Structural Engineers

RMJ

Robinson Meier Juilly & Associates Principals Peter Robinson, S.E. Jayson E. Haines, S.E.

by Schneider Electric

SYMMETRA PX40 UPS & INFRASTRUXURE PDU SYMMETRA PX40 UPS, SYMMETRA PX40 XR Battery Cabinet, & INFRASTRUXURE PDU

Structural Calculations For Seismic Anchorage

Prepared for:

APC RMJ Job No.: 11210 August 26, 2011 RMJ Job No. 11210 Valid Thru August 26, 2012

103 Linden Avenue So. San Francisco, CA 94080 (650) 871-2282 FAX (650) 871-2459

by Schneider Electric

SYMMETRA PX40 UPS & INFRASTRUXURE PDU SYMMETRA PX40 UPS, SYMMETRA PX40 XR Battery Cabinet, & INFRASTRUXURE PDU

Table of Contents

Description P	<u>age</u>
Project Description/Results	3
Scope, Assumptions, Limitations	4
Drawing Design Scenarios Summary	5
Seismic Risk Map	6
Flow Charts	
Low& Moderate Seismic Calcs	8-14
High Seismic Calcs 1	5-20
Hand Calc. Seismic Bracket	21
Drawings Details2	22-29
Appendix	80-40
Hilti Output File (Shear)	31-33
Hilti Output File (Tension)	84-37
Hand Calculations	8-40

Symmetra PX40, Symmetra PX40 UPS, Infrastruxure PDU Units by APC Nationwide RMJ Job# 11210

Project Description:

This project involves providing server anchorage support for units located throughout the United States. Calculations have been assembled according to two distinct seismic regions low & moderate, and high. A map has been created based on Figures 3.3-1 & 3.3-2 of ASCE 7-05 to define the two different seismic regions. Please note our seismic map shows three distinct regions low, moderate, and high, but for simplicity of our calculations low and moderate were combined into one region. The map also shows a solid line near the New Madrid Fault where the value of S_s exceeds 2.75. In this area of extreme seismic potential, all anchorage is site specific. The other seismic regions have been determined according to the table included below;

Seismic Design Data									
Seismic design region	Short period spectral response acceleration S_s	Short-period site coefficient F _a	Design spectral response acceleration at short periods $S_{\rm DS}$						
Low	0.4	1.5	0.4						
Moderate	1.5	1.0	1.0						
High	2.75	1.0	2.0						

4" Concrete Slab

Units to be ganged (3-minimum) located on the ground level assumed to have a total weight of unit plus contents of 2,100lbs. Hilti Kwik Bolt KB-TZ Carbon Steel expansion bolts shall be used to anchor the APC equipment. Calculations are only intended for the Symmetra PX40, Symmetra PX40 UPS, and Infrastruxure PDU APC units. Calculations are based on the assumptions that anchors are not located within any boundary edges, 4" thick concrete minimum thickness, 2" minimum embedment, and 2,500 psi concrete strength.

Results

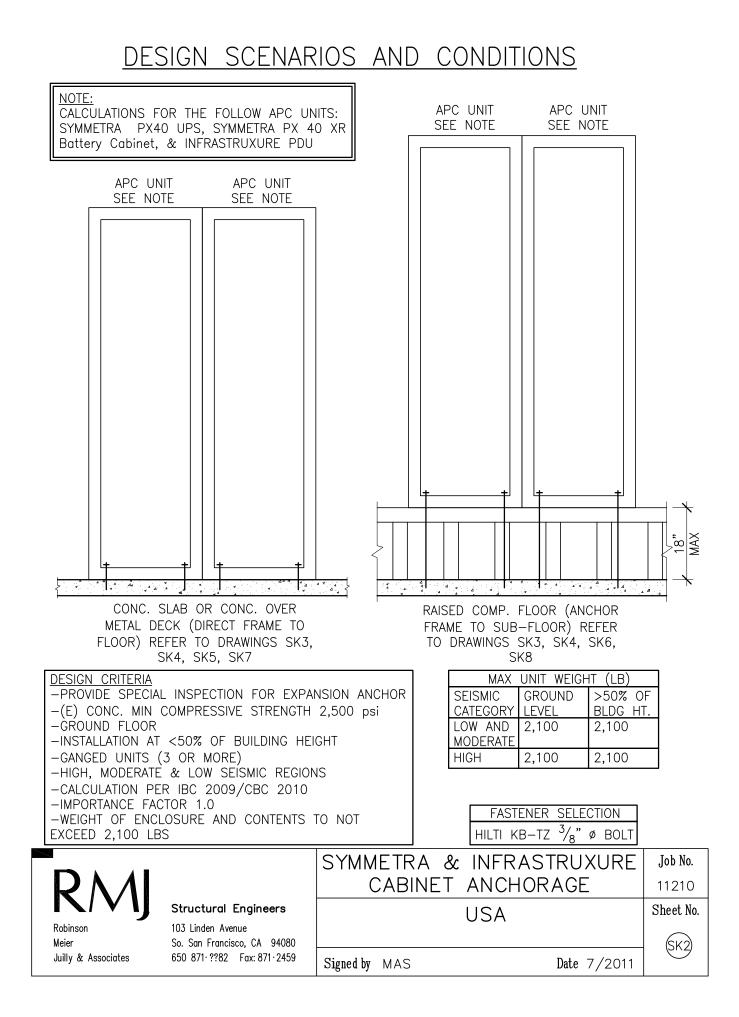
Please see the table below for a quick review of our results.

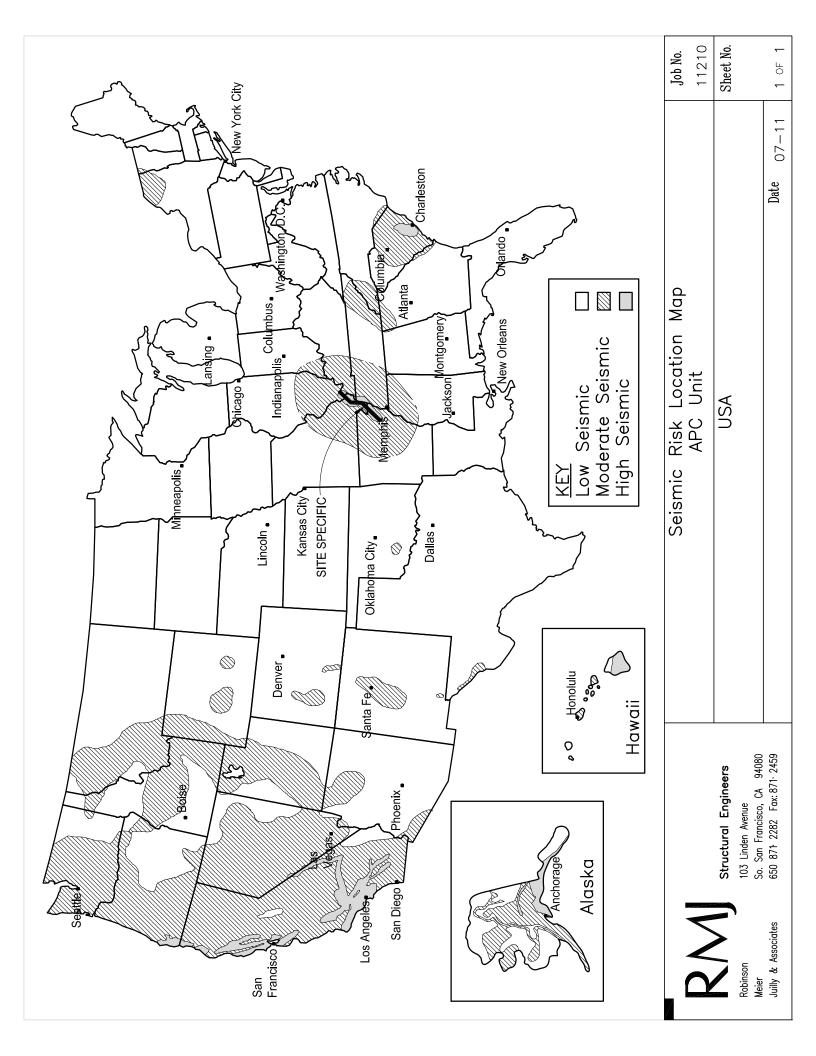
Bolt Alignment	Max Tension (lbf.)	Max Shear (lbf.)	% Capacity
Ground Level	1,100	1,250	99
50% Bld. Ht.	949	1,132	99

Our results show that units on the ground level the Hilti Kwik Bolt KB-TZ (3/8" Dia. with a 2" embedment) resists a max tension force of 1,275#, and max shear force of 1,125#. Anchorage for units located on the upper floor using the Hilti Kwik Bolt KB-TZ (3/8" Dia. with a 1³/₄" embedment) resists a max tension force of 1,051#, and max shear force of 1,132#. I have included the Hilti output files along with my hand calculations in the appendix section of this calculation packet. Site specific engineering is required where S_s is greater than 2.75. Design is in accordance with the 2009 International Building Code.

Robinson Meier Juilly & Associates Principals Peter Robinson, S.E. Jayson E. Haines, S.E.

Symmetra PX40, Symmetra PX40 UPS, Infrastruxure PDU Units by APC Scope, Assumptions, and Limitations RMJ Job #11210 August 25, 2011

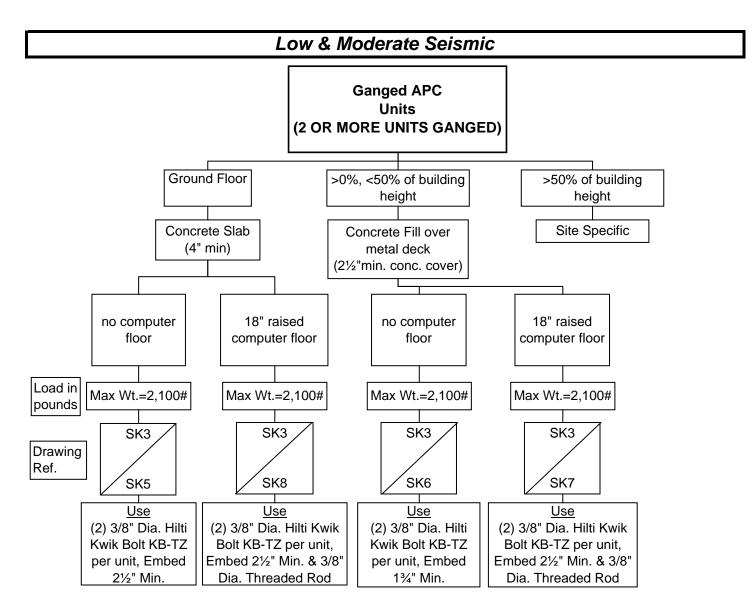

Special Note:


Server rack anchorage calculations are valid under the 2006 & 2009 International Building Code & 2010 California Building Code thru date noted on cover sheet. After valid thru date, contact APC for updates.

- > Special Inspection shall be provided for expansion bolt installation.
- Existing concrete shall have a minimum compressive strength of 2,500 psi.
- ▶ Importance factor is assumed to be 1.0.
- Soil class is assumed to be D.
- Calculations and anchorage are done in accordance with the 2006 and 2009 IBC, 2010 California Building Code and ASCE7-05.
- Maximum S_s value is 2.75. Where value of S_s exceeds 2.75, site specific calculations are required for all anchorages. S_s values can exceed 2.75 near the New Madrid fault.
- > The minimum slab on grade thickness is assumed to be 4".
- ▶ Hilti KWIK Bolt KB-TZ to be used with a minimum embedment of 2.5".
- Maximum weight of enclosure and contents has been listed in the table below

	High Seismic	Low and Moderate Seismic
	Ground Level	Ground Level
Max Wt. of Enclosure and Contents (lb)	2,100 #	2,100 #

- > Enclosure is assumed to stay rigid during seismic loading (design by others).
- Ganged Units based on a <u>Minimum of 2 Units</u>.
- Calculations are for Symmetra PX40, Symmetra PX40 UPS, and Infrastruxure PDU units.

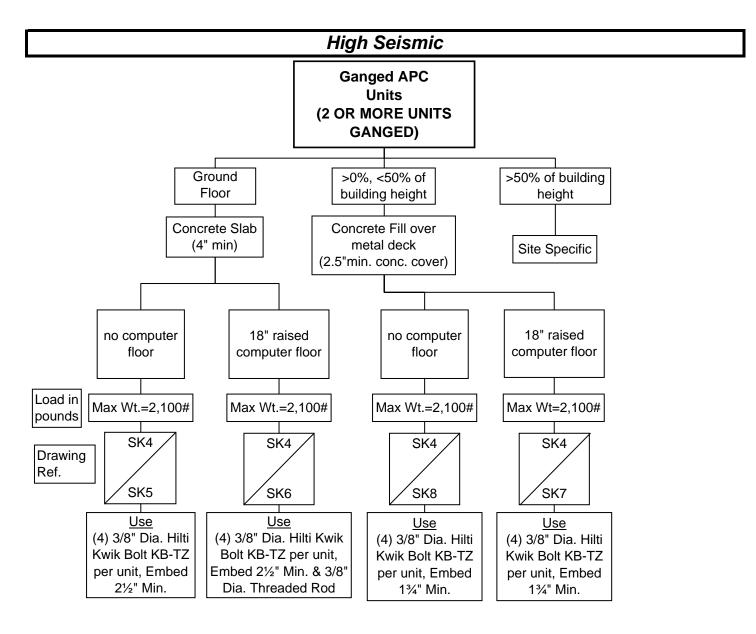


RMJ 103 Linden Avenue South San Francisco, CA 94080 (650) 871-2282 Fax 871-2459

APC

Low & Moderate Seismic

Job No. : 11210 By: MAS Date: 08/26/11 Page: 7



RMJ 103 Linden Avenue South San Francisco, CA 94080 (650) 871-2282 Fax 871-2459

APC

High Seismic

Job No. : 11210 Date: 08/26/11 By: MAS Page: 8

Robinson Meier Juilly & Associates Principals Peter Robinson, S.E. Jayson E. Haines, S.E.

Low & Moderate Seismic Calculations

103 Linden Avenue So. San Francisco, CA 94080 (650) 871-2282 FAX (650) 871-2459 RMJ 103 Linden Avenue South San Francisco, CA 94080 (650) 871-2282 Fax: 871-2459

APC Low & Moderate Seismic

> Job No. : 11210 Date: 08/05/11 By: MAS Page: 10

Find the Seismic Design Category (SDC)

Unit : APC-Unit

Project Location: Latitude: Va

Varies

Low & Moderate Seismic Longitude: Varies

Soil Classification: D Occupancy Category: II Table 1613.5.2 & Section 1613.5.2 Table 1604.5

Information from U.S. Geological Survey Website http://earthquake.usgs.gov/research/hazmaps/

S _S =	1.500	g	
S ₁ =	1.070	g	
$F_a =$	1.000		Table 1613.5.3(1)
$F_v =$	1.500		Table 1613.5.3(2)
S _{MS} =	1.50	g	(Equation 16-37)
S _{M1} =	1.61	g	(Equation 16-38)
$S_{DS}=$	1.000	g	(Equation 16-39)
S _{D1} =	1.070	g	(Equation 16-40)

Seismic Design Category (SDC):

Varies

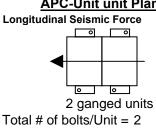
RMJ	APC
103 Linden Avenue	Low & Moderate Seismic
South San Francisco, CA 94080	Job No. : 11210
(650) 871-2282 Fax 871-2459	By: MAS

Date: 08/25/11 Page: 11

Load Case: Ganged Unit (Ground floor)

of Units ganged (min.)= 2

Single Unit Dimension						Sei	ismic Fo	orce
Width(w) (in) = Depth(D) (in) =	37.21 18					S _{DS} =	1.0	Low & Moderate Seismic
Frame Height (in) =	82					I _p =	1.0	(Importance)
Frame Weight (lb.) =	2,100		Center	of Gravit	ty Location	a _p =	1.0	(Cabinets)
Unit	Part	Weight (lbs)	X (in)	Y (in)	Z (in)	$R_p =$	2.5	(Cabinets)
2 - APC-Unit	Frame	4,200	18.0	18.61	41	z/h =	0.0	(Ground Floor)
						$F_p =$	0.160	W
Longitudinal Anchorag	ge Spacing (in) =	38.25				$F_{p,min} =$	0.30	W
Transverse Anchorag	ge Spacing (in) =	37.21				F _{p,max} =	1.60	W
						Use F _p =	0.30	W
Longitudinal Ove Overturning Moment =	4200lbs.) =	51.660	lb-in	APC	-Unit uni	t Plan		


0.9xResisting

Moment =

0.9 (4200 lbs. x18 in.)= 68,040 lb-in

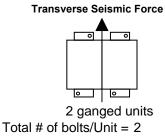
Add 30% increase due to 13.4.2. ASCE-7-05

Anchorage Force = 0 lbs Shear Force = 819 lbs/per bolt

Design Bolts for 0 lbs tension, 819 lbs. shear, transverse direction

Transverse Overturning

Overturning Moment =


0.30 (41 in. x 4200 lbs.) = 51,660 lb-in

0.9xResisting Moment =

0.9 (4200 lbs x18.605 in.) = 70,327 lb-in Add 30% increase due to 13.4.2. ASCE-7-05

Anchorage Force = 0 Shear Force =

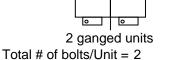
Ganged APC-Unit unit Plan

Design Bolts for 0 lbs tension, 819 lbs. shear, transverse direction

819

lbs/per bolt lbs/per bolt

RMJ	APC	
103 Linden Avenue	Low & Moderate Seismic	
South San Francisco, CA 94080	Job No. : 11210	Date: 08/25/11
(650) 871-2282 Fax 871-2459	By: MAS	Page: 12


Load Case: Ganged units on 18in raised computer floor (Ground Floor)

of Units ganged (min.)= 2

Single Unit Dim	ension	Raise	d Floor =	18	in	Se	ismic Fo	orce
Width(w) (in) =	37.21							Law 9 Madanat
Depth(D) (in) =	18					S _{DS} =	1.0	Low & Moderate Seismic
Frame Height (in) =	82					$I_{p} =$	1.0	(Importance)
Frame Weight (lb.) =	2,100		Center	of Gravi	ty Location	a _p =	1.0	(Cabinets)
Unit	Part	Weight (lbs)	X (in)	Y (in)	Z (in)	$R_p =$	2.5	(Cabinets)
2 - APC-Unit	Frame	4,200	18.0	18.605	59	z/h =	0.0	(Ground Floor)
						$F_p =$	0.160	W
Longitudinal Anchorag	e Spacing (in) =	38.25				F _{p,min} =	0.30	W
Transverse Anchorag	e Spacing (in) =	37.21				F _{p,max} =	1.60	W
						Use F _p =	0.30	W
Moment = 0.9xResisting Moment =	Add 30% inc	0.3 (59 in. x 0.9 (4200 lb rease due to 1 Anchorage	os. x18 in.)= 1 3.4.2. AS	68,040	lb-in	Longitudir	al Seismic	
		Shea	r Force =	819	lbs/per bolt	Total # of b	olts/Unit	= 2
D	esign Bolts	for 1 lbs ten	nsion, 81	9 lbs. s	hear, longitu	idinal directi	on	
			·					
<u>Fransverse Overt</u>	urning					Ganged /	APC-Uni	<u>t unit Plan</u>
Overturning						Transv	erse Seisn	nic Force
Moment =		0.3 (59in. x	4200lbs.) =	74,340	lb-in			0
0.9xResisting Moment =		0.9 (4200 lbs x1						

Add 30% increase due to 13.4.2. ASCE-7-05

Anchorage Force = 70 lbs/per bolt Shear Force = 819 lbs/per bolt

Design Bolts for 70 lbs tension, 819 lbs. shear, transverse direction

RMJ
103 Linden Avenue
South San Francisco, CA 94080
(650) 871-2282 Fax 871-2459

Low & Moderate Seismic Job No. : 11210

By: MAS

Date: 08/25/11 Page: 13

Load Case: <u>Ganged Unit (≤ 50% of Bldg. Ht.)</u>

of Units ganged (max)= 2

	Single Unit Dim	nension					Sei	ismic Fo	orce
	Width(w) (in) =	37.21							Low & Moderate
	Depth(D) (in) =	18					S _{DS} =	1.0	Seismic
Fra	ime Height (in) =	82	_				$I_p =$	1.0	(Importance)
Fr	ame Weight (lb.) =	2,100		Center	of Gravity	y Location	a _p =	1.0	(Cabinets)
	Unit	Part	Weight (lbs)	X (in)	Y (in)	Z (in)	R _p =	2.5	(Cabinets)
	2 - APC-Unit	Frame	4,200	18.0	18.605	41	z/h =	0.5	(50% of bldg ht.)
							F _p =	0.320	W
l	Longitudinal Anchorage Spacing (in) = 38.25					$F_{p,min} =$	0.30	W	
	Transverse Anchorag	ge Spacing (in) =	37.21				F _{p,max} =	1.60	W
							Use F _p =	0.32	W

Longitudinal Overturning

Overturning Moment =

0.32 (82/2 in. x 4200lbs.) = 55,104 lb-in

0.9xResisting Moment =

0.9 (4200 lbs. x18 in.)= 68,040 lb-in

Longitudinal Seismic Force 0 0 0 0 2 ganged units

Ganged APC-Unit unit Plan

Add 30% increase due to 13.4.2. ASCE-7-05

Anchorage Force = 0 lbs Shear Force = 874 lbs/per bolt

Total # of bolts/Unit = 2

Design Bolts for 0 lbs tension, 874 lbs. shear, longitudinal direction

Transverse Overturning

Overturning Moment =

0.32 (82/2 in. x 4200lbs.) = 55,104 lb-in

0.9xResisting Moment =

0.9 (4200 lbs x18.605 in.) = 70,327 lb-in

Add 30% increase due to 13.4.2. ASCE-7-05

Anchorage Force = 0 lbs/per bolt Shear Force = 874 lbs/per bolt

2 ganged units # of bolts per unit = 2

Design Bolts for 00 lbs tension, 874 lbs. shear, transverse direction

RMJ	APC	
103 Linden Avenue	Low & Moderate Seismic	
South San Francisco, CA 94080	Job No. : 11210	Date: 08/25/11
(650) 871-2282 Fax 871-2459	By: MAS	Page: 14

Load Case: <u>Ganged units on 18in raised computer floor (<50% of Bldg. Ht.)</u>

of Units ganged (max)= 2

0	o (<i>,</i>							
Single Unit Dim	nension	Raise	ed Floor =	18	in	Se	ismic F	orce
Width(w) (in) =	37.21	1						Law 9 Madanata
Depth(D) (in) =	18					S _{DS} =	1.0	Low & Moderate Seismic
Frame Height (in) =	82					$I_p =$	1.0	(Importance)
Frame Weight (lb.) =	2,100		Center	of Gravi	ty Location	a _p =	1.0	(Cabinets)
Unit	Part	Weight (lbs)	X (in)	Y (in)	Z (in)	R _p =	2.5	(Cabinets)
2 - APC-Unit	Frame	4,200	19.1	18.605	59	z/h =	0.5	(50% of bldg ht.)
						$F_p =$	0.320	W
Longitudinal Anchorag	ge Spacing (in) =	38.25				$F_{p,min} =$	0.30	W
Transverse Anchorag	ge Spacing (in) =	37.21				F _{p,max} =	1.60	W
						Use F _p =	0.32	W
Longitudinal Ove	erturnina					· · ·		
Overturning								
Moment =		0.32 (59 in. x	4200lbs.) =	79,296	lb-in	Ganged	APC-Uni	<u>t unit Plan</u>
						Longitudi	nal Seism	ic Force
0.0xDecietium								
0.9xResisting Moment =		0.9 (4200 lbs. x	10.125 in)-	72 203	lh-in		◀──	+
Woment -		0.3 (4200 103. X	19.125 11.)-	12,200				
	Add 30% inc	rease due to 1	13.4.2. AS	CE-7-05		_	2 ganged	
		Anchorage		119	lbs/per bolt			
		Shea	r Force =	874	lbs/per bolt	# of bolts	per unit	= 2
Design Bolts for 0 lbs tension, 874 lbs. shear, longitudinal direction								
L	Design Doits		151011, 07	4 105. 5	near, iongitt			
Trancyaraa Oyar	turning							
Transverse Over Overturning	turning					Gangod		t unit Plan
Moment =		0.3 (59in x	4200lbs.) =	79 296	lh-in		erse Seisr	
Woment -		0.5 (59iii. x	4200103.) -	10,200				A
0.9xResisting								
Moment =		0.9 (4200 lbs x1	8.605 in.) =	70,327	lb-in			
		•		0-				
	Add 30% inc	rease due to 1 Anchorage				, ı		
		•	r Force =	157 874	lbs/per bolt lbs/per bolt	# of bolts	2 ganged	
		Ollea		074			per unit	- 2
D	esign Bolts	for 157 lbs t	ension. 8	374 lbs.	shear, trans	sverse direct	ion	
	.		,		,			

Robinson Meier Juilly & Associates Principals Peter Robinson, S.E. Jayson E. Haines, S.E.

High Seismic Calculations

103 Linden Avenue So. San Francisco, CA 94080 (650) 871-2282 FAX (650) 871-2459 RMJ 103 Linden Avenue South San Francisco, CA 94080 (650) 871-2282 Fax: 871-2459

APC

High Seismic

Job No. : 11210	Date: 08/05/11
By: MAS	Page: 16

Find the Seismic Design Category (SDC)

Unit : APC-Unit

Project Location: Latitude: Varies

High Seismic

Longitude: Varies

Soil Classification: D Occupancy Category: II Table 1613.5.2 & Section 1613.5.2 Table 1604.5

Information from U.S. Geological Survey Website http://earthquake.usgs.gov/research/hazmaps/

S _S =	2.750	g	
S ₁ =	1.070	g	
$F_a =$	1.000		Table 1613.5.3(1)
$F_v =$	1.500		Table 1613.5.3(2)
S _{MS} =	2.75	g	(Equation 16-37)
S _{M1} =	1.61	g	(Equation 16-38)
$S_{DS}=$	1.833	g	(Equation 16-39)
S _{D1} =	1.070	g	(Equation 16-40)

Seismic Design Category (SDC):

Varies

RMJ	
103 Linden Avenue	
South San Francisco, CA 94080	
(650) 871-2282 Fax 871-2459	

High Seismic

Job No. : 11210 Date: 08/25/11 By: MAS Page: 17

Load Case: Ganged Unit (Ground floor)

of Units ganged (min)= 2

Single Unit Dim	nension					Sei	smic Fo	orce
Width(w) (in) =	37.21					S _{DS} =	1.83	High Seismic
Depth(D) (in) =	18					$I_p =$	1.0	(Importance)
Frame Height (in) =	82					a _p =	1.0	(Cabinets)
Max Weight (lb.) =	2,100		Center	of Gravi	ty Location	R _p =	2.5	(Cabinets)
Unit	Part	Weight (lbs)	X (in)	Y (in)	Z (in)	z/h =	0.0	(Ground Floor)
2 - APC-Unit	Frame	4,200	19.13	18.605	41	F _p =	0.293	W
		,				F _{p,min} =	0.55	W
						$F_{p,max} =$	2.93	W
Longitudinal Anchorag	o Spacing (in) -	38.25				Use F _p =	0.55	W
Transverse Anchorag		37.21				β	0.00	
Hansverse Anchorag	e Spacing (iii) =	57.21						
ongitudinal Ove	erturnina							
Overturning	<u>//(a////g</u>							
Moment =		0.55 (41 in. x	4200lbs.) =	94,710	lb-in	Ganged /	APC-Uni	t unit Plan
							udinal Seis	
0.9xResisting						Г	<u> </u>	
Moment =	• `	Vert. Comp.) x'	-		lb-in			_
		Component (0.2*	• •	1,540	lbs			
	Add 30% Inc.	rease due to 1 Anchorage		831	lbs/per bolt		sol is a second	-
		-	r Force =	751	lbs/per bolt	Tot. # of b		
		0.104						•
De	sign Bolts f	or 831 lbs te	ension, 7	51 lbs.	shear, longi	tudinal direc	tion	
ransverse Over	turning							
Overturning						Ganged APC	-Unit uni	it Plan
Moment =		0.55 (41 in. x	4200lbs.) =	94,710	lb-in	Transv	erse Seisr	nic Force
						L		1_
0.9xResisting								
Moment =		- Vert. Comp.) x1				L,	<u> </u>	
		Component (0.2*	• •		lbs		1	
	AUU 30% INC	rease due to 1 Anchorage		438	lbs/per bolt	Tot. # of b	2 ganged	
						1 101 # 01 0		
		-	r Force =	751	lbs/per bolt		ons/unit ·	

Design Bolts for 438 lbs tension, 751 lbs. shear, transverse direction

Drawing Reference See: <u>SK4 & SK5</u>

High Seismic

Job No. : 11210 Date: 08/25/11 By: MAS Page: 18

Load Case: <u>Ganged units on 18in raised computer floor (Ground floor)</u>

of Units ganged (min)= 2

Single Unit Dim	nension	Raise	ed Floor =	18	in	Seismic Force		
Width(w) (in) =	37.21					S _{DS} =	1.83	High Seismic
Depth(D) (in) =	18					I _p =	1.0	(Importance)
Frame Height (in) =	82					a _p =	1.0	(Cabinets)
Max Weight (lb.) =	2,100		Center	of Gravi	ty Location	$R_p =$	2.5	(Cabinets)
Unit	Part	Weight (lbs)	X (in)	Y (in)	Z (in)	z/h =	0.0	(Ground Floor)
2 - APC-Unit	Frame	4,200	19.1	18.605	59	$F_p =$	0.293	W
					•	F _{p,min} =	0.55	W
Longitudinal Anchorag	e Spacing (in) =	38.25				F _{p,max} =	2.93	W
Transverse Anchorag	e Spacing (in) =	37.21				Use F _p =	0.55	W
ongitudinal Ove	erturning							
Overturning Moment =		0.55 (59 in. x	4200lba)	126 200	lh in	Gangad		t unit Plan
Woment -		0.55 (59 In. x	4200IDS.) =	130,290	ID-III			t unit Plan
						Longitudin		
0.9xResisting								
Moment =		Vert. Comp.) x			lb-in			
		Component (0.2*		1,540	lbs			
	Add 30% inc	rease due to 1 Anchorage		769	lbs/per bolt	2	2 ganged	units
		-	r Force =	751	lbs/per bolt	# of bolts	per unit	- 4
		Onea		701				- 1
De	sign Bolts f	or 769 lbs te	ension, 7	51 lbs. s	shear, longi	tudinal direc	tion	
	4							
Transverse Over Overturning	turning					Congod		t unit Blan
Moment =		0.55 (59in. x	4200lba)	126 200	lh in			t unit Plan ismic Force
Woment -		0.55 (59in. x	4200IDS.) =	130,290	10-111			
						L L	00 00	<u>n</u>
0.9xResisting								
Moment =		- Vert. Comp.) x1						
		Component (0.2*		1,540	lbs			
	Add 30% inc	rease due to 1			lbo/por bolt	2	2 ganged	units
		Anchorage	= Force =	801	lbs/per bolt			
		•			•	# of halta	nor unit	_ 1
		•	r Force =	751	lbs/per bolt	# of bolts	per unit	= 4

Drawing Reference See: <u>SK4 & SK6</u>

RMJ
103 Linden Avenue
South San Francisco, CA 94080
(650) 871-2282 Fax 871-2459

High Seismic

Job No. : 11210 Date: 08/25/11 By: MAS Page: 19

Load Case: <u>Ganged Unit (≤ 50% of Bldg. Ht.)</u>

of Units ganged (min)= 2

Single Unit Dim	nension	_			
Width(w) (in) =	37.21	•			
Depth(D) (in) =	18				
Frame Height (in) =	82				
Max Weight (lb.) =	2,100		Center of Gravity Location		y Location
Unit	Part	Weight (lbs)	X (in)	Y (in)	Z (in)
2 - APC-Unit	Frame	4,200	19.1	18.605	41

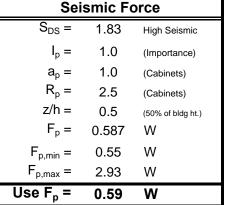
Longitudinal Anchorage Spacing (in) = 38.25 37.21 Transverse Anchorage Spacing (in) =

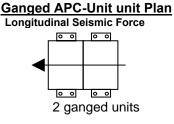
Longitudinal Overturning

Overturning

Moment =

0.59 (41 in. x 4200lbs.) = 101,024 lb-in


0.9xResisting


Moment =

0.9 [(4200 lbs. - Vert. Comp.) x19.125 in.]= 45,785 lb-in Vertical Component (0.2*SDS*Wp) = 1,540 lbs

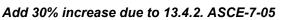
Add 30% increase due to 13.4.2. ASCE-7-05

Anchorage Force = 469 lbs Shear Force = 801 lbs/per bolt

of bolts per unit = 4

Design Bolts for 469 lbs tension, 801 lbs. shear, longitudinal direction

Transverse Overturning


Overturning Moment =

0.59 (41 in. x 4200 lbs.) = 101,024 lb-in

0.9xResisting

Moment =

0.9 [(4200 lbs - Vert. Comp.) x18.605 in.] = 44,540 lb-in Vertical Component (0.2*SDS*Wp) = 1,540 lbs

Anchorage Force = 493 lbs/per bolt Shear Force = lbs/per bolt 801

Ganged APC-Unit unit Plan

Transverse Seismic Force

2 ganged units # of bolts per unit = 4

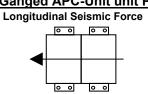
Design Bolts for 493 lbs tension, 801 lbs. shear, longitudinal direction

RMJ	APC
103 Linden Avenue	High Seismic
South San Francisco, CA 94080	
(650) 871-2282 Fax 871-2459	

Job No. : 11210 Date: 08/25/11 By: MAS Page: 20

Load Case: <u>Ganged unit on 18in raised computer floor (≤ 50% of Bldg. Ht.)</u>

of Units ganged (min)= 2


Single Unit Dim	nension	nsion Raised Floor = 18 in		Seismic Force				
Width(w) (in) =	37.21					S _{DS} =	1.83	High Seismic
Depth(D) (in) =	18					$I_{p} =$	1.0	(Importance)
Frame Height (in) =	82					a _p =	1.0	(Cabinets)
Max Weight (lb.) =	2,100		Center	of Gravit	y Location	$R_p =$	2.5	(Cabinets)
Unit	Part	Weight (lbs)	X (in)	Y (in)	Z (in)	z/h =	0.5	(50% of bldg ht.)
2 - APC-Unit	Frame	4,200	19.1	18.605	59	$F_p =$	0.587	W
						$F_{p,min} =$	0.55	W
Longitudinal Anchorag	e Spacing (in) =	38.25				F _{p,max} =	2.93	W
Transverse Anchorag	e Spacing (in) =	37.21				Use F _p =	0.59	W
Longitudinal Ove Overturning Moment =	0.59 (59 in. x	4200lbs.) =	145,376	lb-in	Ganged A	APC-Uni	t unit Plan	

0.9xResisting Moment =

0.9 (4200 lbs. x19.125 in.)= 45,785 lb-in Vert. Comp. (0.2*SDS*Wp)= 1,540 lbs

Add 30% increase due to 13.4.2. ASCE-7-05

Anchorage Force = 846 lbs/per bolt Shear Force = 801 lbs/per bolt

2 ganged units

of bolts per unit = 4

Design Bolts for 846 lbs tension, 801 lbs. shear, longitudinal direction

Transverse Overturning

Overturning				Ganged APC-Unit unit Plan
Moment =	0.59 (59in. x 4200lbs.) =	145,376	lb-in	Transverse Seismic Force
0.9xResisting				
Moment =	0.9 [(4200 lbs - Vert. Comp.) x18.605 in.] =	44,540	lb-in	
	Vertical Component (0.2*SDS*Wp) =	1,540	lb-in	
A	Add 30% increase due to 13.4.2. AS	2 ganged units		
	Anchorage Force =	881	lbs/per bolt	
	Shear Force =	801	lbs/per bolt	# of bolts per unit = 4

Design Bolts for 881 lbs tension, 801 lbs. shear, longitudinal direction

R	N	1	
	IV		

Structural Engineers

Robinson Meier Juilly & Associates 103 Linden Avenue So. San Francisco, CA 94080 650 871·2282 FAX 650 871·2459 Job No. 1210 Signed by MBS

Date

Sheet No. 2 \ of

CAPACITY OF SEISMIC BRACKET Fino MMAX= PMAXX Z PMbx $S_{x} = \frac{bd^2}{6}$ $b = 4.86^{4}$ $d = 0.12^{4}$ $\phi = 0.75$ Mmax PMAX $\phi F_{y} = \frac{M}{S_{x}} = 7
 M_{MBx} = S_{x} (\phi F_{y})$ $P_{MAx} = \frac{5x(\phi F_y).2}{1}$ $= \left(\frac{4.86 \times 0.12^{2}}{6}\right) \left(0.75 \times 36\right) \cdot 2 \times 1.33$ = 997 # MAX DEMAKO 9677 .. (0.K.

Robinson Meier Juilly & Associates Principals Peter Robinson, S.E. Jayson E. Haines, S.E.

Drawing Details

103 Linden Avenue So. San Francisco, CA 94080 (650) 871-2282 FAX (650) 871-2459

GENERAL NOTES

<u>design</u>

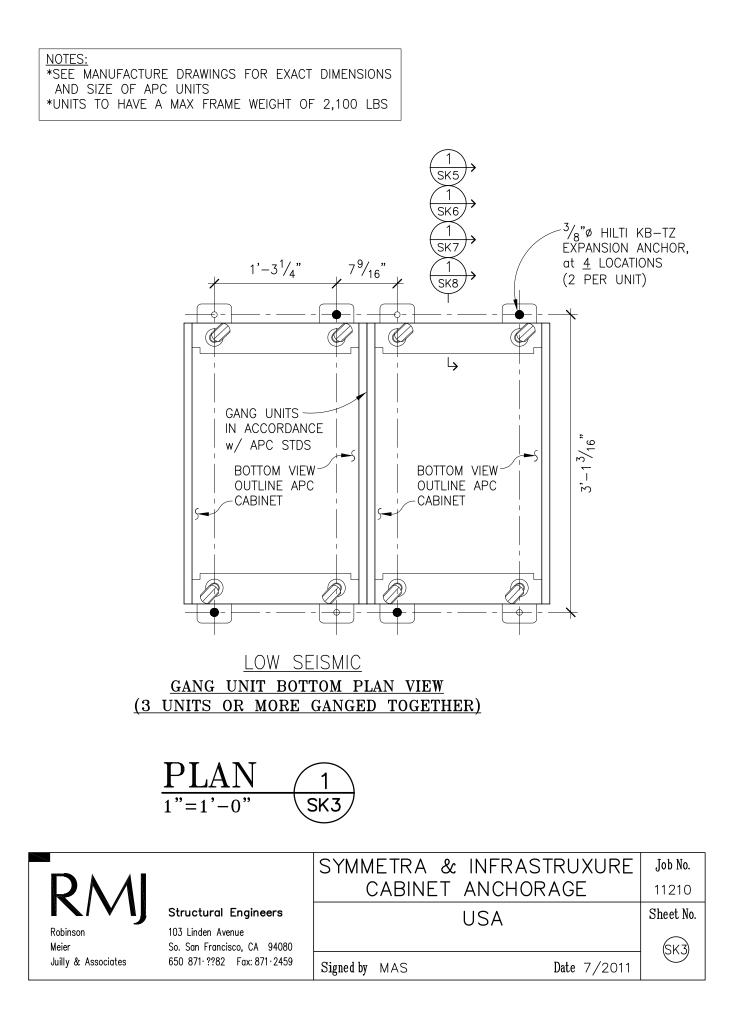
Design conforms to the International Building Code, 2009 Edition, & the California Building Code, 2010 Edition.

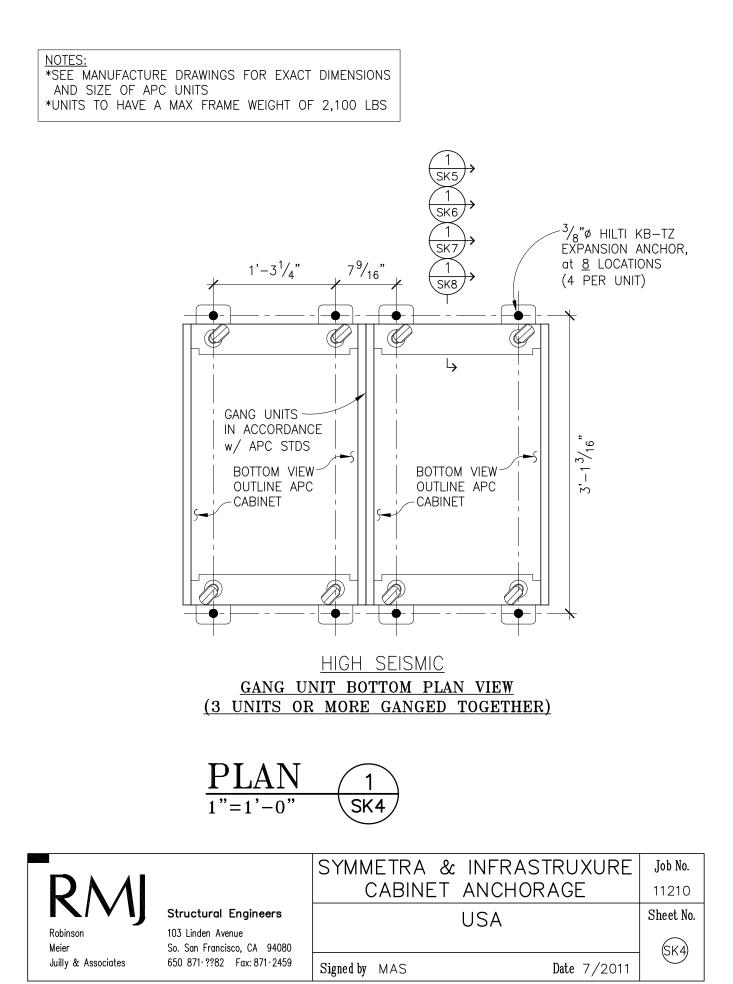
Design live loads: Importance Factor 1.0 Seismic Design Category (SDC)....D Ss.....Varies

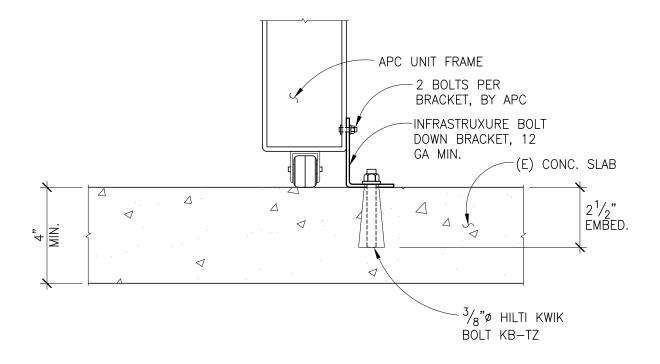
<u>Dimensions</u>: refer to rough concrete surfaces, face of studs, face of conc. block, top of sheathing, or top of slab, unless otherwise indicated.

<u>Typical Details</u>: and notes on these sheets shall apply unless specifically shown or noted otherwise. Construction details not fully shown or noted shall be similar to details for similar conditions. All work and construction shall comply with all applicable building codes, regulations, and safety requirements.

<u>Discrepancies</u>: The Contractor shall inform the Architect in writing, during the bidding period, of any discrepancies or omissions noted on the drawings or in the specifications, or of any variations needed in order to conform to codes, rules, and regulations. Upon receipt of such information, the Architect will send written instructions to all concerned. Any such discrepancy, omission, or variation not reported shall be the responsibility of the Contractor, and work shall be performed in a manner as directed by the Architect.

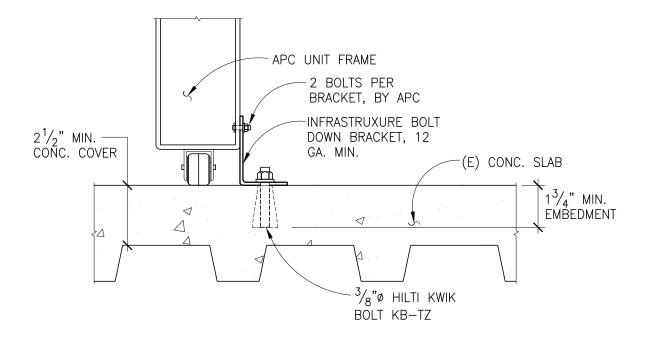

EXISTING CONSTRUCTION


Existing construction shown on the drawings was obtained from existing drawings or field surveys. The Contractor shall verify all existing conditions and shall notify the Architect of all exceptions before proceeding with the work. The removal, cutting, drilling, etc. of existing work shall be performed with great care and small tools in order not to jeopardize the structural integrity of the building. If existing structural members, not indicated for removal, interfere with the new work, the Structural Engineer shall be notified immediately, and approval obtained, before removal of the existing members.

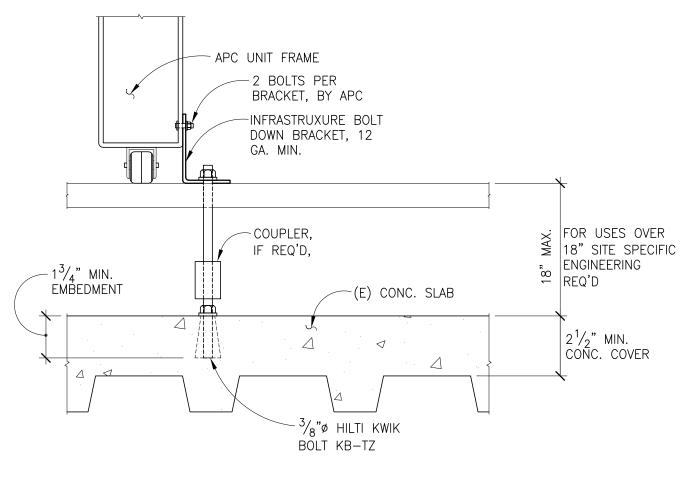

FASTENERS

<u>Wedge Anchors</u>: Hilti Kwik Bolt Wedge Anchor, types as indicated per ICBO evaluation report No. 1917 or by manufacture having current ICBO evaluation report with values Iin shear and tension) equal or greater.

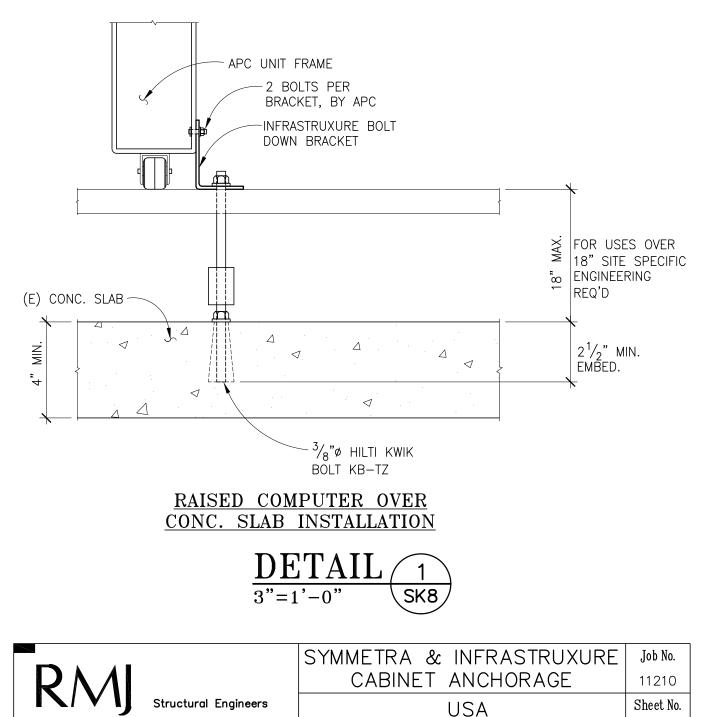
		CABINET	APC ANCHO	RAGE	Job No. 11210
Robinson	Structural Engineers 103 Linden Avenue		USA		Sheet No.
Meier Juilly & Associates	So. San Francisco, CA 94080 650 871·??82 Fax: 871·2459	Signed by MAS	Date	7/2011	- (SK1)



CONCRETE SLAB INSTALLATION


		SYMMETRA & INF CABINET ANG		Job No. 11210
Robinson Meier	Structural Engineers 103 Linden Avenue So. San Francisco, CA 94080	USA	4	Sheet No.
Juilly & Associates	650 871·??82 Fax: 871·2459	Signed by MAS	Date 7/2011	SKO

CONCRETE FILL OVER METAL DECK INSTALLATION


		SYMMETRA & IN CABINET AN		Job No . 11210
Robinson Meier	Structural Engineers 103 Linden Avenue So. San Francisco, CA 94080	US	SA	Sheet No.
Juilly & Associates	650 871·??82 Fax: 871·2459	Signed by MAS	Date 7/2011	(SK6)

RAISED COMPUTER OVER CONC. FILLED METAL DECK INSTALLATION

		SYMMETRA & IN CABINET AN		Job No . 11210
Robinson	Structural Engineers 103 Linden Avenue	US	БА	Sheet No.
Meier Juilly & Associates	So. San Francisco, CA 94080 650 871·??82 Fax: 871·2459	Signed by MAS	Date 7/2011	(SK7)

Robinson Meier Juilly & Associates 103 Linden Avenue So. San Francisco, CA 94080

650 871·??82 Fax: 871·2459

Signed by MAS

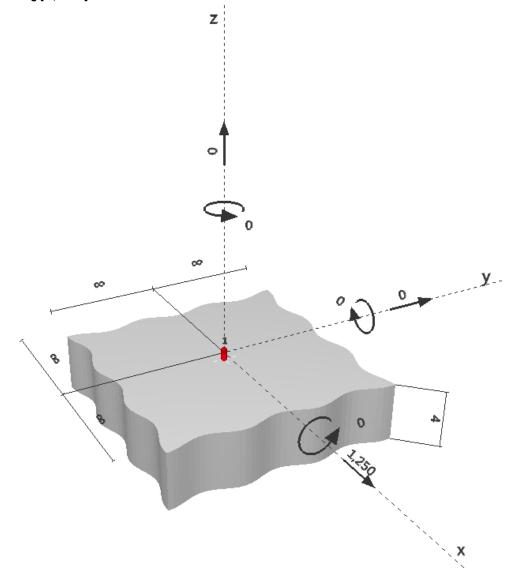
Date 7/2011

(SK8)

Robinson Meier Juilly & Associates Principals Peter Robinson, S.E. Jayson E. Haines, S.E.

Appendix (Hilti Output Files)

103 Linden Avenue So. San Francisco, CA 94080 (650) 871-2282 FAX (650) 871-2459



Company: Specifier: Address: Phone I Fax: E-Mail: RMJ & Associates Mario A. Sigala 103 Linden Ave. 650.871.2282 | 650.871.2459 msigala@rmjse.com Page: Project: Sub-Project I Pos. No.: Date: 1 APC Cabinet Anchorag 11210 8/25/2011

Specifier's comments: Shear Calculation

1. Input data Anchor type and diameter:	Kwik Bolt TZ - CS, 3/8 (2)	
Effective embedment depth:	h _{ef} = 2.000 in., h _{nom} = 2.625 in.	
Material:	Carbon Steel	
Evaluation Service Report::	ESR 1917	
Issued I Valid:	9/1/2009 -	
Proof:	design method ACI 318 / AC 193	
Stand-off installation:	- (Recommended plate thickness: not calculated)	
Profile	no profile	
Base material:	cracked concrete , 2500, f = 2500 psi; h = 4.000 in.	
Reinforcement:	tension: condition B, shear: condition B; no supplementa edge reinforcement: none or < No. 4 bar	I splitting reinforcement present
Seismic loads (cat. C, D, E, or F):	yes (D.3.3.6)	

Geometry [in.] & Loading [lb, in.-lb]

nchorag

2. Load case/Resulting anchor forces

Load case (governing):

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	1250	1250	0

max. concrete compressive strain [‰]: 0.00 max. concrete compressive stress [psi]: 0 resulting tension force in (x/y)=(0.000/0.000) [lb]: 0 resulting compression force in (x/y)=(0/0) [lb]: 0

3. Tension load

Proof	Load N_{ua} [lb]	Capacity $_{\phi}N_{_{n}}$ [lb]	Utilization β_{N} [%] = N _{ua} / ϕ N _n	Status	
Steel Strength*	N/A	N/A	N/A	N/A	
Pullout Strength*	N/A	N/A	N/A	N/A	
Concrete Breakout Strength**	N/A	N/A	N/A	N/A	

* anchor having the highest loading **anchor group (anchors in tension)

4. Shear load

Proof	Load $V_{_{ua}}$ [lb]	Capacity ϕV_n [lb]	Utilization β_v [%] = $V_{ua}/\phi V_n$	Status
Steel Strength*	1250	1466	85	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	1250	1262	99	OK
Concrete edge failure in direction**	N/A	N/A	N/A	N/A

* anchor having the highest loading **anchor group (relevant anchors)

Steel Strength

Equations	
V _{seis} = ESR value	refer to ICC-ES ESR 1917
$\phi V_{\text{steel}} \ge V_{\text{ua}}$	ACI 318-08 Eq. (D-1)

Variables

n	A _{se,V} [in. ²]	f _{uta} [psi]	
1	0.05	125000	
Calculations			
V _{sa} [lb]			
2255	_		
Results			
V _{sa} [lb]	∳steel	$_{igoplus}$ V _{sa} [lb]	V _{ua} [lb]
2255	0.650	1466	1250

Company:	RMJ & Associates	Page:	3
Specifier:	Mario A. Sigala	Project:	APC Cabinet Anchorag
Address:	103 Linden Ave.	Sub-Project I Pos. No.:	11210
Phone I Fax:	650.871.2282 650.871.2459	Date:	8/25/2011
E-Mail:	msigala@rmjse.com		

Pryout Strength (Concrete Breakout Strength controls)

Equations

$V_{cp} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-08 Eq. (D-30)
$\phi V_{cp} \ge V_{ua}$	ACI 318-08 Eq. (D-1)
A _{Nc} see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1	1(b)
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-08 Eq. (D-6)
$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2}{3} \frac{e_{\text{N}}}{h_{\text{ef}}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}}\right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\begin{split} \psi_{cp,N} &= MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}} \right) \leq 1.0 \\ N_{b} &= k_{c} \lambda \sqrt{f_{c}} h_{ef}^{1.5} \end{split}$	ACI 318-08 Eq. (D-13)
$N_{\rm b} = k_{\rm c} \lambda \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψc,N	c _{ac} [in.]	k _c
1	2.000	0.000	0.000	-	1.000	-	17
λ1	f _c [psi] 2500						
Calculations							
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψec1,N	Ψec2,N	Ψed,N	Ψcp,N	N _b [lb]	
36.00	36.00	1.000	1.000	1.000	1.000	2404	
Results							
V _{cp} [lb]	∳concrete	фseismic	∮nonductile	$_{ m \varphi}$ V $_{ m cp}$ [lb]	V _{ua} [lb]		
2404	0.700	0.750	1.000	1262	1250		

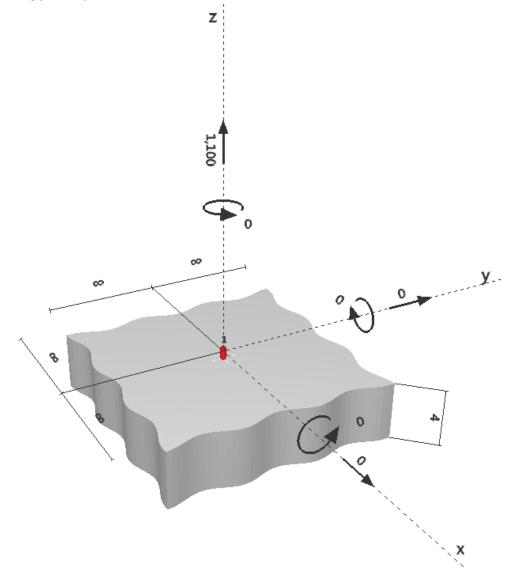
5. Warnings

- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to ACI 318, Part D.4.4(c).
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI318 or the relevant standard!
- The anchor plate is assumed to be sufficiently stiff in order to be not deformed when subjected to the actions!
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-08 Appendix D, Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6.

An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "non-structural components" as defined in ASCE 7, Section 13.4.2.

An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "wall out-of-plane forces" as defined in ASCE 7, Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputing values for brittle reduction factors ($\phi_{nonturtle}$) different than those noted in ACI 318-08, Part D.3.3.6 to

determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code. Selection of $\phi_{\text{nonductile}} = 1.0$ as a means of satisfying ACI 318-08, Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level <= the design strengths calculated per ACI 318-08, Part D.3.3.3.



Company: Specifier: Address: Phone I Fax: E-Mail: RMJ & Associates Mario A. Sigala 103 Linden Ave. 650.871.2282 | 650.871.2459 msigala@rmjse.com Page: Project: Sub-Project I Pos. No.: Date: 1 APC Cab. Anchorage 11210 8/25/2011

Specifier's comments: Tension Calculation

1. Input data Anchor type and diameter:	Kwik Bolt TZ - CS, 3/8 (2)	
Effective embedment depth:	$h_{ef} = 2.000 \text{ in.}, h_{nom} = 2.625 \text{ in.}$	
Material:	Carbon Steel	
Evaluation Service Report::	ESR 1917	
Issued I Valid:	9/1/2009 -	
Proof:	design method ACI 318 / AC 193	
Stand-off installation:	- (Recommended plate thickness: not calculated)	
Profile	no profile	
Base material:	cracked concrete , 2500, f _c ' = 2500 psi; h = 4.000 in.	
Reinforcement:	tension: condition B, shear: condition B; no supplement edge reinforcement: none or < No. 4 bar	al splitting reinforcement present
Seismic loads (cat. C, D, E, or F):	yes (D.3.3.6)	

Geometry [in.] & Loading [lb, in.-lb]

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

Company:	RMJ & Associates	Page:	2
Specifier:	Mario A. Sigala	Project:	APC Cab. Anchorage
Address:	103 Linden Ave.	Sub-Project I Pos. No.:	11210
Phone I Fax:	650.871.2282 650.871.2459	Date:	8/25/2011
E-Mail:	msigala@rmjse.com		

2. Load case/Resulting anchor forces

Load case (governing):

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1100	0	0	0

max. concrete compressive strain [‰]: 0.00 max. concrete compressive stress [psi]: 0 resulting tension force in (x/y)=(0.000/0.000) [lb]: 1100 resulting compression force in (x/y)=(0/0) [lb]: 0

3. Tension load

Proof	Load N _{ua} [lb]	Capacity ϕN_n [lb]	Utilization β_{N} [%] = $N_{ua}/\phi N_{n}$	Status	
Steel Strength*	1100	4875	23	OK	
Pullout Strength*	1100	1107	99	OK	
Concrete Breakout Strength**	1100	1172	94	OK	

* anchor having the highest loading **anchor group (anchors in tension)

Steel Strength

Equations

N _{sa} = ESR value	refer to ICC-ES ESR 1917	
$\phi N_{steel} \ge N_{ua}$	ACI 318-08 Eq. (D-1)	

Variables

n	A _{se,N} [in. ²]	f _{uta} [psi]	
1	0.05	125000	-
Calculations N _{sa} [lb] 6500			
Results			
N _{sa} [lb]	фsteel	_φ N _{sa} [lb]	N _{ua} [lb]
6500	0.750	4875	1100

Company:	
Specifier:	
Address:	
Phone I Fax:	
E-Mail:	

RMJ & Associates Mario A. Sigala 103 Linden Ave. 650.871.2282 | 650.871.2459 msigala@rmjse.com

Page: 3 Project: APC C Sub-Project I Pos. No.: 11210 Date: 8/25/20

APC Cab. Anchorage 11210 8/25/2011

Pullout Strength

Equations

N _{pn,fc}	= N _{p,250}	$\sqrt{\frac{f_{c}}{2500}}$
$\phi \; N_{\text{pn}, \vec{f_c}}$		

refer to ICC-ES ESR 1917 ACI 318-08 Eq. (D-1)

Variables

ŕ _c [psi]	N _{p,2500} [lb]
2500	2270

Calculations

 $\sqrt{\frac{f_c}{2500}}$

1.000

Results

N _{pn,fc} [lb]	∳concrete	фseismic	∮nonductile	_φ N _{pn,fc} [lb]	N _{ua} [lb]
2270	0.650	0.750	1.000	1107	1100

Concrete Breakout Strength

Equations	
$N_{cb} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-08 Eq. (D-4)
$\phi N_{cb} \ge N_{ua}$	ACI 318-08 Eq. (D-1)
A _{Nc} see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.	.1(b)
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-08 Eq. (D-6)
$\psi_{ec,N} = \left(\frac{1}{1 + \frac{2}{3}\frac{e_N}{h_{ef}}}\right) \le 1.0$	ACI 318-08 Eq. (D-9)
$\psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}}\right) \le 1.0$	ACI 318-08 Eq. (D-11)
$\psi_{cp,N} = MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-08 Eq. (D-13)
$N_{\rm b} = k_{\rm c} \lambda \sqrt{f_{\rm c}} h_{\rm ef}^{1.5}$	ACI 318-08 Eq. (D-7)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψc,N	c _{ac} [in.]	k _c	λ
2.000	0.000	0.000	393.701	1.000	4.375	17	1
<u>f́</u> c [psi] 2500	-						
Calculations							
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Wec1,N	Ψec2,N	Ψed,N	Ψcp,N	N _b [lb]	
36.00	36.00	1.000	1.000	1.000	1.000	2404	
Results							
N _{cb} [lb]	¢concrete	фseismic	∲nonductile	$_{ m \varphi}$ N _{cb} [lb]	N _{ua} [lb]		
2404	0.650	0.750	1.000	1172	1100		

PROFIS Anchor 2.1.4

www.hilti.us

Company:	RMJ & Associates	Page:	4
Specifier:	Mario A. Sigala	Project:	APC Cab. Anchorage
Address:	103 Linden Ave.	Sub-Project I Pos. No.:	11210
Phone I Fax:	650.871.2282 650.871.2459	Date:	8/25/2011
E-Mail:	msigala@rmjse.com		

4. Shear load

Proof	Load $V_{\text{\tiny ua}}$ [lb]	Capacity $_{\varphi}V_{_{n}}$ [lb]	Utilization β_v [%] = V _{ua} / ϕ V _n	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	N/A	N/A	N/A	N/A
Concrete edge failure in direction**	N/A	N/A	N/A	N/A

* anchor having the highest loading **anchor group (relevant anchors)

5. Warnings

- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to ACI 318, Part D.4.4(c).
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI318 or the relevant standard!
- The anchor plate is assumed to be sufficiently stiff in order to be not deformed when subjected to the actions!
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-08 Appendix D, Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6.

An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "non-structural components" as defined in ASCE 7, Section 13.4.2.

An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "wall out-of-plane forces" as defined in ASCE 7, Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputing values for brittle reduction factors (φ_{nonductile}) different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code.

Selection of $\phi_{nonductile}$ = 1.0 as a means of satisfying ACI 318-08, Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level <= the design strengths calculated per ACI 318-08, Part D.3.3.3.

Fastening meets the design criteria!

APC CASINET ANCHORAGE **Structural Engineers** Robinson Job No. //2/0 Date Meier Juilly & Associates Signed by MAS Sheet No. 28 of DESIGN EXPANSION AnCHOR TRY: 318" & HILTI KB-TZ hece = 1 3/4" SHEAR CALCULATION SEC. D. 62 Conc. BREAKOUT STRENGTH OF ANCHOR IN SHEAR * MOTE: DOES NOT GOVERN Veb = Ave . Vedy Veyv Vo [EQ D-21] [SEC. D.6.3] Conc. PRYOUT STRENGTH OF ANCHOR IN SHEAR Vep=Kep. Neb. [Ean. D-29] Kcp = 1.0 Nup = 1,968 # (SEE TENSION CALC.) Vcp = 1,968 # \$= 0.7; \$= 0.75 \$ Vip = 1,033 # COVERNS SHEAR STEEL STRENGTH OF ANCHOR IN SHEAR [SEC. D.6.1] VSA = 3,595 # (HILTI CAT. PG 319) ¢= 0.65 [D.4.47 ¢ Vsp = 0.75 × 0.65 × 3,595 ₩

=. 1,753#

RN **Structural Engineers** Robinson

CABINET	Anchorados		
Series			
b No. 1/210		Date	

Meier Juilly & Associates

Signed by MAS

Sheet No.39 of

lEnsion STEEL STRENGTH OF ANCHOR IN TENSION [SEC. D.S. 1] NSP = n ASE JUHA [Ean. D-3] n=1; AsE = 0.0521 (HILTI CAT. PG. 319) futa = 125,000 # ¢= 0.75 \$N_SP = 0.75 × 0.052 in2 × 125,000 # = 4,875 # CONC. BREAKOUT STRENGTH OF ANCHORS IN TENSION [SEC. D.S. 2] New = Anc. Ver, Vern Vern No [Ean. D-4] Anco her = 1 3/4" Anco = ANC = 9. her = 9x1.752 = 27 (0 in Ved . = 1.0 VGN = 1.0 [Ean. D-10 or D-11] VEP.N = 1.0 [SEC. D. 5.2.6] No = Kc. JS'c . hes [Ean D-7] Kc= 17 No= 17 12500 1.75 - 1.968# \$ = 0.65 [D.4.4] \$ Ncb = 0.75 × 0.65 × 1,968# - 959#

RM	J	Structural	Engineers

CAMMER Ancho CAUE		
Spa	C.A.	
Job No. 1/210	Date	
Signed by MAS	Sheet No. 40 of	

Robinson Meier Juilly & Associates

Conc. PULLOUT STRENGTH OF ANCHOR IN TENSION [SEC. D.S.3.] Pn Npn, fc = Vc,p Np = 0.65× 1,460 # = 949# & GOVERNS TENSION SIDE FACE BLOWDUT OF ANCHOR IN TENSION [SEC. D. 5.4] AnCHOR NOT CLOSE TO ANY EDGE STEEL STRENGTH OF AncHOR IN SHEAR [SEC. D.6.1] VSP = n. D. C. ASE . futa = 1.0×0.6×0.052× 125,000 = 3,900# QVSA = 075 × 0.65 × 3,900# = 1,901#