Cable Length Instructions ### Long Cable Lengths Consequences When drives are used with motors, a combination of fast switching transistors and long motor cables can even cause peak voltages up to twice the DC link voltage. This high peak voltage can cause premature aging of motor winding insulation which leads to motor breakdown. The overvoltage limitation function will enable to increase the cable length while decreasing the torque performances. ### Length Of Motor Cables Because of the permitted mains disturbances, the allowed overvoltages at the motor, the occurring bearing currents and the permitted heat losses the distance between inverter and motor(s) is limited. The maximum distance heavily depends on the used motors (insulation material), the type of motor cable used (shielded/unshielded), the cable laying (cable channel, underground installation...) as well as from the used options. # Dynamic Voltage Load Of The Motor Overvoltages at the motor terminals result from reflection in the motor cable. Basically the motors are stressed with measurable higher voltage peaks from a motor cable length of 10 m. With the length of the motor cable also the value of overvoltage increases. The steep edges of the switching impulses at the output side of the frequency inverter lead to a further load of the motors. The slew rate of the voltage is typically over 5 kV/µs but it decreases with the length of the motor cable Load of the motor with overvoltage and slew rate when using conventional drive L Length of motor cables in meters (feet) #### Corrective Actions Overview A number of simple measures can be taken to help enhance the motor life time: - Specification of a motor designed for speed drive applications (IEC60034-25 B or NEMA 400 should be prescribed). - · Reduce to a minimum the distance between motor and drive. - Use unshielded cables. - Reduce the drive switching frequency (a reduction to 2.5 kHz is recommended.)