$\begin{aligned} & 5760- \\ & 5764 \end{aligned}$	Not Used						
5765	Total Standard Event Counter	R/W	Y	N	None	0 to 32,767	Total Standard Event Counter, total of priority 1,2 or 3 standard (not high speed) events.
5766	Low Priority (3) Event Counter	R/W	Y	N	None	0 to 32,767	Low Priority (3) Event Counter
5767	Medium Priority (2) Event Counter		Y	N	None	0 to 32,767	Medium Priority (2) Event Counter
5768	High Priority (1) Event Counter	R/W	Y	N	None	0 to 32,767	High Priority (1) Event Counter
5769	Reserved						

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled		Units	Range	Register Description
5770		Bit MapR of Active Alarms	N	N		None		0 to 000F Bit	of Acitve Standard Alarms Bit $0=1$ if any priority 1-3 alarm is active Bit $1=1$ if a High priority (1) alarm is active Bit $2=1$ if a Medium priority (2) alarm is active Bit $3=1$ if a Low Priority (3) alarm is active
$\begin{aligned} & 5771- \\ & 5778 \end{aligned}$		Active Alarm Bit Map Registers	R	N	N		None	0 to FFFF each Register	8 Register Bit Map of Active Alarms. each bit position corresponds to an alarm/event number. Bit $0=$ alarm 1, etc.
5779		Latched Bit Map for Alarm Indication	R/W	N	N		None	0 to 000F	Latched Bit Map for Alarm indication since last cleared bywriting a zero. Bit $0=1$ if any priority 1-3 alarm has occured Bit $1=1$ if a High priority (1) alarm has occurred Bit $2=1$ if a Medium priority (2) alarm has occurred if a Low Priority (3) alarm has occured

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993
Register Number Register Name Type Saved Scaled Units Range Register Description

Standard Event Counters

Note: All Event Counters are Type: R/W, Saved: Y, Scaled: N, Units: None, Range: 0 to 32,767
$5780 \quad$ Event Counter No. 1
$5781 \quad$ Event Counter No. 2

Event Counter No. 1
Event Counter No. 2
Event Counter No. 3
Event Counter No. 4

Event Counter No. 5

Event Counter No. 6

Event Counter No. 7
Event Counter No. 8
Event Counter No. 9
Event Counter No. 10
Event Counter No. 11
Event Counter No. 12

Event Counter No. 13

Event Counter No. 14

Event Counter No. 15

Event Counter No. 16

Printed: 4-Jun-99 Events.doc Rev: Z32 Revised: 05/26/99 4:13 PM

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

Proprietary Document: Property of Souare d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. AlL RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name Type	Saved	Scaled	Units	Range	Register Description
5797		Event Counter No. 18					Event Counter No. 18
5798		Event Counter No. 19					Event Counter No. 19
5799		Event Counter No. 20					Event Counter No. 20
5800		Event Counter No. 21					Event Counter No. 21
5801		Event Counter No. 22					Event Counter No. 22
5802		Event Counter No. 23					Event Counter No. 23
5803		Event Counter No. 24					Event Counter No. 24
5804		Event Counter No. 25					Event Counter No. 25
5805		Event Counter No. 26					Event Counter No. 26
5806		Event Counter No. 27					Event Counter No. 27
5807		Event Counter No. 28					Event Counter No. 28
5808		Event Counter No. 29					Event Counter No. 29
5809		Event Counter No. 30					Event Counter No. 30
5810		Event Counter No. 31					Event Counter No. 31
5811		Event Counter No. 32					Event Counter No. 32
5812		Event Counter No. 33					Event Counter No. 33
5813		Event Counter No. 34					Event Counter No. 34

Printed: 4-Jun-99 Events.doc Rev: Z32 Revised: 05/26/99 4:13 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
5814		Event Counter	o. 35					Event Counter No. 35
5815		Event Counter	o. 36					Event Counter No. 36
5816		Event Counter	o. 37					Event Counter No. 37
5817		Event Counter	o. 38					Event Counter No. 38
5818		Event Counter	o. 39					Event Counter No. 39
5819		Event Counter	o. 40					Event Counter No. 40
5820		Event Counter	o. 41					Event Counter No. 41
5821		Event Counter	o. 42					Event Counter No. 42
5822		Event Counter	o. 43					Event Counter No. 43
5823		Event Counter	o. 44					Event Counter No. 44
5824		Event Counter	o. 45					Event Counter No. 45
5825		Event Counter	o. 46					Event Counter No. 46
5826		Event Counter	o. 47					Event Counter No. 47
5827		Event Counter	o. 48					Event Counter No. 48
5828		Event Counter	o. 49					Event Counter No. 49
5829		Event Counter	o. 50					Event Counter No. 50
5830		Event Counter	o. 51					Event Counter No. 51
5831		Event Counter	o. 52					Event Counter No. 52

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
5832		Event Counter	o. 53					Event Counter No. 53
5833		Event Counter	o. 54					Event Counter No. 54
5834		Event Counter	o. 55					Event Counter No. 55
5835		Event Counter	o. 56					Event Counter No. 56
5836		Event Counter	o. 57					Event Counter No. 57
5837		Event Counter	o. 58				,	Event Counter ,No. 58
5838		Event Counter	o. 59					Event Counter No. 59
5839		Event Counter	o. 60					Event Counter No. 60
5840		Event Counter	o. 61					Event Counter No. 61
5841		Event Counter	o. 62					Event Counter No. 62
5842		Event Counter	o. 63					Event Counter No. 63
5843		Event Counter	o. 64					Event Counter No. 64
5844		Event Counter	o. 65					Event Counter No. 65
5845		Event Counter	o. 66					Event Counter No. 66
5846		Event Counter	o. 67					Event Counter No. 67
5847		Event Counter	o. 68					Event Counter No. 68
5848		Event Counter	o. 69					Event Counter No. 69

Printed: 4-Jun-99 Events.doc Rev: Z32 Revised: 05/26/99 4:13 PM

Proprietary document: Property of Square d Co.
NOT TO be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Register $\mathrm{CM} / 2$	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
5849		Event Counter	o. 70					Event Counter No. 70
5850		Event Counter	o. 71					Event Counter No. 71
5851		Event Counter	o. 72					Event Counter No. 72
5852		Event Counter	o. 73					Event Counter No. 73
5853		Event Counter	o. 74					Event Counter No. 74
5854		Event Counter	o. 75					Event Counter No. 75
5855		Event Counter	o. 76					Event Counter No. 76
5856		Event Counter	o. 77					Event Counter No. 77
5857		Event Counter	o. 78					Event Counter No. 78
5858		Event Counter	o. 79					Event Counter No. 79
5859		Event Counter	o. 80					Event Counter No. 80
5860		Event Counter	o. 81					Event Counter No. 81
5861		Event Counter	o. 82					Event Counter No. 82
5862		Event Counter	o. 83					Event Counter No. 83
5863		Event Counter	o. 84					Event Counter No. 84
5864		Event Counter	o. 85					Event Counter No. 85
5865		Event Counter	o. 86					Event Counter No. 86
5866		Event Counter	o. 87					Event Counter No. 87

Proprietary document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993

Register CM/2	Number CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
5867		Event Counter	o. 88					Event Counter No. 88
5868		Event Counter	o. 89					Event Counter No. 89
5869		Event Counter	o. 90					Event Counter No. 90
5870		Event Counter	o. 91					Event Counter No. 91
5871		Event Counter	-. 92					Event Counter No. 92
5872		Event Counter	o. 93					Event Counter No. 93
5873		Event Counter	o. 94					Event Counter No. 94
5874		Event Counter	o. 95					Event Counter No. 95
5875		Event Counter	o. 96					Event Counter No. 96
5876		Event Counter	. 97					Event Counter No. 97
5877		Event Counter	. 98					Event Counter No. 98
5878		Event Counter	o. 99					Event Counter No. 99
5879		Event Counter	. 100					Event Counter No. 100
5880		Event Counter	o. 101					Event Counter No. 101
5881		Event Counter	o. 102					Event Counter No. 102
5882		Event Counter	. 103					Event Counter No. 103
5883		Event Counter	o. 104					Event Counter No. 104

Printed: 4-Jun-99 Events.doc Rev: Z32 Revised: 05/26/99 4:13 PM

Proprietary document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. AlL RIGHTS RESERVED © 1993

Register CM/2	Number $\mathrm{CM} / 1$	Register Name	Type	Saved	Scaled	Units	Range	Register Description
5884		Event Counter	. 105					Event Counter No. 105
5885		Event Counter	\%. 106					Event Counter No. 106
5886		Event Counter	o. 107					Event Counter No. 107
5887		Event Counter	o. 108					Event Counter No. 108
5888		Event Counter	o. 109					Event Counter No. 109
5889		Event Counter	. 110					Event Counter No. 110
5890		Event Counter	. 111					Event Counter No. 111
5891		Event Counter	- 112					Event Counter No. 112
5892		Event Counter	. 113					Event Counter No. 113
5893		Event Counter	o. 114					Event Counter No. 114
5894		Event Counter	o. 115					Event Counter No. 115
5895		Event Counter	. 116					Event Counter No. 116
5896		Event Counter	o. 117					Event Counter No. 117
5897		Event Counter	. 118					Event Counter No. 118
5898		Event Counter	o. 119					Event Counter No. 119
5899		Event Counter	o. 120					Event Counter No. 120

Proprietary Document: Property of Square D Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. ALL RIGHTS RESERVED © 1993

Standard Events \#001-110 Pre-defined Event Configuration Block Registers 5900-6669

Event \#	Description	Type	$\begin{aligned} & \text { Sub- } \\ & \text { Type } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Compare } \\ \text { Reg } \\ \hline \end{gathered}$	Register \#'s
01	Over Current Phase A Event Configuration Block	1	0	1003	5900-5906
02	Over Current Phase B Event Configuration Block	1	0	1004	5907-5913
03	Over Current Phase C Event Configuration Block	1	0	1005	5914-5920
04	Over Current Neutral Event Configuration Block	1	0	1006	5921-5927
05	Over Current Ground Event Configuration Block	1	0	1007	5928-5934
06	Under Current Phase A Event Configuration Block	2	0	1003	5935-5941
07	Under Current Phase B Event Configuration Block	2	0	1004	5942-5948
08	Under Current Phase C Event Configuration Block	2	0	1005	5949-5955
09	Current Unbalance Phase A Event Configuration Block	1	1	1010	5956-5962
10	Current Unbalance Phase B Event Configuration Block	1	1	1011	5963-5969
11	Current Unbalance Phase C Event Configuration Block	1	1	1012	5970-5976
12	Current Load Loss Phase (Loss of A B or C but not all 3) Event Configuration Block	5	3	N/A	5977-5983
13	Over Voltage Phase A Event Configuration Block	1	0	1018	5984-5990
14	Over Voltage Phase B Event Configuration Block	1	0	1019	5991-5997
15	Over Voltage Phase C Event Configuration Block	1	0	1020	5998-6004
16	Over Voltage Phase A-B Event Configuration Block	1	0	1014	6005-6011
17	Over Voltage Phase B-C Event Configuration Block	1	0	1015	6012-6018
18	Over Voltage Phase C-A Event Configuration Block	1	0	1016	6019-6025
19	Under Voltage Phase A Event Configuration Block	2	0	1018	6026-6032
20	Under Voltage Phase B Event Configuration Block	2	0	1019	6033-6039
21	Under Voltage Phase C Event Configuration Block	2	0	1020	6040-6046
22	Under Voltage A-B Event Configuration Block	2	0	1014	6047-6053
23	Under Voltage B-C Event Configuration Block	2	0	1015	6054-6060
24	Under Voltage C-A Event Configuration Block	2	0	1016	6061-6067
25	Voltage Unbalance A Event Configuration Block	1	1	1026	6068-6074
26	Voltage Unbalance B Event Configuration Block	1	1	1027	6075-6081
27	Voltage Unbalance C Event Configuration Block	1	1	1028	6082-6088
28	Voltage Unbalance A-B Event Configuration Block	1	1	1022	6089-6095
29	Voltage Unbalance B-C Event Configuration Block	1	1	1023	6096-6102

Printed: 4-Jun-99 Events.doc Rev: Z32 Revised: 05/26/99 4:13 PM

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVEd © 1993

Event \#	Description	Type	Sub- Type	Compare Reg	Register \#'s
30	Voltage Unbalance C-A Event Configuration Block	1	1	1024	6103-6109
31	Voltage Loss (Loss of Phase A B or C but not all 3) Event Configuration Block	5	2	2122	6110-6116
32	Over kVA 3 Phase Total Event Configuration Block	1	1	1050	6117-6123
33	Over kW Into the Load 3 Phase Total Event Configuration Block	1	0	1042	6124-6130
34	Over kW Out of the Load 3 Phase Total Event Configuration Block	1	2	1042	6131-6137
35	Over kVar Into the Load 3 Phase Total Event Configuration Block	1	0	1046	6138-6144
36	Over kVAr Out of the Load 3 Phase Total Event Configuration Block	1	2	1046	6145-6151
37	Over Current Demand Phase A Event Configuration Block	1	0	1701	6152-6158
38	Over Current Demand Phase B Event Configuration Block	1	0	1702	6159-6165
39	Over Current Demand Phase C Event Configuration Block	1	0	1703	6166-6172
40	Over Current Demand 3 Phase Average Event Configuration Block	1	0	1700	6173-6179
41	Over Frequency Event Configuration Block	1	0	1001	6180-6186
42	Under Frequency Event Configuration Block	2	0	1001	6187-6193
43	Lagging True Power Factor 3 Phase Total Event Configuration Block	5	5	1034	6194-6200
44	Leading True Power Factor 3 Phase Total Event Configuration Block	5	4	1034	6201-6207
45	Lagging Displacement Power Factor 3 Phase Total Event Configuration Block	5	5	1038	6208-6214
46	Leading Displacement Power Factor 3 Phase Total Event Configuration Block	5	4	1038	6215-6221
47	Suspend Swell/Sag Events	7	0	-	6222-6228
48	Reserved Event Configuration Block				6229-6235
49	Over Value THD Current Phase A Event Configuration Block	1	0	1051	6236-6242
50	Over Value THD Current Phase B Event Configuration Block	1	0	1052	6243-6249
51	Over Value THD Current Phase C Event Configuration Block	1	0	1053	6250-6256
52	Over Value THD Voltage Phase A Event Configuration Block	1	0	1055	6257-6263
53	Over Value THD Voltage Phase B Event Configuration Block	1	0	1056	6264-6270
54	Over Value THD Voltage Phase C Event Configuration Block	1	0	1057	6271-6277
55	Over Value THD Voltage Phase A-B Event Configuration Block	1	0	1058	6278-6284
56	Over Value THD Voltage Phase B-C Event Configuration Block	1	0	1059	6285-6291
57	Over Value THD Voltage Phase C-A Event Configuration Block	1	0	1060	6292-6298
58	Over K Factor Phase A Event Configuration Block	1	0	1071	6299-6305
59	Over K Factor Phase B Event Configuration Block	1	0	1072	6306-6312

Printed: 4-Jun-99 Events.doc Rev: Z32 Revised: 05/26/99 4:13 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. ALL RIGHTS RESERVED © 1993

Event \#	Description	Type	Sub- Type	Compare Reg	Register \#'s
60	Over K Factor Phase C Event Configuration Block	1	0	1073	6317-6319
61	Over Predicted KVA Demand Event Configuration Block	1	1	1748	6320-6326
62	Over Predicted KW Demand Event Configuration Block	1	1	1746	6327-6333
63	Over Predicted KVAr Demand Event Configuration Block	1	1	1747	6328-6340
64	Over KVA Demand Level 1 Event Configuration Block	1	1	1733	6341-6347
65	Over KVA Demand Level 2 Event Configuration Block	1	1	1733	6348-6354
66	Over KVA Demand Level 3 Event Configuration Block	1	1	1733	6355-6361
67	Over KW Demand Level 1 Event Configuration Block	1	1	1731	6362-6368
68	Over KW Demand Level 2 Event Configuration Block	1	1	1731	6369-6375
69	Over KW Demand Level 3 Event Configuration Block	1	1	1731	6376-6382
70	Over KVAR Demand Event Configuration Block	1	1	1732	6383-6389
71	Over Lagging 3 Phase Demand Power Factor Event Configuration Block	5	5	1730	6390-6396
72	Under 3 Phase Total Real Power Event Configuration Block	2	1	1042	6397-6403
73	Over Reverse 3 Phase Total Power Event Configuration Block	1	2	1042	6404-6410
74	Phase Reversal Event Configuration Block	5	1	1117	6411-6417
75	Status Input 1 Transition from Off to On Event Configuration Block	6	0	-	6418-6424
76	Status Input 2 Transition from Off to On Event Configuration Block	6	0	-	6425-6431
77	Status Input 3 Transition from Off to On Event Configuration Block	6	0	-	6432-6438
78	Status Input 4 Transition from Off to On Event Configuration Block	6	0	-	6439-6445
79	Status Input 5 Transition from Off to On Event Configuration Block	6	0	-	6446-6452
80	Status Input 6 Transition from Off to On Event Configuration Block	6	0	-	6453-6459
81	Status Input 7 Transition from Off to On Event Configuration Block	6	0	-	6460-6466
82	Status Input 8 Transition from Off to On Event Configuration Block	6	0	-	6467-6473
83	Status Input 1 Transition from On to Off Event Configuration Block	6	0	-	6474-6480
84	Status Input 2 Transition from On to Off Event Configuration Block	6	0	-	6481-6487
85	Status Input 3 Transition from On to Off Event Configuration Block	6	0	-	6488-6494
86	Status Input 4 Transition from On to Off Event Configuration Block	6	0	-	6495-6501
87	Status Input 5 Transition from On to Off Event Configuration Block	6	0	-	6502-6508
88	Status Input 6 Transition from On to Off Event Configuration Block	6	0	-	6509-6515
89	Status Input 7 Transition from On to Off Event Configuration Block	6	0	-	6516-6522
90	Status Input 8 Transition from On to Off Event Configuration Block	6	0	-	6523-6529

Printed: 4-Jun-99 Events.doc Rev: Z32 Revised: 05/26/99 4:13 PM
Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Event \#	Description	Type	$\begin{aligned} & \text { Sub- } \\ & \text { Type } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Compare } \\ \text { Reg } \\ \hline \end{gathered}$	Register \#'s
91	**Second Timer 1 Event Configuration Block				6530-6536
92	** Second Timer 2 Event Configuration Block				6537-6543
93	** Second Timer 3 Event Configuration Block				6544-6550
94	** Second Timer 4 Event Configuration Block				6551-6557
95	** Time of Day 1 Event Configuration Block				6558-6564
96	** Time of Day 2 Event Configuration Block				6565-6571
97	** Time of Day 3 Event Configuration Block				6572-6578
98	** Time of Day 4 Event Configuration Block				6579-6585
99	End of Incremental Energy Interval Event Configuration Block	7	0		6586-6592
100	Power-Up/Reset Event Configuration Block	7	0		6593-6599
101	End of Demand Interval Event Configuration Block	7	0		6600-6606
102	End of Update Cycle Event Configuration Block	7	0		6607-6613
103	* Over Analog Input Channel 1	1	0		6614-6620
104	* Over Analog Input Channel 2	1	0		6621-6627
105	* Over Analog Input Channel 3	1	0		6628-6634
106	* Over Analog Input Channel 4	1	0		6635-6641
107	* Under Analog Input Channel 1	2	0		6642-6648
108	* Under Analog Input Channel 2	2	0		6649-6655
109	* Under Analog Input Channel 3	2	0		6656-6662
110	* Under Analog Input Channel 4	2	0		6663-6669

* These events will not be supported until analog I/O is available.
** These events will only be present in models which support programmable logic i.e. the CM245X Models.

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. ALL RIGHTS RESERVED © 1993

TEMPLATE for Pre-Defined event setup block

00	Enable/Disable, Priority	R/W	Y	N	None	$\begin{aligned} & \text { MSB: } 0, \mathrm{FF} \\ & \text { LSB: } 0 \text { to } 3 \end{aligned}$	Byte Map: Upper Byte - Enable as normal event (FF), and Disable (0) of Event. Lower Byte Specifies Priority Level (0-3)
01	Pickup Limit	R/W	Y	Y	Units/ Scale Factor		Pickup Limit Setpoint
02	Pickup Limit Time Delay	R/W	Y	N	Seconds or Cycles	0 to 32,767	Pickup Setpoint Time Delay. Units are in seconds for standard events, and are in cycles for high speed events.
03	Dropout Limit	R/W	Y	Y	Units/ Scale Factor		Dropout Limit Setpoint
04	Dropout Limit Time Delay	R/W	Y	N	Seconds or Cycles	0 to 32,767	Dropout Setpoint Time Delay. Units are in seconds for standard events, and are in cycles for high speed events.
05	Relay Action	R/W	Y	N	None	$\begin{aligned} & \text { MSB: } 0 \\ & \text { LSB: } 0 \text { to FF } \end{aligned}$	Bit Map of relays to Operate/Release Based on Event, 0 if none. Lower byte is used for operate on alarm entry and for release on alarm exit (release for normal mode relays only)
06	Data Log Specifier	R/W	Y	N	None	$0000 \text { to }$ FFFF	Bit Map Specifying which logs including Data Logs, or Waveform Capture Logs to make an entry into on alarm entry, 0 if none. Bit position 0 corresponds to file 1 , etc.

Proprietary document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. ALL RIGHTS RESERVED © 1993

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. All RIGHTS RESERVED © 1993

Event \#111-120 User Defined Event Configuration Block Registers 6670-6799

Event \#	Description	Register \#'s
111	User Defined Event 1 Event Configuration Block	$6670-6682$
112	User Defined Event 2 Event Configuration Block	$6683-6695$
113	User Defined Event 3 Event Configuration Block	$6696-6708$
114	User Defined Event 4 Event Configuration Block	$6709-6721$
115	User Defined Event 5 Event Configuration Block	$6722-6734$
116	User Defined Event 6 Event Configuration Block	$6735-6747$
117	User Defined Event 7 Event Configuration Block	$6748-6760$
118	User Defined Event 8 Event Configuration Block	$6761-6773$
119	User Defined Event 9 Event Configuration Block	$6774-6786$
120	User Defined Event 10 Event Configuration Block	$6787-6799$

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. AlL RIGHTS RESERVED © 1993

TEMPLATE for User Defined event setup block

00	Enable/Disable, Priority	R/W	Y	N	None	MSB: 0 or FF LSB: 0 to 3	Byte Map: Upper Byte - Enable (FF) and Disable of Event (0). Lower Byte Specifies Priority Level (0-3)
$\begin{aligned} & 01- \\ & 04 \end{aligned}$	Name (8 char)	R/W	Y	N	None	Valid ASCII	8 Character User Specified Event Name
05	Monitored Register \#	R/W	Y	N	None	1000 to 8000	The Number of the Register being Monitored for Events
06	Type	R/W	Y	N	None	1 to 4	Defines as either an Over (1), Under (2), Min (3), Max (4) or Singular (5) Event Type. A 100 Hex is added to the type for an alarm entry event and a 200 Hex is added to the type for an xit event
07	Pickup Limit	R/W	Y	Y	Units/ Scale Factor		Pickup Limit Setpoint
08	Pickup Limit Time Delay	R/W	Y	N	Seconds	0 to 32,767	Pickup Setpoint Time Delay
09	Dropout Limit	R/W	Y	Y	Units/ Scale Factor		Dropout Limit Setpoint
10	Dropout Limit Time Delay	R/W	Y	N	Seconds	0 to 32,767	Dropout Setpoint Time Delay to Alarm
11	Relay Action	R/W	Y	N	None	MSB: 0 LSB: 0 to FF	Bit Map of relays to Operate Based on Event, 0 if none. Lower byte is used for operate on alarm entry and for release on alarm exit (release for normal mode relays only)
12	Data Log Specifier	R/W	Y	N		0000 to FFFF	Bit Map Specifying which logs including Data Logs, or Waveform Capture Logs to make an entry into on alarm entry,

Proprietary document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D CO. ALL RIGHTS RESERVED © 1993

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. AlL RIGHTS RESERVED © 1993

FILES

The following is a template that corresponds to the 20 blocks of 20 registers designated as the File Access Header section of the register list

File \#1 Registers 7000-7019
File \#2 Registers 7020-7039
File \#3 Registers 7040-7059
File \#4 Registers 7060-7079
File \#5 Registers 7080-7099
File \#6 Registers 7100-7119
File \#7 Registers 7120-7139
File \#8 Registers 7140-7159
File \#9 Registers 7160-7179
File \#10 Registers 7180-7199
File \#11 Registers 7200-7219
File \#12 Registers 7220-7239
File \#13 Registers 7240-7259
File \#14 Registers 7260-7279
File \#15 Registers 7280-7299
File \#16 Registers 7300-7319
File \#17 Registers 7320-7339
File \#18 Registers 7340-7359
File \#19 Registers 7360-7379
File \#20 Registers 7380-7399

Data Log File
Continuous Waveform Capture
Snapshot Waveform Capture
Reserved (DM Event Log)
CM Event Log
Min/Max Log
Maintenance Log

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993

TEMPLATE for File Access Header Block

	Porthole Register	R/W	Y	N	None	Porthole register used to read/write to file records	
00	File Type	R	Y	N	None		Specifies file type, i.e. data log, waveform capture, etc.

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993

TEMPLATE for File Access Header Block (cont)

11-13

Date/Time of
last file reset/clear

Allocated File
Size

Allocate Record Size

File Status Y

Registers

Reserved

Cont. WFC R/W Y N None	$1-5$				
Segment Limit					
Cont. WFC Trigger Delay	R/W	Y	N	None	$2-10$

Date/Time of last file reset/clear in 3 register format

The file size allocated during the last file resize, in records

The record size allocated during the last file resize, in registers, including date/time stamp

The status of the file based on requested and actual allocated file size and record size. Status is as follows:
$0=$ Okay;
$10=$ Resize recommended, present record size < allocated record size
$20=$ Resize required, present record size > allocated record size
$30=$ Allocation failed due to insufficient memory
250 = Internal File Failure - Special File resize/clear required
$253=$ File disabled due to corrupted control values
254 = File disabled due to null configuration
$255=$ File disabled due to invalid configuration

Continuous WFC segment limit may be set in range 1-5 for the CM2350 and later models.

Number of Pre-Trigger Cycles to obtain when a continuous WFC occurs. Applicable to the Cont. WFC File Only. Reserved for all others

Proprietary Document: Property of Square d Co.
NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993

Proprietary Document: Property of Square d Co.
NOT TO be used to furnish information to others without the explicit consent of Square d co. All Rights Reserved © 1993

Protected Command Interface							
Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
7715	Semaphore Request Register	R	N	N	None	0 to $+/-32,767$	Semaphore request register: A device desiring to use the long term interface must first request the semaphore by reading this register. If the semaphore is not available a value of 0 will be returned, otherwise a random number from 0 to 32,767 will be returned. This value may be read from the Active Semaphore register below.
7716	Active Access Semaphore	R	N	N	None	1 to +/-32,767	Command Interface Access Semaphore from above.
7717	Active Command Function Code	R	N	N	None	TBD	Active Command Function-code
7718	Prior Command Function Code	R	N	N	None	TBD	Prior command Function-code
7719	Prior Command Result Code	R	N	N	None	TBD	Prior command result code
7720	Requested Command Function Code	R/W	N	N	None	TBD	Requested Command Function-code

$\underline{\text { Protected Command Interface (continued) }}$							
Register Number CM/2 CM/1	Register Name	Type	Saved	Scaled	Units	Range	Register Description
$\begin{aligned} & 7721- \\ & 7729 \end{aligned}$	Requested Command Parameter Area	R/W	N	N	None	0 to $+/-32,767$	Requested Command Parameter Area
$\begin{aligned} & 7730- \\ & 7999 \end{aligned}$	Requested Command Data Buffer Area	R/W	N	N	None	0 to $+/-32,767$	Requested Command Data Buffer Area
$\begin{aligned} & 8000- \\ & 8171 \end{aligned}$	Reserved						Reserved

Command Groups

$-1000-1999$	H/W Restart, Clear, Set Date/Time
$-2000-2999$	Configuration (User Setup)
$-3000-3999$	Discrete and Analog I/O
$-4000-4999$	Real Time Metering (e.g. Reset Min/Max)
$-5000-5999$	Demand
$-6000-6999$	Energy
$-7000-7999$	Files
$-30,000-30,999$	F/W Download
$-31,000-31,999$	Production/Maintenance Tests
$-32,000-32,767$	Alpha Tests/Special Diagnostic
Within each group, the hundreths position will specify command types as follows:	
-0	Unused
-1	Reset
-2	Clear
-3	Mode Set
-4	Data Conversion/transfer (i.e. read/write)
-5	User Memory Configuration (e.g. firmware download)
-6	Unused
-7	Unused
-8	Unused
-9	Trigger/Initiate (e.g. new demand interval, waveform capture, etc.)

Note: Many configuration changes performed via the command interface or by writing to registers require that a reset of the unit be performed to make them active. Register 2082 indicates whether or not any metering configuration changes have been made which are not yet active.

Required Commands

Command	Parameter(s)	Description	Reset Req	Com $\mathrm{m} \mathrm{I/F}$
1110	None	Soft reset of the unit	N	N / Pr
1115	CM2 Password (Reg 2028)	Hard reset of the unit (reset signal goes true)	$\mathrm{Sh} / \mathrm{Pr}$	
1120	CM2 Password (Reg 2028)	Clear Memory and reset Hardware	Clear the communications counters	N
1210	None	Set System Date/Time, 6 Register format		
1310	Date/Time 6 Register Format	Pate/Time 3 Register Format	Set System Date/Time, 3 Register format	N
1311	Starting Register of 3 Register Date/Time Set	CM2 -> CM1 command I/F Ghost register for Date/Time translation 3 Reg -> 6 Reg format	N	Pr
1410		N	$\mathrm{Sh} / \mathrm{Pr}$	

Required Commands (cont.)

Command	Parameter(s)	Description	Reset Req	$\begin{aligned} & \mathrm{Com} \\ & \mathrm{~m} \mathrm{I} / \mathrm{F} \end{aligned}$
2110	Scale Factors A-E	Change scale factors A-E and reset $\mathrm{min} / \mathrm{max}$ registers/file and then reset unit WARNING: Changing scale factors does not affect event thresholds - they will continue to be based on the old scaling - eratic event/output behavior may occur if events and/or outpurs are not first disabled.	N	$\mathrm{Sh} / \mathrm{Pr}$
2120	CT ratio correction factors $\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{~N}$	Change CT ratio correction factors	Y	$\mathrm{Sh} / \mathrm{Pr}$
2130	PT ratio correction factors $\mathrm{A}, \mathrm{~B}, \mathrm{C},$	Change PT ratio correction factors	Y	$\mathrm{Sh} / \mathrm{Pr}$
2310	Unit Address	Change Unit's Address to to the address specified and reset unit	N	$\mathrm{Sh} / \mathrm{Pr}$
2320	Baud Rate	Change Unit's Baud Rate to the baud rate specified and reset unit	N	$\mathrm{Sh} / \mathrm{Pr}$
2325	None	Set UART Mode to 8 bits + even parity	Y	$\mathrm{Sh} / \mathrm{Pr}$
2326	None	Set UART Mode to 8 bits + no parity	Y	$\mathrm{Sh} / \mathrm{Pr}$
2330	None	Enable Unit \#01's response to the SY/MAX Enquire transmission (default)	N	$\mathrm{Sh} / \mathrm{Pr}$
2331	None	Disable Unit \#01's response to the SY/MAX Enquire transmission	N	$\mathrm{Sh} / \mathrm{Pr}$
2340	None	Set Control of Conditional Energy to status inputs (default)	N	$\mathrm{Sh} / \mathrm{Pr}$
2341	None	Set Control of Conditional Energy to command Interface	N	$\mathrm{Sh} / \mathrm{Pr}$
2350	None	Enable front panel comm port (default)	N	$\mathrm{Sh} / \mathrm{Pr}$
2351	None	Disable front panel comm port	N	$\mathrm{Sh} / \mathrm{Pr}$
2360	None	Enable front panel setup (default)	N	$\mathrm{Sh} / \mathrm{Pr}$
2361	None	Disable front panel setup	N	$\mathrm{Sh} / \mathrm{Pr}$
2370	None	Set normal phase rotation to ABC (default)	N	$\mathrm{Sh} / \mathrm{Pr}$
2371	None	Set normal phase rotation to CBA	N	$\mathrm{Sh} / \mathrm{Pr}$

Required Commands (cont.)

Command	Parameter(s)	Description	Reset Req
3210	None	Com I / F	
3310	Bit Map Relay Designation	Place specified relays under external control	N
3311	Bit Map Relay Designation	Place specified relays under internal control	$\mathrm{Sh} / \mathrm{Pr}$
3320	Bit Map Relay Designation	De-Energize Designated relays per specified bit map	N
3321	Bit Map Relay Designation	Energize Designated relays per specified bit map	Sh
3340	Bit Map Output Designation	Release specified Relays from Override Control	$\mathrm{Sh} / \mathrm{Pr}$
3341	Bit Map Output Designation	Place specified Relays Under Override Control.	N
3390	Bit Map input Designation	Set control of Conditional Energy to indicated status inputs.	N

Required Commands (cont)

Command	Parameter(s)	Description	Reset Req	Com I/F
4110	None	Reset Min/Max	N	$\mathrm{Sh} / \mathrm{Pr}$
4310	None	Set VAr/PF sign convention to CM1 convention	Y	$\mathrm{Sh} / \mathrm{Pr}$
4311	None	Set VAr/PF sign convention to alternate convention	Y	$\mathrm{Sh} / \mathrm{Pr}$
4910	None	Trigger Snapshot WFC	N	$\mathrm{Sh} / \mathrm{Pr}$
4911	None	Trigger Continuous WFC	N	$\mathrm{Sh} / \mathrm{Pr}$
4913	Channel Format	High Density WFC with 128 points per cycle	N	$\mathrm{Sh} / \mathrm{Pr}$
4911	None	Trigger Continuous WFC	N	$\mathrm{Sh} / \mathrm{Pr}$
5110	None	Reset Peak Demand Currents/K Factors	N	$\mathrm{Sh} / \mathrm{Pr}$
5112	None	Reset Min/Max Generic Demand	N	$\mathrm{Sh} / \mathrm{Pr}$
5120	None	Reset Peak Demand Powers and associated average Power Factors	N	$\mathrm{Sh} / \mathrm{Pr}$
5310	None	Set Power Demand method to thermal	Y	$\mathrm{Sh} / \mathrm{Pr}$
5311	None	Set Power Demand Method to Block/Rolling	Y	$\mathrm{Sh} / \mathrm{Pr}$
5320	None	Set External Demand Synch source to Input 1	N	$\mathrm{Sh} / \mathrm{Pr}$
5321	None	Set External Demand Synch source to the Command Interface	N	$\mathrm{Sh} / \mathrm{Pr}$
5910	None	Start new demand interval	N	$\mathrm{Sh} / \mathrm{Pr}$
5920	None	Start new Input Pulse Demand (IPD) interval	N	$\mathrm{Sh} / \mathrm{Pn}$
6210	None	Clear all accumulated energies	N	$\mathrm{Sh} / \mathrm{Pr}$
6220	None	Clear all Conditional Energies	N	$\mathrm{Sh} / \mathrm{Pr}$
6310	None	Set Energy Accumulation method to absolute	N	$\mathrm{Sh} / \mathrm{Pr}$
6311	None	Set Energy Accumulation method to signed	N	$\mathrm{Sh} / \mathrm{Pr}$
6320	None	Disable Conditional Energy Accum.	N	$\mathrm{Sh} / \mathrm{Pr}$
6321	None	Enable Conditional Energy Accum.	N	$\mathrm{Sh} / \mathrm{Pr}$
6330	None	Set Reactive Energy and Demand method to include only the fundamental component	N	$\mathrm{Sh} / \mathrm{Pr}$
6331	None	Set Reactive Energy and Demand method to include the both fundamental and harmonic components	N	$\mathrm{Sh} / \mathrm{Pr}$
6910	None	Start new incremental Energy Interval	N	$\mathrm{Sh} / \mathrm{Pr}$

Printed: 4-Jun-99 Command1.doc Rev: Z32 Revised: 05/26/99 4:08 PM
Proprietary Document: Property of Square d Co.
Not to be used to furnish information to others without the explicit consent of Square d Co. All Rights Reserved © 1993

Required Commands (cont)

Command	Parameter(s)	Description	Reset Req	$\begin{aligned} & \hline \text { Com } \\ & \text { I/F } \\ & \hline \end{aligned}$
7110	CM2 Password, Parameter 2	Resize/Reallocate available file space - If paramter $2=$ password then clear all data \log and wfc files and resize. If parameter 2 equals the complement of the password then completely reset file handler, record sequence \#'s etc..	N	$\mathrm{Sh} / \mathrm{Pr}$
7210	2 Register Bit Map Specifying files to clear	Clear files data log and wfc 1-18 as specified per bitmap	N	$\mathrm{Sh} / \mathrm{Pr}$
7310	2 register bit map specifying files to enable	Master Enable of specified Log and WFC files (default)	N	$\mathrm{Sh} / \mathrm{Pr}$
7311	2 register bit map specifying files to disable	Master Disable of specified Log and WFC files	N	$\mathrm{Sh} / \mathrm{Pr}$
7410	File \#, Record Sequence \#	Read File - Place the specified record from the specified file in the data buffer area	N	Pr
7420	File \#, Record Sequence \#, Length of record, Record Data	Write File - Write the data buffer area to the specified record in the specified file	N	Pr
7510	2 Register Bit Map Specifying Files to trigger an entry into	Trigger Data Log Entry	N	$\mathrm{Sh} / \mathrm{Pr}$
8000	HALT Cul Execution	If running, halt execution of the CUL Program	N	$\mathrm{Sh} / \mathrm{Pr}$
8001	RESTART Cul Execution	If stopped, RESTART execution of the CUL Program	N	$\mathrm{Sh} / \mathrm{Pr}$
8101	Continue Cul Execution	If debug mode enabled, complete execution of CUL Task	N	$\mathrm{Sh} / \mathrm{Pr}$
29XYZ	None	Clear the protected command interface active semaphore. The Digits XYZ must equal the active semaphore. All semaphores are restricted to the range from 0 to 999.	N	Pr

Command Result Codes
Note: Command Result codes should match the SY/MAX error codes whenever possible.

Result Condition	Result Code (Hex)
Succesful commands	00
Illegal Tranaction	14
Illegal Record Size	15
Illegal File Command	16
Insufficient File Memory	17
Illegal file number	42
Undefined commands	81
Commands with undefined or illegal parameters	82
Illegal Record Request	107
Illegal Record Count	125
Protected Mode not Enabled	200
Timeout, Operation not performed	201
Invalid Password, Operation not Performed	202

Attempts to write to the protected command interface registers by a device which does not own the semaphore will resuilt in an attempt to write to a read only register error reply.

8172- Sy/Max Compat.
8192 Registers

Registers Required to Maintain Sy/Max Compatibility (formatted as in the CM) Register 8188 will report 456 (CM150) to maintain compatibility with first generation PowerLogic S/W. Register 8172 will be set equal to the update interval (register 1000)

Reg \#	Value
8172	Register 1000
8173	8176
8174	1
8175	0
8176	0
8177	0
8178	0
$8179-8180$	$-32,768$
$8181-8182$	0
$8183-8184$	0
8185	0
8186	4
8187	0
8188	SQD ID \#
$8189-8190$	0
$8101-8192$	0

Proprietary Document: Property of Square d Co.

NOT TO BE USED TO FURNISH INFORMATION TO OTHERS WITHOUT THE EXPLICIT CONSENT OF SQUARE D Co. All RIGHTS RESERVED © 1993

[^0]: Printed: 4-Jun-99 Config.doc Rev: Z32 Revised: 05/26/99 3:24 PM

