SYMMETRA PX40 UPS \& INFRASTRUXURE PDU SYMMETRA PX40 UPS, SYMMETRA PX40 XR Battery Cabinet, \& INFRASTRUXURE PDU

Structural Calculations
 For Seismic Anchorage

Prepared for:
APC
RMJ Job No.: 11210
August 26, 2011
RMJ Job No. 11210
Valid Thru August 26, 2012

by Schneider Electric

SYMMETRA PX40 UPS \& INFRASTRUXURE PDU SYMMETRA PX40 UPS, SYMMETRA PX40 XR Battery Cabinet, \& INFRASTRUXURE PDU

Table of Contents

Description Page
Project Description/Results 3
Scope, Assumptions, Limitations 4
Drawing Design Scenarios Summary 5
Seismic Risk Map 6
Flow Charts 7-8
Low\& Moderate Seismic Calcs 8-14
High Seismic Calcs. 15-20
Hand Calc. Seismic Bracket. 21
Drawings Details 22-29
Appendix 30-40
Hilti Output File (Shear) 31-33
Hilti Output File (Tension) 34-37
Hand Calculations. 38-40

Symmetra PX40, Symmetra PX40 UPS, Infrastruxure PDU Units by APC
Nationwide
RMJ Job\# 11210

Project Description:

This project involves providing server anchorage support for units located throughout the United States. Calculations have been assembled according to two distinct seismic regions low \& moderate, and high. A map has been created based on Figures 3.3-1 \& 3.3-2 of ASCE 7-05 to define the two different seismic regions. Please note our seismic map shows three distinct regions low, moderate, and high, but for simplicity of our calculations low and moderate were combined into one region. The map also shows a solid line near the New Madrid Fault where the value of S_{s} exceeds 2.75 . In this area of extreme seismic potential, all anchorage is site specific. The other seismic regions have been determined according to the table included below;

Seismic Design Data			
Seismic design region	Short period spectral response acceleration $\mathbf{S}_{\mathbf{s}}$	Short-period site coefficient $\mathbf{F}_{\mathbf{a}}$	Design spectral response acceleration at short periods \mathbf{S}_{DS}
Low	0.4	1.5	0.4
Moderate	1.5	1.0	1.0
High	2.75	1.0	2.0

4" Concrete Slab

Units to be ganged (3-minimum) located on the ground level assumed to have a total weight of unit plus contents of 2,100lbs. Hilti Kwik Bolt KB-TZ Carbon Steel expansion bolts shall be used to anchor the APC equipment. Calculations are only intended for the Symmetra PX40, Symmetra PX40 UPS, and Infrastruxure PDU APC units. Calculations are based on the assumptions that anchors are not located within any boundary edges, 4 " thick concrete minimum thickness, 2 " minimum embedment, and 2,500 psi concrete strength.

Results

Please see the table below for a quick review of our results.

Bolt Alignment	Max Tension (lbf.)	Max Shear (lbf.)	\% Capacity
Ground Level	1,100	1,250	99
50% Bld. Ht.	949	1,132	99

Our results show that units on the ground level the Hilti Kwik Bolt KB-TZ (3/8" Dia. with a 2" embedment) resists a max tension force of $1,275 \#$, and max shear force of $1,125 \#$. Anchorage for units located on the upper floor using the Hilti Kwik Bolt KB-TZ (3/8" Dia. with a $13 / 4$ " embedment) resists a max tension force of $1,051 \#$, and max shear force of 1,132\#. I have included the Hilti output files along with my hand calculations in the appendix section of this calculation packet. Site specific engineering is required where S_{S} is greater than 2.75. Design is in accordance with the 2009 International Building Code along with the 2010 California Building Code.

Robinson
Meier
Juilly \& Associates

Principals
Peter Robinson, S.E.
Jayson E. Haines, S.E.

Symmetra PX40, Symmetra PX40 UPS, Infrastruxure PDU Units by APC Scope, Assumptions, and Limitations
 RMJ Job \#11210
 August 25, 2011

Special Note:

Server rack anchorage calculations are valid under the 2006 \& 2009 International Building Code \& 2010 California Building Code thru date noted on cover sheet. After valid thru date, contact APC for updates.
> Special Inspection shall be provided for expansion bolt installation.
> Existing concrete shall have a minimum compressive strength of $2,500 \mathrm{psi}$.
> Importance factor is assumed to be 1.0.
> Soil class is assumed to be D.
> Calculations and anchorage are done in accordance with the 2006 and 2009 IBC, 2010 California Building Code and ASCE7-05.
$>$ Maximum S_{s} value is 2.75 . Where value of S_{s} exceeds 2.75 , site specific calculations are required for all anchorages. S_{s} values can exceed 2.75 near the New Madrid fault.
> The minimum slab on grade thickness is assumed to be 4 ".
> Hilti KWIK Bolt KB-TZ to be used with a minimum embedment of 2.5".
> Maximum weight of enclosure and contents has been listed in the table below

	High Seismic	Low and Moderate Seismic
	Ground Level	Ground Level
Max Wt. of Enclosure and Contents (lb)	$\mathbf{2 , 1 0 0} \#$	$\mathbf{2 , 1 0 0} \#$

> Enclosure is assumed to stay rigid during seismic loading (design by others).
> Ganged Units based on a Minimum of 2 Units.
> Calculations are for Symmetra PX40, Symmetra PX40 UPS, and Infrastruxure PDU units.

DESIGN SCENARIOS AND CONDITIONS

```
NOTE:
CALCULATIONS FOR THE FOLLOW APC UNITS: SYMMETRA PX40 UPS, SYMMETRA PX 40 XR Battery Cabinet, \& INFRASTRUXURE PDU
```


CONC. SLAB OR CONC. OVER METAL DECK (DIRECT FRAME TO FLOOR) REFER TO DRAWINGS SK3, SK4, SK5, SK7

DESIGN CRITERIA

-PROVIDE SPECIAL INSPECTION FOR EXPANSION ANCHOR
-(E) CONC. MIN COMPRESSIVE STRENGTH 2,500 psi
-GROUND FLOOR
-INSTALLATION AT <50\% OF BUILDING HEIGHT
-GANGED UNITS (3 OR MORE)
-HIGH, MODERATE \& LOW SEISMIC REGIONS
-CALCULATION PER IBC 2009/CBC 2010
-IMPORTANCE FACTOR 1.0
-WEIGHT OF ENCLOSURE AND CONTENTS TO NOT
EXCEED 2,100 LBS

SK8

MAX UNIT WEIGH (LB)		
SEISMIC CATEGORY	GROUND LEVEL	$>50 \%$ OF BLDG HT.
LOW AND MODERATE	2,100	2,100
HIGH	2,100	2,100

APC

Low \& Moderate Seismic
Date: 08/26/11
By: MAS
Page: 7

APC

High Seismic

Date: 08/26/11
Page: 8

Robinson
Principals
Meier
Peter Robinson, S.E.
Juilly \& Associates
Jayson E. Haines, S.E.

Low \& Moderate Seismic Calculations

RMJ
103 Linden Avenue
South San Francisco, CA 94080 (650) 871-2282

Fax: 871-2459

APC
Low \& Moderate Seismic

$$
\text { Job No. : } 11210
$$

Date: 08/05/11
By: MAS
Page: 10

Find the Seismic Design Category (SDC)

Unit : APC-Unit

Project Location:
Low \& Moderate Seismic
Latitude: Varies
Soil Classification: D
Occupancy Category: II

Table 1613.5.2 \& Section 1613.5.2
Table 1604.5

Information from U.S. Geological Survey Website http://earthquake.usgs.gov/research/hazmaps/

$\mathrm{S}_{\mathrm{S}}=$	1.500	g	
$\mathrm{~S}_{1}=$	1.070	g	
$\mathrm{~F}_{\mathrm{a}}=$	1.000		Table 1613.5.3(1)
$\mathrm{F}_{\mathrm{V}}=$	1.500		Table 1613.5.3(2)
$\mathrm{S}_{\mathrm{MS}}=$	1.50	g	(Equation 16-37)
$\mathrm{S}_{\mathrm{M} 1}=$	1.61	g	(Equation 16-38)
$\mathrm{S}_{\mathrm{DS}}=$	1.000	g	(Equation 16-39)
$\mathrm{S}_{\mathrm{D} 1}=$	1.070	g	(Equation 16-40)

Seismic Design Category (SDC): Varies

103 Linden Avenue
South San Francisco, CA 94080
(650) 871-2282 Fax 871-2459

APC
Low \& Moderate Seismic Job No. : 11210

Date: 08/25/11
By: MAS
Page: 11

Load Case: Ganged Unit (Ground floor)

\# of Units ganged (min.)= 2

Longitudinal Overturning

Overturning
Moment =
$0.30(41 \mathrm{in} . \times 4200 \mathrm{lbs})=51,.660 \mathrm{lb}-\mathrm{in}$
0.9xResisting
0.9 (4200 lbs. x18 in.)= 68,040 lb-in

Add 30\% increase due to 13.4.2. ASCE-7-05

Anchorage Force $=$	0	lbs
Shear Force $=$	819	$\mathrm{lbs} /$ per bolt

APC-Unit unit Plan
Longitudinal Seismic Force

2 ganged units
Total \# of bolts/Unit = 2

Design Bolts for 0 lbs tension, 819 lbs. shear, transverse direction

Transverse Overturning

Ganged APC-Unit unit Plan
Overturning
Moment $=\quad 0.30(41 \mathrm{in} . \times 4200 \mathrm{lbs})=51,.660 \mathrm{lb}-\mathrm{in}$
0.9xResisting

Moment $=\quad 0.9(4200 \mathrm{lbs} \times 18.605 \mathrm{in})=70,.327 \mathrm{lb}$-in
Add 30\% increase due to 13.4.2. ASCE-7-05
Anchorage Force $=0 \quad \mathrm{lbs} / \mathrm{per}$ bolt Shear Force $=819$ lbs/per bolt \quad Total \# of bolts/Unit $=2$

RMJ
103 Linden Avenue South San Francisco, CA 94080 (650) 871-2282 Fax 871-2459

APC
Low \& Moderate Seismic Job No. : 11210 Date: 08/25/11

By: MAS

Load Case: Ganged units on 18in raised computer floor (Ground Floor)

\# of Units ganged (min.)= 2

Longitudinal Overturning

Overturning
Moment $=\quad 0.3(59 \mathrm{in} . \times 4200 \mathrm{lbs})=74,.340 \mathrm{lb}-\mathrm{in} \quad$ Ganged APC-Unit unit Plan
Longitudinal Seismic Force
0.9xResisting

Moment $=\quad 0.9(4200 \mathrm{lbs} . \mathrm{x} 18 \mathrm{in})=68,.040 \mathrm{lb}-\mathrm{in}$
Add 30\% increase due to 13.4.2. ASCE-7-05

Anchorage Force $=$	642	$\mathrm{lbs} /$ per bolt
Shear Force $=$	819	$\mathrm{lbs} /$ per bolt

2 ganged units Total \# of bolts/Unit = 2 Design Bolts for 1 lbs tension, 819 lbs. shear, longitudinal direction

Transverse Overturning

Ganged APC-Unit unit Plan

Overturning
Moment $=\quad 0.3(59 \mathrm{in} . \times 4200 \mathrm{lbs})=74,.340 \mathrm{lb}-\mathrm{in}$
$0.9 x$ Resisting
Moment $=\quad 0.9(4200 \mathrm{lbs} \times 18.605 \mathrm{in})=70,.327 \mathrm{lb}-\mathrm{in}$
Add 30\% increase due to 13.4.2. ASCE-7-05
Anchorage Force $=70 \quad \mathrm{lbs} /$ per bolt Shear Force $=819 \mathrm{lbs} /$ per bolt \quad Total $\#$ of bolts/Unit $=2$

103 Linden Avenue
South San Francisco, CA 94080
(650) 871-2282 Fax 871-2459

APC
Low \& Moderate Seismic Job No. : 11210

Date: 08/25/11
Page: 13

Load Case: Ganged Unit ($\leq 50 \%$ of Bldg. Ht.)

\# of Units ganged (max)= 2

Longitudinal Overturning

Overturning	
Moment =	
0.9xResisting	
Moment $=$	$0.32(82 / 2 \mathrm{in} . \times 4200 \mathrm{lbs})=55,.104 \mathrm{lb}-\mathrm{in}$

Add 30\% increase due to 13.4.2. ASCE-7-05

Anchorage Force $=$	0	lbs
Shear Force $=$	874	$\mathrm{lbs} /$ per bolt

Ganged APC-Unit unit Plan
Longitudinal Seismic Force

2 ganged units Total \# of bolts/Unit = 2

Design Bolts for 0 lbs tension, 874 lbs. shear, longitudinal direction

Transverse Overturning

```
    Overturning
    Moment = 0.32(82/2 in. x 4200lbs. ) = 55,104 lb-in
0.9xResisting
    Moment = 0.9(4200 lbs x18.605 in.)= 70,327 lb-in
```

Add 30\% increase due to 13.4.2. ASCE-7-05

Anchorage Force $=$	0	lbs/per bolt
Shear Force $=$	874	lbs/per bolt

Ganged APC-Unit unit Plan

2 ganged units \# of bolts per unit $=2$

RMJ
103 Linden Avenue South San Francisco, CA 94080 (650) 871-2282 Fax 871-2459

APC
Low \& Moderate Seismic Job No. : 11210

Date: 08/25/11
By: MAS
Page: 14

Load Case: Ganged units on $18 i n$ raised computer floor ($\leq 50 \%$ of Bldg. Ht.)

\# of Units ganged (max)=2

Longitudinal Overturning

Overturning
Moment $=\quad 0.32(59 \mathrm{in} . \times 4200 \mathrm{lbs})=79,.296 \mathrm{lb}-\mathrm{in}$
$0.9 \times$ Resisting Moment $=\quad 0.9(4200 \mathrm{lbs} . \times 19.125 \mathrm{in})=72,.293 \mathrm{lb}-\mathrm{in}$

Add 30\% increase due to 13.4.2. ASCE-7-05

Anchorage Force $=$	119	$\mathrm{lbs} /$ per bolt
Shear Force $=$	874	$\mathrm{lbs} /$ per bolt

Ganged APC-Unit unit Plan Longitudinal Seismic Force

2 ganged units
\# of bolts per unit $=2$

Design Bolts for 0 lbs tension, 874 Ibs. shear, longitudinal direction

Transverse Overturning

Overturning
Moment $=\quad 0.3(59 \mathrm{in} . \times 4200 \mathrm{lbs})=79,.296 \mathrm{lb}-\mathrm{in}$
0.9xResisting

Moment =

Add 30\% increase due to 13.4.2. ASCE-7-05
Anchorage Force $=157 \mathrm{lbs} /$ per bolt

Ganged APC-Unit unit Plan
Transverse Seismic Force

2 ganged units \# of bolts per unit = 2

Robinson
Principals
Meier
Peter Robinson, S.E.
Juilly \& Associates
Jayson E. Haines, S.E.

High Seismic Calculations

RMJ
103 Linden Avenue
South San Francisco, CA 94080
(650) 871-2282

Fax: 871-2459

APC
High Seismic

Job No. : 11210
Date: 08/05/11
By: MAS
Page: 16

Find the Seismic Design Category (SDC)
Unit : APC-Unit

Project Location:
High Seismic
Varies

Soil Classification: D
Occupancy Category: II

Table 1613.5.2 \& Section 1613.5.2
Table 1604.5

Information from U.S. Geological Survey Website http://earthquake.usgs.gov/research/hazmaps/

$\mathrm{S}_{\mathrm{S}}=$	2.750	g	
$\mathrm{~S}_{1}=$	1.070	g	
$\mathrm{~F}_{\mathrm{a}}=$	1.000		Table 1613.5.3(1)
$\mathrm{F}_{\mathrm{v}}=$	1.500		Table 1613.5.3(2)
$\mathrm{S}_{\mathrm{MS}}=$	2.75	g	(Equation 16-37)
$\mathrm{S}_{\mathrm{M} 1}=$	1.61	g	(Equation 16-38)
$\mathrm{S}_{\mathrm{DS}}=$	1.833	g	(Equation 16-39)
$\mathrm{S}_{\mathrm{D} 1}=$	1.070	g	(Equation 16-40)

Seismic Design Category (SDC): Varies

APC
High Seismic
Job No. : 11210
Date: 08/25/11
By: MAS
Page: 17

Load Case: Ganged Unit (Ground floor)

\# of Units ganged (min)= 2

Transverse Anchorage Spacing (in) =
37.21

Longitudinal Overturning

Overturning
Moment $=\quad 0.55(41$ in. $\times 4200 \mathrm{lbs})=94,.710 \mathrm{lb}-\mathrm{in}$
$0.9 x$ Resisting
Moment $=0.9$ [(4200 lbs. - Vert. Comp.) $\times 19.125$ in.] $=45,785 \mathrm{lb}-\mathrm{in}$
Vertical Component $\left(0.2^{*}\right.$ SDS**Vp $)=1,540$ lbs
Add 30\% increase due to 13.4.2. ASCE-7-05
$\begin{array}{ccc}\text { Anchorage Force }= & 831 & \text { lbs } / \text { per bolt } \\ \text { Shear Force }= & 751 & \text { lbs/per bolt }\end{array}$

Ganged APC-Unit unit Plan
Longitudinal Seismic

2 ganged units
Tot. \# of bolts/unit = 4

Design Bolts for 831 lbs tension, 751 lbs. shear, longitudinal direction

Transverse Overturning

$\begin{aligned} & \text { Overturning } \\ & \text { Moment }=\end{aligned} \quad 0.55(41 \mathrm{in} . \times 4200 \mathrm{lbs})=94,.710 \mathrm{lb}-\mathrm{in}$
$0.9 \times$ Resisting
Moment $=0.9[(4200 \mathrm{lbs}-$ Vert. Comp. $) \times 18.605 \mathrm{in}]=44,.540 \mathrm{lb}-\mathrm{in}$

Vertical Component (0.2^{*} SDS*Wp $)=1,540$ lbs
Add 30\% increase due to 13.4.2. ASCE-7-05
Anchorage Force = 438 lbs/per bolt Shear Force $=751 \quad \mathrm{lbs} /$ per bolt

Ganged APC-Unit unit Plan
Transverse Seismic Force

2 ganged units
Tot. \# of bolts/unit = 4

APC
High Seismic
Job No. : 11210 Date: 08/25/11
By: MAS Page: 18

Load Case: Ganged units on 18in raised computer floor (Ground floor)

\# of Units ganged (min)= 2

Single Unit Dimension		Raised Floor $=18$				Seismic Force		
Width(w) (in) =	37.					$\mathrm{S}_{\text {DS }}=$	1.83	High Seismic
Depth(D) $(\mathrm{in})=$						$\mathrm{I}_{\mathrm{p}}=$	1.0	(Importance)
Frame Height (in) =						$\mathrm{a}_{\mathrm{p}}=$	1.0	(Cabinets)
Max Weight (lb.) =	2,1		Center	f Gravit	ocation	$\mathrm{R}_{\mathrm{p}}=$	2.5	(Cabinets)
Unit	Part	Weight (lbs)	X (in)	Y (in)	Z (in)	$\mathrm{z} / \mathrm{h}=$	0.0	(Ground Floor)
2 - APC-Unit	Frame	4,200	19.1	18.605	59	$\mathrm{F}_{\mathrm{p}}=$	0.293	W
Longitudinal Anchorage Spacing (in) Transverse Anchorage Spacing (in)		38.25				$\mathrm{F}_{\mathrm{p}, \text { min }}=$	0.55	W
		$\mathrm{F}_{\mathrm{p}, \text { max }}=$	2.93	W				
		37.21	Use $\mathrm{F}_{\mathrm{p}}=$	0.55	W			

Longitudinal Overturning

Overturning
Moment =
0.55 (59 in. $\times 4200 \mathrm{lbs}.)=136,290 \mathrm{lb}-\mathrm{in}$
0.9xResisting

Moment $=0.9$ [(4200 lbs. - Vert. Comp.) $\times 19.125 \mathrm{in}.]=45,785 \mathrm{lb}-\mathrm{in}$
Vertical Component $\left(0.2^{*}\right.$ SDS**Wp $)=1,540$ lbs
Add 30\% increase due to 13.4.2. ASCE-7-05

Anchorage Force $=$	769	$\mathrm{lbs} /$ per bolt
Shear Force $=$	751	$\mathrm{lbs} /$ per bolt

Ganged APC-Unit unit Plan
Longitudinal Seismic Force

2 ganged units \# of bolts per unit $=4$

Design Bolts for 769 lbs tension, 751 lbs. shear, longitudinal direction

Transverse Overturning

Overturning
Moment $=\quad 0.55(59 \mathrm{in} . \times 4200 \mathrm{lbs})=136,.290 \mathrm{lb}-\mathrm{in}$
$0.9 x$ Resisting
Moment $=0.9[(4200 \mathrm{lbs}-$ Vert. Comp. $) \times 18.605 \mathrm{in}]=44,.540 \mathrm{lb}-\mathrm{in}$
Vertical Component $\left(0.2^{*}\right.$ SDS*Wp $)=1,540$ lbs
Add 30\% increase due to 13.4.2. ASCE-7-05
Anchorage Force $=801 \mathrm{lbs} /$ per bolt Shear Force $=\begin{array}{ll}751 & \mathrm{lbs} / \text { per bolt } \quad \# \text { of bolts per unit }=4\end{array}$

Design Bolts for 801 Ibs tension, 751 lbs. shear, longitudinal direction
Drawing Reference See: SK4 \& SK6

APC
High Seismic
Job No. : 11210
Date: 08/25/11
By: MAS
Page: 19

Load Case: Ganged Unit ($\leq 50 \%$ of Bldg. Ht.)

\# of Units ganged $(\min)=2$

Transverse Anchorage Spacing (in) =
37.21

Longitudinal Overturning

Overturning Moment =	0.59 (41 in. x 4200lbs.) = 101,024 lb-in
$0.9 \times$ Resisting	
Moment =	0.9 [(4200 lbs. - Vert. Comp.) x 19.125 in.$]=45,785 \mathrm{lb}-\mathrm{in}$
	Vertical Component (0.2*SDS*Wp) $=1,540 \mathrm{lbs}$

Add 30\% increase due to 13.4.2. ASCE-7-05
Anchorage Force $=469$ lbs Shear Force $=801 \quad \mathrm{lbs} /$ per bolt
$\begin{array}{rrrl}\text { Moment }= & 0.9[(4200 \mathrm{lbs} .- \text { Vert. Comp. }) \times 19.125 \text { in. }]= & 45,785 & \mathrm{lb}-\mathrm{in} \\ & \text { Vertical Component }\left(0.2^{*} \mathrm{SDS}^{*} \mathrm{Wp}\right)= & 1,540 & \mathrm{lbs}\end{array}$

Anchorage Force $=$	469	lbs
Shear Force $=$	801	$\mathrm{lbs} /$ per bolt

Ganged APC-Unit unit Plan Longitudinal Seismic Force

2 ganged units
\# of bolts per unit $=4$

Design Bolts for 469 lbs tension, 801 lbs. shear, longitudinal direction

Transverse Overturning

APC
High Seismic

$$
\text { Job No. : } 11210 \quad \text { Date: 08/25/11 }
$$

By: MAS
Page: 20

Load Case: Ganged unit on 18in raised computer floor ($\leq 50 \%$ of B/dg. Ht.)

\# of Units ganged (min)= 2

Single Unit Dimension		Raised Floor $=18$				Seismic Force		
Width(w) (in) =	37.					$\mathrm{S}_{\text {DS }}=$	1.83	High Seismic
Depth(D) $(\mathrm{in})=$						$\mathrm{I}_{\mathrm{p}}=$	1.0	(Importance)
Frame Height (in) =						$\mathrm{a}_{\mathrm{p}}=$	1.0	(Cabinets)
Max Weight (lb.) =	2,1		Center	f Gravity	ocation	$\mathrm{R}_{\mathrm{p}}=$	2.5	(Cabinets)
Unit	Part	Weight (lbs)	X (in)	Y (in)	Z (in)	$\mathrm{z} / \mathrm{h}=$	0.5	(50\% of bldg ht.)
2 - APC-Unit	Frame	4,200	19.1	18.605	59	$\mathrm{F}_{\mathrm{p}}=$	0.587	W
Longitudinal Anchorage Spacing (in) Transverse Anchorage Spacing (in)		38.25				$\mathrm{F}_{\mathrm{p} \text {, } \text { in }}=$	0.55	W
		$\mathrm{F}_{\mathrm{p}, \text { max }}=$	2.93	W				
		37.21	Use $\mathrm{F}_{\mathrm{p}}=$	0.59	W			

Longitudinal Overturning

Overturning
Moment =
0.59 (59 in. x 4200lbs.) $=145,376 \mathrm{lb}-\mathrm{in}$
0.9xResisting

Moment $=\quad 0.9(4200 \mathrm{lbs} . \times 19.125 \mathrm{in})=45,.785 \mathrm{lb}-\mathrm{in}$
Vert. Comp. $\left(0.2^{*} \mathrm{SDS}^{*} \mathrm{Wp}\right)=1,540 \mathrm{lbs}$
Add 30\% increase due to 13.4.2. ASCE-7-05

$$
\begin{array}{rrl}
\hline \text { Anchorage Force }= & 846 & \text { lbs/per bolt } \\
\text { Shear Force }= & 801 & \text { lbs/per bolt } \\
\hline
\end{array}
$$

Ganged APC-Unit unit Plan Longitudinal Seismic Force

2 ganged units
\# of bolts per unit $=4$

Design Bolts for 846 Ibs tension, 801 lbs. shear, longitudinal direction

Transverse Overturning

Design Bolts for 881 lbs tension, 801 lbs. shear, longitudinal direction

Structural Engineers
103 Linden Avenue
So. San Francisco, CA 94080
$650871 \cdot 2282$ FAX $650871 \cdot 2459$
$A P C$
\qquad

Job No.	11210	Date
Signed by	MAS	Sheet No. 21 of

Find Capacity $O_{\text {E }} S_{\text {Eismic Bracket }}$

$P_{\text {max }}$

$$
\begin{aligned}
& \phi F_{y}=\frac{M}{S_{x}} \Rightarrow M_{\text {max }}=S_{x}\left(\phi F_{y}\right) \\
& P_{\text {mAx }}=\frac{S_{x}\left(\phi F_{y}\right) \cdot 2}{L} \\
&=\frac{\left(\frac{486 \times 0.12^{2}}{6}\right)(0.75 \times 36) \cdot 2}{84} \times 1.33 \\
&=997 \# \\
& M_{A X} D_{\text {IMAGO }} 0 \quad 967^{\#} \quad \therefore \text { O.K. }
\end{aligned}
$$

Robinson
Meier
Juilly \& Associates

Principals
Peter Robinson, S.E.
Jayson E. Haines, S.E.

Drawing Details

GENERAL NOTES

DESIGN

Design conforms to the International Building Code, 2009 Edition, \& the California Building Code, 2010 Edition.

Design live loads:
Importance Factor 1. 0
Seismic Design Category (SDC)....D
Ss. Varies
Dimensions: refer to rough concrete surfaces, face of studs, face of conc. block, top of sheathing, or top of slab, unless otherwise indicated.

Typical Details: and notes on these sheets shall apply unless specifically shown or noted otherwise. Construction details not fully shown or noted shall be similar to details for similar conditions. All work and construction shall comply with all applicable building codes, regulations, and safety requirements.

Discrepancies: The Contractor shall inform the Architect in writing, during the bidding period, of any discrepancies or omissions noted on the drawings or in the specifications, or of any variations needed in order to conform to codes, rules, and regulations. Upon receipt of such information, the Architect will send written instructions to all concerned. Any such discrepancy, omission, or variation not reported shall be the responsibility of the Contractor, and work shall be performed in a manner as directed by the Architect.

EXISTING CONSTRUCTION

Existing construction shown on the drawings was obtained from existing drawings or field surveys. The Contractor shall verify all existing conditions and shall notify the Architect of all exceptions before proceeding with the work. The removal, cutting, drilling, etc. of existing work shall be performed with great care and small tools in order not to jeopardize the structural integrity of the building. If existing structural members, not indicated for removal, interfere with the new work, the Structural Engineer shall be notified immediately, and approval obtained, before removal of the existing members.

FASTENERS

Wedge Anchors: Hilti Kwik Bolt Wedge Anchor, types as indicated per ICBO evaluation report No. 1917 or by manufacture having current ICBO evaluation report with values Iin shear and tension) equal or greater.

	Structural Engineers	$\begin{gathered} \text { APC } \\ \text { CABINET ANCHORAGE } \end{gathered}$				Job No. 11210
		USA				Sheet No. SK1
Meier	103 Linden Avenue So. San Francisco, CA 94080 650 871•??82 Fax: $871 \cdot 2459$					
Juilly \& Associotes		Signed by	MAS	Date	7/2011	

NOTES:

*SEE MANUFACTURE DRAWINGS FOR EXACT DIMENSIONS AND SIZE OF APC UNITS
*UNITS TO HAVE A MAX FRAME WEIGHT OF 2,100 LBS

LOW SEISMIC
GANG UNIT BOTTOM PLAN VIEW
(3 UNITS OR MORE GANGED TOGETHER)

Structural Engineers
103 Linden Avenue
So. San Francisco, CA 94080 650 871•??82 Fax: 871•2459

NOTES:

*SEE MANUFACTURE DRAWINGS FOR EXACT DIMENSIONS AND SIZE OF APC UNITS
*UNITS TO HAVE A MAX FRAME WEIGHT OF 2,100 LBS

GANG UNIT BOTTOM PLAN VIEW (3 UNITS OR MORE GANGED TOGETHER)

Structural Engineers
103 Linden Avenue
So. San Francisco, CA 94080
650 871- ??82 Fax: $871 \cdot 2459$

SYMMETRA \&	INFRASTRUXURE	Job No.
CABINET ANCHORAGE	11210	
USA		Sheet No.
	Date $7 / 2011$	

CONCRETE SLAB INSTALLATION

$$
\begin{aligned}
& \text { DETAIL } 1 \\
& \hline 3^{\prime \prime=}=1^{\prime}-0^{\prime \prime} \\
& \text { SK5 }
\end{aligned}
$$

CONCRETE FILL OVER
METAL DECK INSTALLATION

DETAALL
$3^{\prime \prime}=1^{\prime}-0 "$
SK6

Robinson Meier Juilly \& Associates

Structural Engineers
103 Linden Avenue
So. San Francisco, CA 94080
650 871- ??82 Fax: 871•2459

RAISED COMPUTER OVER CONC.
FILLED METAL DECK INSTALLATION

DETAIL
$3 "=1,-0 "$
SK7

Robinson Meier Juilly \& Associates Structural Engineers 103 Linden Avenue So. San Francisco, CA 94080 650 871•??82 Fax: 871•2459		SYMMETRA \& INFRASTRUXURE CABINET ANCHORAGE			Job No. 11210
		USA			Sheet No. (5K8)
		Signed by	MAS	Date 7/2011	

Robinson
Meier
Juilly \& Associates

Principals
Peter Robinson, S.E.
Jayson E. Haines, S.E.

Appendix (Hilti Output Files)

www.hilti.us
PROFIS Anchor 2.1.4

Company:	RMJ \& Associates	Page:	1
Specifier:	Mario A. Sigala	Project:	APC Cabinet Anchorag
Address:	103 Linden Ave.	Sub-Project I Pos. No.:	11210
Phone I Fax:	$650.871 .2282 \mid 650.871 .2459$	Date:	$8 / 25 / 2011$
E-Mail:	msigala@rmjse.com		

Specifier's comments: Shear Calculation

1. Input data

Anchor type and diameter:

Effective embedment depth:
Material:
Evaluation Service Report::
Issued I Valid:
Proof:
Stand-off installation:
Profile
Base material:
Reinforcement:

Seismic loads (cat. C, D, E, or F):

Kwik Bolt TZ - CS, 3/8 (2)
$\mathrm{h}_{\text {ef }}=2.000 \mathrm{in} ., \mathrm{h}_{\text {nom }}=2.625 \mathrm{in}$.
Carbon Steel
ESR 1917
9/1/2009 |-
design method ACI 318 / AC 193

- (Recommended plate thickness: not calculated)
no profile
cracked concrete , 2500, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=2500 \mathrm{psi} ; \mathrm{h}=4.000 \mathrm{in}$.
tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar yes (D.3.3.6)

Geometry [in.] \& Loading [lb, in.-Ib]

www.hilti.us
PROFIS Anchor 2.1.4

Company:	RMJ \& Associates	Page:	2
Specifier:	Mario A. Sigala	Project:	APC Cabinet Anchorag
Address:	103 Linden Ave.	Sub-Project I Pos. No.:	11210
Phone I Fax:	$650.871 .2282 \mid 650.871 .2459$	Date:	$8 / 25 / 2011$
E-Mail:	msigala@rmjse.com		

2. Load case/Resulting anchor forces

Load case (governing):

Anchor reactions [lb]
Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	1250	1250	0

max. concrete compressive strain [\%o]: 0.00
max. concrete compressive stress [psi]: 0
resulting tension force in $(x / y)=(0.000 / 0.000)[\mathrm{lb}]: 0$
resulting compression force in $(\mathrm{x} / \mathrm{y})=(0 / 0)[\mathrm{lb}]: 0$

3. Tension load

Proof	Load $N_{\text {ua }}[\mathrm{lb}]$	Capacity $\phi \mathrm{N}_{\mathrm{n}}[\mathrm{lb}]$	Utilization $\beta_{\mathrm{N}}[\%]=\mathrm{N}_{\text {ua }} / \phi \mathrm{N}_{\mathrm{n}}$	Status
Steel Strength*	N / A	N / A	N / A	N / A
Pullout Strength*	N / A	N / A	N / A	N / A
Concrete Breakout Strength**	N / A	N / A	N / A	N / A
*anchor having the highest loading	**anchor group (anchors in tension)			

4. Shear load

Proof	Load $\mathrm{V}_{\text {ua }}$ [lb]	Capacity $\phi \mathrm{V}_{\mathrm{n}}[\mathrm{lb}]$	Utilization $\beta_{\mathrm{v}}[\%]=\mathrm{V}_{\text {ua }} / \phi \mathrm{V}_{\mathrm{n}}$	Status
Steel Strength*	1250	1466	85	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	1250	1262	99	OK
Concrete edge failure in direction**	N/A	N/A	N/A	N/A
* anchor having the highest loading **anchor group (relevant anchors)				

Steel Strength

Equations

$V_{\text {seis }}=E S R$ value refer to ICC-ES ESR 1917
$\phi \mathrm{V}_{\text {stel }} \geq \mathrm{V}_{\text {ua }} \quad$ ACl 318-08 Eq. (D-1)

Variables

n	$\mathrm{A}_{\text {se, }, ~}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{f}_{\mathrm{uta}}[\mathrm{psi}]$
1	0.05	125000

Calculations

Results

$\mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{V}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{V}_{\text {ua }}[\mathrm{lb}]$
2255	0.650	1466	1250

www.hilti.us
PROFIS Anchor 2.1.4

Company:
Specifier:
Address:
Phone I Fax:
E-Mail:
RMJ \& Associates
Mario A. Sigala

103 Linden Ave.
650.871 .2282 | 650.871 .2459
msigala@rmjse.com

3
APC Cabinet Anchorag
11210
8/25/2011

Pryout Strength (Concrete Breakout Strength controls)

Equations

```
\(V_{c p}=k_{c p}\left[\left(\frac{A_{N c}}{A_{N c 0}}\right) \psi_{e d, N} \psi_{c, N} \psi_{c p, N} N_{b}\right] \quad\) ACI 318-08 Eq. (D-30)
\(\phi \mathrm{V}_{\text {cp }} \geq \mathrm{V}_{\text {ua }} \quad\) ACl 318-08 Eq. (D-1)
\(\mathrm{A}_{\mathrm{Nc}}\) see ACl 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)
\(A_{N c 0}=9 h_{\text {ef }}^{2} \quad\) ACl 318-08 Eq. (D-6)
\(\psi \mathrm{ec}, \mathrm{N}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0 \quad\) ACl 318-08 Eq. (D-9)
\(\psi_{\text {ed, } \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0 \quad\) ACI 318-08 Eq. (D-11)
\(\psi_{\mathrm{cp}, \mathrm{N}}=\operatorname{MAX}\left(\frac{\mathrm{c}_{\mathrm{a}, \min }}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0 \quad\) ACI \(318-08 \mathrm{Eq}\). (D-13)
\(N_{b}=k_{c} \lambda \sqrt{f_{c}} h_{\text {ef }}^{1.5} \quad\) ACl 318-08 Eq. (D-7)
```


Variables

k_{cp}	$\mathrm{h}_{\mathrm{ef}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}[\mathrm{in}]$.	$\mathrm{c}_{\mathrm{a}, \min [\mathrm{in} .]}$	$\psi_{\mathrm{c}, \mathrm{N}}$	$\mathrm{c}_{\mathrm{ac}}[\mathrm{in}]$.
1	2.000	0.000	0.000	-	1.000	
λ	$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$					
1	2500					

Calculations

$\mathrm{A}_{\mathrm{Nc}}\left[\mathrm{in} .{ }^{2}\right]$	$\mathrm{A}_{\mathrm{Nco}}\left[\mathrm{in}.{ }^{2}\right]$	$\psi_{\mathrm{ec} 1, \mathrm{~N}}$	$\psi_{\mathrm{ec} 2, \mathrm{~N}}$	$\psi_{\mathrm{ed}, \mathrm{N}}$	$\psi_{\mathrm{cp}, \mathrm{N}}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
36.00	36.00	1.000	1.000	1.000	2404	
Results						
$\mathrm{V}_{\mathrm{cp}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi_{\text {seismic }}$	$\phi_{\text {nonductile }}$	$\phi \mathrm{V}_{\mathrm{cp}}[\mathrm{lb}]$	$\mathrm{V}_{\mathrm{ua}}[\mathrm{lb}]$	
2404	0.700	0.750	1.000	1262	1250	

5. Warnings

- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to ACI 318, Part D.4.4(c).
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- The anchor plate is assumed to be sufficiently stiff in order to be not deformed when subjected to the actions!
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-08 Appendix D, Part D. 3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6.
An alternative anchor design approach to $\mathrm{ACl} 318-08$, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "non-structural components" as defined in ASCE 7, Section 13.4.2.
An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "wall out-of-plane forces" as defined in ASCE 7, Equation 12.11-1 or Equation 12.14-10.
- It is the responsibility of the user when inputing values for brittle reduction factors ($\phi_{\text {nonduditi) }}$) different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code.
Selection of $\phi_{\text {nonductile }}=1.0$ as a means of satisfying ACI 318-08, Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level $<=$ the design strengths calculated per ACI 318-08, Part D.3.3.3.
www.hilti.us
PROFIS Anchor 2.1.4

Company:	RMJ \& Associates	Page:	1
Specifier:	Mario A. Sigala	Project:	APC Cab. Anchorage
Address:	103 Linden Ave.	Sub-Project I Pos. No.:	11210
Phone I Fax:	$650.871 .2282 \mid 650.871 .2459$	Date:	$8 / 25 / 2011$
E-Mail:	msigala@rmjse.com		

Specifier's comments: Tension Calculation

1. Input data

Anchor type and diameter:
Effective embedment depth:
Material:
Evaluation Service Report::
Issued I Valid:
Proof:
Stand-off installation:
Profile
Base material:
Reinforcement:

Seismic loads (cat. C, D, E, or F):

Kwik Bolt TZ - CS, 3/8 (2)
$\mathrm{h}_{\text {ef }}=2.000 \mathrm{in} ., \mathrm{h}_{\text {nom }}=2.625 \mathrm{in}$.
Carbon Steel
ESR 1917
9/1/2009 |-
design method ACI 318 / AC 193

- (Recommended plate thickness: not calculated) no profile
cracked concrete , 2500, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=2500 \mathrm{psi} ; \mathrm{h}=4.000 \mathrm{in}$.
tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar yes (D.3.3.6)

Geometry [in.] \& Loading [lb, in.-lb]

www.hilti.us
PROFIS Anchor 2.1.4

Company:
Specifier:
Address:
Phone I Fax:
E-Mail:

RMJ \& Associates
Mario A. Sigala
103 Linden Ave.
650.871.2282|650.871.2459
msigala@rmjse.com

2. Load case/Resulting anchor forces

Load case (governing):

Anchor reactions [lb]
Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1100	0	0	0

max. concrete compressive strain [\%o]: 0.00
max. concrete compressive stress [psi]: 0
resulting tension force in $(x / y)=(0.000 / 0.000)$ [lb]: 1100
resulting compression force in $(x / y)=(0 / 0)$ [lb]: 0

3. Tension load

Proof	Load $N_{\text {ua }}[\mathrm{lb}]$	Capacity $\phi \mathrm{N}_{\mathrm{n}}[\mathrm{lb}]$	Utilization $\beta_{\mathrm{N}}[\%]=\mathrm{N}_{\text {ua }} / \phi \mathrm{N}_{\mathrm{n}}$	Status
Steel Strength*	1100	4875	23	OK
Pullout Strength*	1100	1107	99	OK
Concrete Breakout Strength**	1100	1172	94	OK
* anchor having the highest loading	**anchor group (anchors in tension)			

Steel Strength

Equations

$N_{\text {sa }}=E S R$ value	refer to ICC-ES ESR 1917
$\phi N_{\text {stee }} \geq N_{\text {ua }}$	ACI 318-08 Eq. (D-1)

Variables

n	$\mathrm{A}_{\text {se,N }}\left[\mathrm{in}.{ }^{2}\right]$	$\mathrm{f}_{\text {uta }}[\mathrm{psi}]$
1	0.05	125000

Calculations

$\frac{\mathrm{N}_{\mathrm{sa}}[\mathrm{lb}]}{6500}$

Results

$\mathrm{N}_{\text {sa }}[\mathrm{lb}]$	$\phi_{\text {steel }}$	$\phi \mathrm{N}_{\text {sa }}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
6500	0.750	4875	1100

www.hilti.us
PROFIS Anchor 2.1.4

Company:	RMJ \& Associates	Page:	3
Specifie:	Mario A. Sigala	Project:	APC Cab. Anchorage
Address:	103 Linden Ave.	Sub-Project I Pos. No.:	11210
Phone I Fax:	$650.871 .2282 \mid 650.871 .2459$	Date:	$8 / 25 / 2011$
E-Mail:	msigala@rmjse.com		

Pullout Strength

Equations
$N_{\mathrm{pn}, f_{\mathrm{c}}}=\mathrm{N}_{\mathrm{p}, 2500} \sqrt{\frac{f_{\mathrm{c}}^{\prime}}{2500}}$
$\phi \mathrm{~N}_{\mathrm{pn}, f_{\mathrm{c}}} \geq \mathrm{N}_{\mathrm{ua}}$
refer to ICC-ES ESR 1917
$\phi N_{\text {pr, } \hat{c}_{c}} \geq N_{\text {ua }}$

> ACI 318-08 Eq. (D-1)

Variables

$\mathrm{f}_{\mathrm{c}}^{\prime}[\mathrm{psi}]$	$\mathrm{N}_{\mathrm{p}, 2500}[\mathrm{bb}]$
2500	2270

Calculations

Results

$\mathrm{N}_{\mathrm{pn}, f_{1}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi_{\text {seismic }}$	$\phi_{\text {nonductile }}$	$\phi \mathrm{N}_{\mathrm{pn}, f_{0}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
2270	0.650	0.750	1.000	1107	1100

Concrete Breakout Strength

Equations

$N_{c b}=\left(\frac{A_{N c}}{A_{\mathrm{Nc} 0}}\right) \psi_{e d, N} \psi_{c, N} \psi_{c p, N} N_{b}$
ACl 318-08 Eq. (D-4)
${ }_{\phi} \mathrm{N}_{\mathrm{cb}} \geq \mathrm{N}_{\mathrm{ua}}$
ACl 318-08 Eq. (D-1)
A_{Nc} see ACl 318-08, Part D.5.2.1, Fig. RD.5.2.1(b)
$A_{\text {Nc0 }}=9 h_{\text {ef }}^{2} \quad$ ACl 318-08Eq. (D-6)
$\psi_{\mathrm{ec}, \mathrm{N}}=\left(\frac{1}{1+\frac{2 \mathrm{e}_{\mathrm{N}}^{\prime}}{3 \mathrm{~h}_{\mathrm{ef}}}}\right) \leq 1.0$
ACI 318-08 Eq. (D-9)
$\psi_{\mathrm{ed}, \mathrm{N}}=0.7+0.3\left(\frac{\mathrm{C}_{\mathrm{a}, \text { min }}}{1.5 \mathrm{~h}_{\mathrm{ef}}}\right) \leq 1.0 \quad$ ACl 318-08 Eq. (D-11)
$\Psi \mathrm{cp,N}=\operatorname{MAX}\left(\frac{\mathrm{C}_{\mathrm{a}, \mathrm{min}}}{\mathrm{C}_{\mathrm{ac}}}, \frac{1.5 \mathrm{~h}_{\mathrm{ef}}}{\mathrm{C}_{\mathrm{ac}}}\right) \leq 1.0 \quad$ ACI 318-08 Eq. (D-13)
$N_{b}=k_{c} \lambda \sqrt{f_{c}^{\prime}} h_{\text {ef }}^{1.5} \quad$ ACl 318-08 Eq. (D-7)

Variables

$\mathrm{h}_{\text {ef }}$ [in.]	$\mathrm{e}_{\mathrm{c} 1, \mathrm{~N}}$ [in.]	$\mathrm{e}_{\mathrm{c} 2, \mathrm{~N}}$ [in.]	$\mathrm{Ca}_{\mathrm{a}, \text { min }}$ [in.]	$\psi \mathrm{c}, \mathrm{N}$	$\mathrm{cac}_{\mathrm{ac}}$ [in.]	k_{c}	λ
2.000	0.000	0.000	393.701	1.000	4.375	17	1

$\mathrm{f}_{\mathrm{c}}^{\prime}$ [psi]
2500

Calculations

$\mathrm{A}_{\text {Nc }}\left[\right.$ in. $\left.{ }^{2}\right]$	$\mathrm{A}_{\text {Nco }}\left[\right.$ in. $\left.{ }^{2}\right]$	$\psi_{\text {eci } 1, \mathrm{~N}}$	$\psi_{\text {ecc2,N}}$	$\psi_{\text {ed }, \mathrm{N}}$	$\psi_{\text {cp,N }}$	$\mathrm{N}_{\mathrm{b}}[\mathrm{lb}]$
36.00	36.00	1.000	1.000	1.000	1.000	2404

Results

$\mathrm{N}_{\mathrm{cb}}[\mathrm{lb}]$	$\phi_{\text {concrete }}$	$\phi_{\text {seismic }}$	中nonductile	$\phi \mathrm{N}_{\mathrm{cb}}[\mathrm{lb}]$	$\mathrm{N}_{\mathrm{ua}}[\mathrm{lb}]$
2404	0.650	0.750	1.000	1172	1100

www.hilti.us
PROFIS Anchor 2.1.4

Company:	RMJ \& Associates	Page:	4
Specifier:	Mario A. Sigala	Project:	APC Cab. Anchorage
Address:	103 Linden Ave.	Sub-Project I Pos. No.:	11210
Phone I Fax:	$650.871 .2282 \mid 650.871 .2459$	Date:	$8 / 25 / 2011$
E-Mail:	msigala@rmjse.com		

4. Shear load

Proof	Load $V_{u a}[\mathrm{bb}]$	Capacity $\phi \mathrm{V}_{\mathrm{n}}[\mathrm{lb}]$	Utilization $\beta_{\mathrm{v}}[\%]=\mathrm{V}_{\mathrm{ua}} / \phi \mathrm{V}_{\mathrm{n}}$	Status
Steel Strength*	N / A	N / A	N / A	N / A
Steel failure (with lever arm)*	N / A	N / A	N / A	N / A
Pryout Strength**	N / A	N / A	N / A	N / A
Concrete edge failure in direction**	N / A	N / A	N / A	N / A
* anchor having the highest loading	**anchor group (relevant anchors)			

5. Warnings

- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to ACI 318, Part D.4.4(c).
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI318 or the relevant standard!
- The anchor plate is assumed to be sufficiently stiff in order to be not deformed when subjected to the actions!
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-08 Appendix D, Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6.
An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "non-structural components" as defined in ASCE 7, Section 13.4.2.
An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "wall out-of-plane forces" as defined in ASCE 7, Equation 12.11-1 or Equation 12.14-10.
- It is the responsibility of the user when inputing values for brittle reduction factors ($\phi_{\text {nonductile }}$) different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code. Selection of $\phi_{\text {nonductile }}=1.0$ as a means of satisfying ACI 318-08, Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level $<=$ the design strengths calculated per ACI 318-08, Part D.3.3.3.

Fastening meets the design criteria!

Design Expansion Anchor

$$
\begin{aligned}
& T_{R y}: 3 / 8^{\prime \prime} \phi H_{1 L T} K B-T Z \\
& h_{\text {eff }}=13 / 4^{\prime \prime}
\end{aligned}
$$

ShEar Calculation
Conc. Breakout Strength of Anchor in Shear [S. 6.2^{-}]

$$
\begin{aligned}
& V_{c b}=\frac{A_{V C}}{A_{\text {a }}} \cdot V_{\text {ed }} \text { nOTE: DOES NOT GOVERN } \\
& \begin{array}{l}
\text { * hate: bes not over } \\
\psi_{c, V} \cdot V_{b}[E Q \text { D-21] }
\end{array} \\
& \text { [S } S_{\text {EC. }} \text { D. 6.3] }
\end{aligned}
$$

\therefore Conc. Pryout $S_{\text {trengit }} O_{F}$ Anchor $\ln S_{\text {hear }}$

$$
\begin{aligned}
& V_{C P}= K_{C P} \cdot N_{C D} \cdot[E Q N . D-29] \\
& K_{C P}=1.0 \\
& N_{C P}=1,968 \#\left(S_{E E} T_{E N S I O n ~ C D C C .}\right) \\
& V_{C P}=1.968 \# \\
& \phi=0.7 ; \phi_{S}=0.75 \\
& \phi V_{C p}=1,033 \#<G_{\text {OVENS }} \# S_{H E A R}
\end{aligned}
$$

STEEL StrengTh O_{F} Anchor $\operatorname{In} S_{\text {Hear }}$ [SEC. D.6.1]

$$
\begin{aligned}
V_{S A} & =3.595 \#\left(H_{1 L T}, C_{b T} . P G 319\right) \\
\phi & =0.65[D .4 .4] \\
\phi V_{S B} & =0.75 \times 0.65 \times 3,595 \\
& =1,753
\end{aligned}
$$

Job No. $/ 1210$	Date
Signed by MAS	Sheet No. 39 of

TEnsion
$S_{\text {TEEL }} S_{\text {mennath }} O_{E}$ Ancwor In $T_{\text {Ension }}\left[S_{\text {EC. }}\right.$ D.5.1]

$$
\begin{aligned}
& N_{S A}=n A_{\text {SE }} f_{\text {uta }} \text { [E EN. D-3] } \\
& n=1 ; A_{s E}=0.052_{1 n}^{2}\left(H_{1 L+1} C_{n t} . P G .319\right) \\
& f_{\text {uta }}=125,000^{\text {\# }} \\
& \phi=0.75 \\
& \phi N_{\text {sn }}=0.75 \times 0.052 \mathrm{in}^{2} \times 125,000 \text { * } \\
& =4,875 \text { \# }
\end{aligned}
$$

Conc. Breakout $S_{\text {menength }} O_{F}$ Anchors In Tension [S Sc. D. .5.2]

$$
\begin{aligned}
& N_{c c}=\frac{A_{n c}}{A_{n c o}} \cdot \psi_{\psi_{e, N}, N} \cdot \psi_{C, n} \cdot \psi_{C, N} \cdot N_{b}\left[E_{Q N}, D-4\right] \\
& h_{\text {es }}=13 / 4^{\prime \prime} \\
& A_{\text {nco }}=A_{N C}=9 . h_{\text {et }}=9 \times 1.75^{2} \\
& =27.6 \mathrm{in}^{2} \\
& \psi_{\mathrm{d}, \omega}=1.0 \\
& \psi_{C, N}=1.0 \text { [EQN. D-10 or D-11] } \\
& \psi_{C P, N}=1.0 \text { [SEC. D, 5.2.6] } \\
& N_{b}=k_{c} \cdot \sqrt{f^{\prime} C} \cdot h_{\text {ef }}{ }^{1.5} \text { [EAN D-7] } \\
& k_{c}=17 \\
& N_{b}=17 \cdot \sqrt{2500} \cdot 1.75^{1.5} \\
& =1,968 \text { * } \\
& \phi=0.65 \text { [D.4.4] } \\
& \phi N_{c b}=0.75 \times 0.65 \times 1,968^{*} \\
& =959^{*}
\end{aligned}
$$

Job No. 11210	Date
Signed by MAS	Sheet No. 40 of

Conc. Pullout Strength O f Anchor In Tension [Sec. D.5.3.]

$$
\begin{aligned}
\Phi_{n} N_{p n, f c} & =\psi_{c, p} \cdot N_{p} \\
& =0.65 \times 1,460^{\#} \\
& =949^{\#} \leftarrow \text { Governs Tension }
\end{aligned}
$$

SIDE FACE Blowout OF Anchor In TEnsion [SEC.D.54]
Anchor Not Close To Any EDge
STEEL STRENGTH $O_{F} A_{\text {ichor }} \operatorname{In} S_{\text {HEaR }}$ [S SC. D, 6.1]

$$
\begin{aligned}
V_{S B} & =n \cdot 0.6 \cdot A_{S E} \cdot f_{V \neq a} \\
& =1.0 \times 0.6 \times 0.052 \times 125,000 \\
& =3,900^{\#} \\
\phi V_{S A} & =0.75 \times 0.65 \times 3,900^{\#} \\
& =1,901 \#
\end{aligned}
$$

