## Altivar 61

# Variable speed drives for synchronous and asynchronous motors 

## Programming Manual

Software V6.6
02/2014


## Contents

Before you begin ..... 4
Documentation structure ..... 5
Software enhancements ..... 6
Steps for setting up the drive ..... 9
Factory configuration ..... 10
Setup - Preliminary recommendations ..... 11
Graphic display terminal ..... 14
Description of the terminal ..... 14
Description of the graphic screen ..... 15
First power-up - [5. LANGUAGE] menu ..... 18
Subsequent power ups ..... 19
Programming: Example of accessing a parameter ..... 20
Quick navigation ..... 21
Integrated display terminal ..... 24
Functions of the display and the keys ..... 24
Accessing menus ..... 25
Accessing menu parameters ..... 26
[2. ACCESS LEVEL] (LAC-) ..... 27
Structure of parameter tables ..... 30
Interdependence of parameter values ..... 31
Finding a parameter in this document ..... 32
[1.1 SIMPLY START] (SIM-) ..... 33
[1.2 MONITORING] (SUP-) ..... 39
[1.3 SETTINGS] (SEt-) ..... 48
[1.4 MOTOR CONTROL] (drC-) ..... 64
[1.5 INPUTS / OUTPUTS CFG] (I-O-) ..... 81
[1.6 COMMAND] (CtL-) ..... 110
1.7 APPLICATION FUNCT.] (FUn-) ..... 123
[1.8 FAULT MANAGEMENT] (FLt-) ..... 189
[1.9 COMMUNICATION] (COM-) ..... 215
[1.10 DIAGNOSTICS] ..... 219
[1.11 IDENTIFICATION] ..... 221
[1.12 FACTORY SETTINGS] (FCS-) ..... 222
[1.13 USER MENU] (USr-) ..... 225
[1.14 PROGRAMMABLE CARD] (PLC-) ..... 226
[3. OPEN / SAVE AS] ..... 227
[4. PASSWORD] (COd-) ..... 229
[6 MONITORING CONFIG.] ..... 231
[7 DISPLAY CONFIG.] ..... 235
[MULTIPOINT SCREEN] ..... 240
Maintenance ..... 241
Faults - Causes - Remedies ..... 242
User settings tables ..... 248
Index of functions ..... 250
ndex of parameter codes ..... 251

Read and understand these instructions before performing any procedure with this drive.

## A 1 DANGER

## HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation and who have received safety training to recognize and avoid hazards involved are authorized to work on and with this drive system. Installation, adjustment, repair and maintenance must be performed by qualified personnel.
- The system integrator is responsible for compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of all equipment.
- Many components of the product, including the printed circuit boards, operate with mains voltage. Do not touch. Use only electrically insulated tools.
- Do not touch unshielded components or terminals with voltage present.
- Motors can generate voltage when the shaft is rotated. Prior to performing any type of work on the drive system, block the motor shaft to prevent rotation.
- AC voltage can couple voltage to unused conductors in the motor cable. Insulate both ends of unused conductors of the motor cable.
- Do not short across the DC bus terminals or the DC bus capacitors or the braking resistor terminals.
- Before performing work on the drive system:
- Disconnect all power, including external control power that may be present.
- Place a "Do Not Turn On" label on all power switches.
- Lock all power switches in the open position.
- Wait 15 minutes to allow the DC bus capacitors to discharge. The DC bus LED is not an indicator of the absence of DC bus voltage that can exceed 800 Vdc .
- Measure the voltage on the DC bus between the DC bus terminals using a properly rated voltmeter to verify that the voltage is < 42 Vdc .
- If the DC bus capacitors do not discharge properly, contact your local Schneider Electric representative.
- Install and close all covers before applying voltage.

Failture to follow these instructions will result in death or serious injury.

## CAUTION

## DAMAGED EQUIPMENT

Do not operate or install any drive that appears damaged.
Failure to follow this instruction can result in equipment damage.

[^0]
## Documentation structure

The following Altivar 61 technical documents are available on the Schneider Electric website (www.schneider-electric.com).

## Installation Manual

This bulletin contains complete mounting and wiring instructions.

## Programming Manual

This describes the functions, parameters and use of the drive terminal (integrated display terminal and graphic display terminal). The communication functions are not described in this manual, but in the manual for the bus or network used.

## Communication Parameters Manual

This manual describes:

- The drive parameters with specific information for use via a bus or communication network.
- The operating modes specific to communication (state chart).
- The interaction between communication and local control.


## Manuals for Modbus ${ }^{\circledR}$, CANopen $^{\circledR}$, Ethernet ${ }^{\text {TM }}$, Profibus ${ }^{\circledR}$, INTERBUS, Uni-Telway, and Modbus ${ }^{\circledR}$ Plus, etc.

These manuals describe the assembly, connection to the bus or network, signaling, diagnostics, and configuration of the communicationspecific parameters via the integrated display terminal or the graphic display terminal.
They also describe the communication services of the protocols.

## ATV 38/ATV 61 Migration Manual

This manual describes the differences between the Altivar 61 and the Altivar 38 and explains how to replace an Altivar 38, including how to replace drives communicating on a bus or a network.

## ATV 78IATV 61/71 Migration Manual

This manual describes the differences between the Altivar 61/71 and Altivar 78 and explains how to replace an Altivar 78.

## Software enhancements

Since the Altivar ATV 61 was first launched，it has benefited from the addition of several new functions．The software version is now V6．6． Although this documentation relates to version V6．6，it can still be used with earlier versions．
The software version is indicated on the nameplate attached to the body of the drive．

## Enhancements made to version V1．2 in comparison to V1．1

## New parameters and functions

## Option of operating with a BACnet communication card

## ［1．8 FAULT MANAGEMENT］（FLt－）menu

－The external fault［EXTERNAL FAULT］（EtF－）page 199 can now be configured in positive or negative logic via［External fault config．］ （LEt）．

## Enhancements made to version V1．4 in comparison to V1．2

## Factory setting

Note：In versions V1．1 and V1．2，analog output AO1 was assigned to the motor frequency．In the new version，this output is not assigned．
With the exception of this parameter，the factory setting of versions V 1.1 and V 1.2 remain the same in the new version．The new functions are inactive in the factory setting．

## New parameters and functions

## ［1．2 MONITORING］（SUP－）menu

Addition of states and internal values relating to the new functions described below．

## ［1．3 SETTINGS］（SEt－）menu

－［High torque thd．］（ttH）page 60
－［Low torque thd．］（ttL）page 60
－［Pulse warning thd．］（FqL）page $\underline{60}$
－［Freewheel stop Thd］（FFt）page $6 \underline{1}$

## ［1．4 MOTOR CONTROL］（drC－）menu

－Extension of the following configurations to all drive ratings（previously limited to $45 \mathrm{~kW}(60 \mathrm{HP}$ ）for ATV61 $\bullet 00 \mathrm{M} 3 \mathrm{X}$ and to 75 kW （ 100 HP ）for ATV61•⿰㇒夫N4）：synchronous motor［Sync．mot．］（SYn）page 69，sinus filter［Sinus filter］（OFI）page 71，noise reduction ［Noise reduction］（nrd）page 78，braking balance［Braking balance］（bbA）page $8 \underline{0}$.

## ［1．5 INPUTS I OUTPUTS CFG］（I－O－）menu

－［AI net．channel］（AIC1）page 91
－New options for assigning relays and logic outputs，page 96：torque greater than high threshold，torque less than low threshold，motor in forward rotation，motor in reverse rotation，measured speed threshold attained．
－Analog output AO1 can now be used as a logic output and assigned to relay functions and logic outputs，page 102.
－New option of modifying the scale of analog outputs，page 104，using the parameters［Scaling AOx min］（ASLx）and［Scaling AOx $\max$（ASHx）．
－New options for assigning analog outputs page 105：signed motor torque and measured motor speed．
－New options for assigning alarm groups page 109：torque greater than high threshold，torque less than low threshold，measured speed threshold attained．

## Software enhancements

## [1.7 APPLICATION FUNCT.] (Fun-) menu

- The summing, subtraction and multiplication reference functions can now be assigned to virtual input [Network AI] (AIU1) page 130.
- New parameter [Freewheel stop Thd] (FFt) page 135 used to adjust a threshold for switching to freewheel at the end of a stop on ramp or fast stop.
- The torque limitation [TORQUE LIMITATION] (tOL-) page 166 can now be configured in whole $\%$ or in $0.1 \%$ increments using [Torque increment] (IntP) and assigned to virtual input [Network AI] (AIU1).
- New Damper control function using the [DAMPER MANAGEMENT] (dAM-) menu, page 174.
- Parameter switching [PARAM. SET SWITCHING] (MLP-) page 176 can now be assigned to attained frequency thresholds [Freq. Th. attain.] (FtA) and [Freq. Th. 2 attain.] (F2A).


## [1.8 FAULT MANAGEMENT] (FLt-) menu

- Option to reinitialize the drive without turning it off, via [Product reset] (rP) page 192.
- Option to reinitialize the drive via a logic input without turning it off, using [Product reset assig.] (rPA) page 192.
- The option to configure the "output phase loss" fault [Output Phase Loss] (OPL) page 196 to [Output cut] (OAC) has been extended to all drive ratings (previously limited to $45 \mathrm{~kW}(60 \mathrm{HP})$ for ATV61 $\bullet \bullet 0 \mathrm{M} 3 \mathrm{X}$ and 75 kW ( 100 HP ) for ATV61 $\bullet \bullet \bullet$ N4).
- New monitoring function based on speed measurement using "Pulse input" input page 206, via the [FREQUENCY METER] (FqF-) menu.
- The braking unit short-circuit fault can now be configured using [Brake res. fault Mgt] (bUb) page 208.
- The [Damper stuck] (Fd1) fault in the Damper control function can be configured via [DAMPER FAULT MGT.] (FdL-) page 213.


## [7 DISPLAY CONFIG.] menu

- Addition, in [7.4 KEYPAD PARAMETERS] page 239, of the [Keypad contrast] and [Keypad stand-by] parameters to adjust the contrast and stand-by mode of the graphic display unit.


## Enhancements made to version V1.5 in comparison to V1.4

Extension of the range with the addition of ATV61eeeッY drives for 500 to 690 V supplies.
There are no new parameters, but the adjustment ranges and factory settings of some parameters have been adapted to the new voltages.

## [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu

Increased adjustment range for the relay and logic output delay parameters: 0 to 60000 ms instead of 0 to 9999 ms .

## [1.7 APPLICATION FUNCT.] (Fun-) menu

- New parameter [Conf.sensor flow] (LnS) page 183, used to configure the zero flow sensor for positive or negative logic.


## Enhancements made to version V1.6 in comparison to V1.5

The communication option card APOGEE FLN P1 (VW3 A3 314) is fully supported with the version V1.6 and above of the Altivar 61 software.

## Enhancements made to version V1.8 in comparison to V1.6

## [7 DISPLAY CONFIG.] menu

- Addition in [7.4 KEYPAD PARAMETERS] page $\underline{235}$ of [Power up menu]. This parameter allows to choose the menu which displays on the drive on power up.


## Enhancements made to version V2.1 in comparison to V1.8

## [1.7 APPLICATION FUNCT.] (Fun-) menu

## New parameters and functions

- New parameter [Regen. Conenction] (Olr) page 187. With this parameter it is possible to retun the braking energy to the mains.
- New parameter [Dis. operat opt code] (dOtd) page 136.


## Software enhancements

## Enhancements made to version V5.8 in comparison to V2.1

Motor frequency range
The maximum output frequency has been limited to 599 Hz

## [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu <br> New parameter and function

New methods of assigning logic output, [R1 Assignment] (r1) page 97 : [Drive start] (Strt).

## New factory setting

- [Motor control type] (Ctt) page 69 has been modified, [Energy Sav.] (nLd) to [V/F 2pts] (UF2).
- [IGBT test] (Strt) page 201 has been modified, [No] (nO) to [Yes] (YES).
- [Dis. operat opt code] (dOtd) page 136 has been modified, [Freewheel] (nSt) to [Ramp stop] (rMP).


## [1.7 APPLICATION FUNCT.] (FUn-) menu

## New parameter and function

- New parameter [Pmax Motor] (tPMM) page 167
- New parameter [Pmax Generator] (tPMG) page 167


## Enhancements made to version V6.3 in comparison to V5.8

## [1.7 APPLICATION FUNCT.] (FUn-) menu

## New parameter and function

- New parameter [+/-Speed reference] (Srt) page 144


## [1.8 FAULT MANAGEMENT] (FLt-) menu

New monitoring parameter [Freq. catch on fly] (FCAO) available with PC-Software, see [Catch on the fly] (FLr) page 194

## Enhancements made to version V6.6 in comparison to V6.3

## [1.7 APPLICATION FUNCT.] (FUn-) menu

## Switching frequency

The minimum adjustment range of [Switching freq.] (SFr) depends on the product caliber, see page $5 \underline{55}$.

## Factory configuration

## Drive factory settings

The Altivar 61 is factory-set for the most common operating conditions:

- Macro-configuration: Pumps/fans
- Motor frequency: 50 Hz
- Energy-saving variable torque applications
- Normal stop mode on deceleration ramp
- Stop mode in the event of a fault: freewheel
- Linear, acceleration and deceleration ramps: 3 seconds
- Low speed: 0 Hz
- High speed: 50 Hz
- Motor thermal current = rated drive current
- Standstill injection braking current $=0.7 \times$ rated drive current, for 0.5 seconds
- No automatic starts after a fault
- Switching frequency 2.5 kHz or 12 kHz depending on drive rating
- Logic inputs:
- LI1: forward (1 operating direction), 2-wire control on transition
- LI2: inactive (not assigned)
- LI3: switching of $2^{\text {nd }}$ speed reference
- LI4: fault reset
- LI5, LI6: inactive (not assigned)
- Analog inputs:
- Al1: $1^{\text {st }}$ speed reference $0+10 \mathrm{~V}$
- AI2: $2^{\text {nd }}$ speed reference $0-20 \mathrm{~mA}$
- Relay R1: The contact opens in the event of a fault (or drive off)
- Relay R2: The contact closes when the drive is in operation
- Analog output AO1: 0-20 mA, inactive (not assigned)

If the above values are compatible with the application, the drive can be used without changing the settings.

## Option card factory settings

The option card inputs/outputs are not factory-set.

## Setup - Preliminary recommendations

## Turning on and configuring the drive

## DANGER

UNINTENDED EQUIPMENT OPERATION

- Before turning on and configuring the Altivar 61, check that the PWR (POWER REMOVAL) input is deactivated (at state 0 ) in order to prevent unintended operation.
- Before turning on or on exiting the configuration menus, check that the inputs assigned to the run command are deactivated (at state 0 ) since they can cause the motor to start immediately.

Failure to follow these instructions will result in death or serious injury.

|  |
| :--- |
| INCOMPATIBLE LINE VOLTAGE |
| Before turning on and configuring the drive, ensure that the line voltage is compatible with the supply voltage range shown |
| on the drive nameplate. The drive may be damaged if the line voltage is not compatible. |
| Failure to follow these instructions can result in equipment damage. |

## Separate control section power supply

Only supply power to the power section the next time the drive is powered up when:
A) The drive control section is powered independently of the power section (P24 and OV terminals).
B) Whenever an option card is added or replaced.

## Power switching via line contactor

( 1 CAUTION
RISK OF EQUIPMENT DAMAGE

- Avoid operating the contactor frequently (premature ageing of the filter capacitors).
- Cycle times < 60 s may result in damage to the pre-charge resistor.

Failure to follow these instructions can result in equipment damage.

## User adjustment and extension of functions

- The display unit and buttons can be used to modify the settings and to extend the functions described in the following pages.
- Return to factory settings is made easy by the [1.12 FACTORY SETTINGS] (FCS-) menu, see page 222.
- There are three types of parameter:
- Display: Values displayed by the drive
- Adjustment: Can be changed during operation or when stopped
- Configuration: Can only be modified when stopped and no braking is taking place. Can be displayed during operation


## DANGER

UNINTENDED EQUIPMENT OPERATION

- Check that changes made to the settings during operation do not present any danger.
- We recommend stopping the drive before making any changes.

Failure to follow these instructions will result in death or serious injury.

## Setup - Preliminary recommendations

## Starting

## Important:

- In factory settings mode, the motor can only be supplied with power once the "forward", "reverse" and "DC injection stop" commands have been reset:
- On power-up or a manual fault reset or after a stop command

If they have not been reset, the drive will display " nSt " but will not start.

- If the automatic restart function has been configured ([Automatic restart] (Atr) parameter in the [1.8-FAULT MANAGEMENT] (FLt-) menu, see page 193), these commands are taken into account without a reset being necessary.


## Test on a low power motor or without a motor

- In factory settings mode, [Output Phase Loss] detection (OPL) page 196 is active (OPL = YES). To check the drive in a test or maintenance environment without having to switch to a motor with the same rating as the drive (particularly useful in the case of high power drives), deactivate [Output Phase Loss] (OPL = no).
- Set [Motor control type] (Ctt) = [V/F 2pts] (UF2) or [V/F 5pts] (UF5) or [U/F Quad.] (UFq) ([1.4-MOTOR CONTROL] (drC-) menu, see page 69)

|  |
| :--- |
| UNINTENDED EQUIPMENT OPERATION |
| Motor thermal protection will not be provided by the drive if the motor current is less than 0.2 times the rated drive current. |
| Provide an alternative means of thermal protection. |
| Failure to follow these instructions can result in equipment damage. |

## Using motors in parallel

- Set [Motor control type] (Ctt) = [V/F 2pts] (UF2) or [V/F 5pts] (UF5) or [U/F Quad.] (UFq) ([1.4-MOTOR CONTROL] (drC-) menu, see page 69)

|  |
| :--- |
| UNINTENDED EQUIPMENT OPERATION |
| Motor thermal protection is no longer provided by the drive. Provide an alternative means of thermal protection on every |
| motor. |
| Failure to follow these instructions can result in equipment damage. |

## Setup - Preliminary recommendations

## ATV61eeoY - Network which presents often under voltage

To assure an optimal running of an ATV61ee•Y used on network which presents often under voltage (network voltage contained between 425 V and 446 V ), it is necessary to adjust [Prevention level] (UPL) $=383 \mathrm{~V}$ ([1.8-FAULT MANAGEMENT] (FLt-) menu, see page 201).

Using motor with nominal voltage lower than drive supply voltage

- Configure [Vector Control 2pt] (UC2) = [Yes] (YES) ([1.4-MOTOR CONTROL] (drC-) menu, see page 71)


## A CAUTION

## UNINTENDED EQUIPMENT OPERATION

- To protect a motor which has a nominal voltage lower than drive supply voltage, it is mandatory to use [Vector Control 2pt] (UC2) function in order to limit maximal voltage of the motor lower than network voltage.
- Nevertheless, it is necessary to check that instantaneous voltage applied to the motor (link to DC bus voltage) are compatible with characteristics of this one.

Failure to follow these instructions can result in equipment damage.

## Graphic display terminal

Although the graphic display terminal is optional for low-power drives, it is a standard component on high-power drives (see catalog). The graphic display terminal can be disconnected and connected remotely (on the door of an enclosure for example) using the cables and accessories available as options (see catalog).

## Description of the terminal



Note: Buttons 3, 4, 5 and 6 can be used to control the drive directly, if control via the terminal is activated.

## Disconnected terminal

When the terminal is disconnected, two LEDs become visible:


## Graphic display terminal

## Description of the graphic screen

| $\begin{array}{ll} 1 & \longrightarrow \\ 2 & \longrightarrow \end{array}$ | RDY | Term | $+0.00 \mathrm{~Hz}$ | REM |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 DRI | MENU |  |  |
|  | 1.1 SIMP | START |  |  |
|  | 1.2 MON | RING |  |  |
| 3 | $\begin{aligned} & \text { 1.3 SETT } \\ & 1.4 \mathrm{MOT} \\ & 1.5 \mathrm{INPU} \end{aligned}$ | S <br> CONTR <br> / OUTPU |  |  |
| $4 \longrightarrow$ | Code | << | T/K | $\nabla$ |
|  | (F1) | (F2) | F4 |  |

1. Display line. Its content can be configured; the factory settings show:

- The drive state (see page 16)
- The active control channel:
- Term: Terminals
- HMI: Graphic display terminal
- MDB: Integrated Modbus
- CAN: Integrated CANopen
- NET: Communication card
- APP: Controller Inside card
- Frequency reference
- LOC/REM: "LOC" appears if the command and reference are set via the graphic display terminal; otherwise, "REM" appears. This corresponds to the state selected by the $[T / K]$ function key.

2. Menu line. Indicates the name of the current menu or submenu.
3. Menus, submenus, parameters, values, bar charts, etc., are displayed in drop-down window format on a maximum of 5 lines. The line or value selected by the navigation button is displayed in reverse video.
4. Section displaying the functions assigned to the keys F1 to F4 and aligned with them, for example:

- Code F1 : Displays the code of the selected parameter, i.e., the code corresponding to the 7 -segment display.
- HELP F1 : Contextual help.
- << F2 : Navigate horizontally to the left, or go to previous menu/submenu or, for a value, go to the next digit up, displayed in reverse video (see the example on page 17).
- >> F3 : Navigate horizontally to the right or go to next menu/submenu (going to the [2 ACCESS LEVEL] menu in this example) or, for a value, go to the next digit down, displayed in reverse video (see the example on page 17).
- T/K F4 : Command and reference via the terminal, see page 122.

The function keys are dynamic and contextual.
Other functions (application functions) can be assigned to these keys via the [1.6 COMMAND] menu.
If a preset speed is assigned to a function key and if the function key is pressed, the motor will run at this preset speed until another preset speed or JOG is pressed, speed reference is changed, or Stop key is pressed.
5.

Indicates that there are no more levels below this display window. Indicates that there are more levels below this display window.
6. $\square$ Indicates that there are no more levels above this display window. Indicates that there are more levels above this display window.

## Graphic display terminal

## Drive state codes:

- ACC: Acceleration
- CLI: Current limit
- CTL: Controlled stop on input phase loss
- DCB: DC injection braking in progress
- DEC: Deceleration
- FLU: Motor fluxing in progress
- FRF: Drive at fallback speed
- FST: Fast stop
- NLP: No line power (no line supply on L1, L2, L3)
- NST: Freewheel stop
- OBR: Auto-adapted deceleration
- PRA: Power Removal function active (drive locked)
- RDY: Drive ready
- RUN: Drive running
- SOC: Controlled output cut in progress
- TUN: Auto-tuning in progress
- USA: Undervoltage alarm


## Graphic display terminal

## Example configuration windows:

| RDY | Term | +0.00 Hz | REM |
| :--- | :--- | :--- | :--- |
|  | 5 LANGUAGE |  |  |
| English |  |  | $\boldsymbol{\square}$ |
| Français <br> Deutsch <br> Español <br> Italiano |  |  |  |
|  |  |  |  |
|  | $\ll$ | $\gg$ | T/K |

When only one possible selection can be made, the selection made is indicated by $\checkmark$ Example: Only one language can be chosen.

| PARAMETER SELECTION |  |
| :--- | :---: |
| 1.3 SETTINGS |  |
| Ramp increment | $\square \checkmark$ |
| Acceleration | $\square \checkmark$ |
| Deceleration | $\square$ |
| Acceleration 2 | $\square$ |
| Deceleration 2 | $\square$ |
|  | Edit |

When multiple selection is possible, the selections made are indicated by $\boxed{\checkmark}$ Example: A number of parameters can be chosen to form the [USER MENU].

## Example configuration window for one value:



The << and >> arrows (keys F2 and F3) are used to select the digit to be modified, and the navigation button is rotated to increase or decrease this number.

## Graphic display terminal

## First power-up - [5. LANGUAGE] menu

The first time the drive is powered up, the user will automatically be guided through the menus as far as [1. DRIVE MENU]. The parameters in the [1.1 SIMPLY START] submenu must be configured and auto-tuning performed before the motor is started up.


## Graphic display terminal

## Subsequent power ups

3 seconds later, switches to
[1. DRIVE MENU] or to
[1.14 PROGRAMMABLE CARD].

If no operator inputs are made, switches to "Display" automatically 10 seconds later (the display will vary depending on the selected configuration).

Users can return to [MAIN MENU] by pressing ENT or ESC.


## Graphic display terminal

## Programming: Example of accessing a parameter

## Accessing the acceleration ramp

| RDY | Term | . 00 H | REM |
| :---: | :---: | :---: | :---: |
| 1 DRIVE MENU |  |  |  |
| 1.1 SIMPLY START |  |  |  |
| 1.2 MONITORING |  |  |  |
| 1.3 SETTINGS |  |  |  |
| 1.4 MOTOR CONTROL |  |  |  |
| 1.5 INPUTS / OUTPUTS CFG |  |  |  |
| Code | << | >> | T/K |



| ENT | RDY | Term | $+0.00 \mathrm{~Hz}$ | REM |
| :---: | :---: | :---: | :---: | :---: |
|  | Acceleration |  |  |  |
| ENT or | 9.51 s |  |  |  |
|  | $\mathrm{Min}=0.01$ | Max $=99.99$ |  |  |
| ESC |  | << | >> | T/K |

## Note:

- To select a parameter:
- Turn the navigation button to scroll vertically.
- To modify a parameter:
- Use the << and >> keys (F2 and F3) to scroll horizontally and select the digit to be modified (the selected digit changes to white on a black background).
- Turn the navigation button to modify the digit.
- To cancel the modification:
- Press ESC.
- To save the modification:
- Press the navigation button (ENT).


## Graphic display terminal

## Quick navigation

In order to access this function you must first reassign the F4 key, which is assigned by default to control via the terminal (T/K) (see page 122 ). If the "Quick" function is displayed above the F4 key, you can gain quick access to a parameter from any screen.

## Example:

| RDY | Term | 0.00 Hz | REM |
| :---: | :---: | :---: | :---: |
| 1.4 MOTOR CONTROL |  |  |  |
| Standard mot. freq: |  |  | Hz IE |
| Rated motor power: |  | 0.37 | 0.5 |
| Rated motor volt.: |  |  | 206 |
| Rated mot. current: |  |  | 1.0 A |
| Rated motor freq.: |  |  | 50.0 Hz |
| Code | << |  | Quic |

Press F4 to access the Quick screen, which contains 4 selection options.

- [HOME]: Return to [MAIN MENU].

| RDY Term +0.00 Hz REM | ENT | RDY | Term | $+0.00 \mathrm{~Hz}$ | REM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| QUICK NAVIGATION |  | MAIN MENU |  |  |  |
| RETURN TO MAIN MENU |  | 1 DRIVE MENU |  |  |  |
| DIRECT ACCESS TO... |  | 2 ACCESS LEVEL |  |  |  |
| 10 LAST MODIFICATIONS |  | 3 OPEN / SAVE AS |  |  |  |
| GOTO MULTIPOINT SCREEN |  | 4 PASSWORD |  |  |  |
|  |  | 5 LANGUAGE |  |  |  |
| Code |  | Code |  |  | Quick |

- [DIRECT ACCESS TO...]: Opens the direct access window, which will contain the text "1". The function keys << and >> (F2 and F3) can be used to select each of the numbers and the navigation button to increment or decrement the numbers: 1.3 in the example below.

- [10 LAST MODIFICATIONS]: Opens a window in which the last 10 parameters modified can be accessed directly.

| RDY Term | +0.00 Hz REM | $\xrightarrow[\mathrm{ESC}]{\mathrm{ENT}}$ | RDY | Term $\quad+0.00 \mathrm{~Hz}$ | REM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 LAST MODIFICATIONS |  |  |  | Rated mot. current |  |
| Acceleration: | 10 s |  |  |  |  |
| Speed prop. gain: | 25\% |  |  |  |  |
| Rated mot. current: | 15 A |  |  | 15.0 A |  |
| Preset speed 4: | 20 Hz |  |  |  |  |
| Preset speed 5: | 30 Hz |  |  |  |  |
| Code |  |  |  | << >> |  |

## Graphic display terminal

[MAIN MENU] - Menu mapping


## Content of [MAIN MENU] menus

| [1 DRIVE MENU] | See next page |
| :--- | :--- |
| [2 ACCESS LEVEL] | Defines which menus can be accessed (level of complexity) |
| [3 OPEN / SAVE AS] | Can be used to save and recover drive configuration files |
| [4 PASSWORD] | Provides password protection for the configuration |
| [5 LANGUAGE] | Language selection |
| [6 MONITORING CONFIG.] | Customization of information displayed on the graphic display terminal during operation |
| [7 DISPLAY CONFIG.] | • Customization of parameters <br> • Custotion of a customized user menu |

## Graphic display terminal

## [1 DRIVE MENU]

| RDY | Term | $+0.00 \mathrm{~Hz}$ | REM |
| :---: | :---: | :---: | :---: |
| 1 DRIVE MENU |  |  |  |
| 1.1 SIMPLY START |  |  |  |
| 1.2 MONITORING |  |  |  |
| 1.3 SETTINGS |  |  |  |
| 1.4 MOTOR CONTROL |  |  |  |
| 1.5 INPUTS / OUTPUTS CFG |  |  |  |
| Code | << | >> | T/K |

1.6 COMMAND
1.7 APPLICATION FUNCT.
1.8 FAULT MANAGEMENT
1.9 COMMUNICATION
1.10 DIAGNOSTICS
1.11 IDENTIFICATION
1.12 FACTORY SETTINGS
1.13 USER MENU
1.14 PROGRAMMABLE CARD

## Content of [1. DRIVE MENU] menus:

[1.1 SIMPLY START]:
[1.2 MONITORING]:
[1.3 SETTINGS]:
[1.4 MOTOR CONTROL]:
[1.5 INPUTS / OUTPUTS CFG]:
[1.6 COMMAND]:
[1.7 APPLICATION FUNCT.]:
[1.8 FAULT MANAGEMENT]:
[1.9 COMMUNICATION]:
[1.10 DIAGNOSTICS]:
[1.11 IDENTIFICATION]:
[1.12 FACTORY SETTINGS]:
[1.13 USER MENU]:
[1.14 CONTROL. INSIDE CARD]:

Simplified menu for fast startup
Visualization of current, motor and input/output values
Accesses the adjustment parameters, which can be modified during operation
Motor parameters (motor nameplate, auto-tuning, switching frequency, control algorithms, etc.)
I/O configuration (scaling, filtering, 2-wire control, 3 -wire control, etc.)
Configuration of command and reference channels (graphic display terminal, terminals, bus, etc.)
Configuration of application functions (e.g., preset speeds, PID, etc.)
Configuration of fault management
Communication parameters (fieldbus)
Motor/drive diagnostics
Identification of the drive and internal options
Access to configuration files and return to factory settings
Specific menu set up by the user in the [7. DISPLAY CONFIG.] menu
Configuration of optional Controller Inside card

## Integrated display terminal

Low-power Altivar 61 drives (see catalog) feature an integrated display terminal with a 7-segment 4-digit display. The graphic display terminal described on the previous pages can also be connected to these drives as an option.

## Functions of the display and the keys

- 2 Modbus status LEDs
- Four 7-segment displays


Note:

- Pressing or does not store the selection.
- Press and hold down (>2 s) or $\nabla$ to scroll through the data quickly.


## Save and store the selection: ENT

The display flashes when a value is stored.
Normal display, with no fault present and no startup:

- 43.0: Display of the parameter selected in the SUP menu (default selection: motor frequency)
- CLI: Current limit
- CtL: Controlled stop on input phase loss
- dCb: DC injection braking in progress
- FLU: Motor fluxing in progress
- FRF: Drive at fallback speed
- FSt: Fast stop
- nLP: No line power (no line supply on L1, L2, L3)
- nSt: Freewheel stop
- Obr: Auto-adapted deceleration
- PrA: Power Removal function active (drive locked)
- rdY: Drive ready
- SOC: Controlled output cut in progress
- tUn: Auto-tuning in progress
- USA: Undervoltage alarm

The display flashes to indicate the presence of a fault.

Accessing menus


A dash appears after menu and submenu codes to differentiate them from parameter codes.
Examples: FUn- menu, ACC parameter.
The grayed-out menus may not be accessible depending on the control access (LAC) configuration.

## Accessing menu parameters

Save and store the displayed selection:


All the menus are "drop-down scrolling" menus, which means that after the last parameter, if you continue to press $\boldsymbol{\nabla}$, you will return to the first parameter and, conversely, you can switch from the first parameter to the last parameter by pressing

## Selection of multiple assignments for one parameter



Example: List of group 1 alarms in [INPUTS / OUTPUTS CFG] menu (I-O-)
A number of alarms can be selected by "checking" them as follows.


The same principle is used for all multiple selections.

With graphic display terminal

## Basic

Access to 5 menus only, and access to 6 submenus only in the [1. DRIVE MENU] menu.
A single function can be assigned to each input.



Standard
This is the factory-set level. Access to 6 menus only, and access to all submenus in the [1. DRIVE MENU] menu.
A single function can be assigned to each input.


| MAIN MENU |
| :--- |
| 1 DRIVE MENU |
| 2 ACCESS LEVEL |
| 3 OPEN / SAVE AS |
| 4 PASSWORD |
| 5 LANGUAGE |
| Code |

6 MONITORING CONFIG.
7 DISPLAY CONFIG.

Expert
Access to all menus and submenus as for [Advanced] level, and access to additional parameters.
Several functions can be assigned to each input.

| RDY | Term | $+0.00 \mathrm{~Hz}$ | REM |
| :---: | :---: | :---: | :---: |
| MAIN MENU |  |  |  |
| 1 DRIVE MENU |  |  |  |
| 2 ACCESS LEVEL |  |  |  |
| 3 OPEN / SAVE AS |  |  |  |
| 4 PASSWORD |  |  |  |
| 5 LANGUAGE |  |  |  |
| Code |  |  | T/K |
| 6 MONI | RING | ONFIG. |  |

7 DISPLAY CONFIG.

## [2. ACCESS LEVEL] (LAC-)

## With integrated display terminal:




Comparison of the menus that can be accessed on the graphic display terminal/ integrated display terminal

(1) Can be accessed if the Controller Inside card is present.

## Structure of parameter tables

The parameter tables in the descriptions of the various menus can be used with both the graphic display terminal and the integrated display terminal. They, therefore, contain information for these two terminals in accordance with the description below.

## Example:



1. Name of menu on 4-digit 7-segment display
2. Submenu code on 4-digit 7-segment display
3. Parameter code on 4-digit 7-segment display
4. Parameter value on 4-digit 7 -segment display
5. Name of menu on graphic display terminal
6. Name of submenu on graphic display terminal
7. Name of parameter on graphic display terminal
8. Value of parameter on graphic display terminal

## Note:

- The text in square brackets [ ] indicates what you will see on the graphic display terminal.
- The factory settings correspond to [Macro configuration] (CFG) $=$ [Pumps.Fans] (PnF). This is the macro configuration set at the factory.


## Interdependence of parameter values

The configuration of certain parameters modifies the adjustment range of other parameters, in order to reduce the risk of errors. This may result in the modification of a factory setting or a value you have already selected.

## Example 1:

1. [Switching freq.] (SFr) page $\underline{77}$ set to 16 kHz .
2. [Sinus filter] (OFI), see page $\underline{77}$, set to [Yes] (YES) (and confirmed with "ENT") limits [Switching freq.] (SFr) to 8 kHz . If you set [Sinus filter] (OFI) to [ No ] ( nO ), [Switching freq.] (SFr) will no longer be limited but will remain at $\mathbf{8} \mathbf{~ k H z}$. If you require 16 kHz , you must reset [Switching freq.] (SFr).

## Example 2:

1. The factory setting of [Switching freq.] (SFr) page $\underline{77}$ remains unchanged at 2.5 kHz .
2. Setting [Sinus filter] (OFI) page $\underline{77}$ to [Yes] (YES) (and confirming with "ENT") changes the factory setting of [Switching freq.] (SFr) to 4 kHz .
3. If you set [Sinus filter] (OFI) to [ No ] ( nO ), [Switching freq.] (SFr) will remain at 4 kHz . If you require 2.5 kHz , you must reset [Switching freq.] (SFr).

## Finding a parameter in this document

The following assistance with finding explanations on a parameter is provided:

- With the integrated display terminal: Direct use of the parameter code index, page $\underline{251}$, to find the page giving details of the displayed parameter.
- With the graphic display terminal: Select the required parameter and press F1: [Code]. The parameter code is displayed instead of its name while the key is held down.

Example: ACC


Then use the parameter code index, page $\underline{251}$, to find the page giving details of the displayed parameter.

## With graphic display terminal:



## With integrated display terminal:



The [1.1-SIMPLY START] (SIM-) menu can be used for fast startup, which is sufficient for the majority of applications.

The parameters in this menu can only be modified when the drive is stopped and no run command is present, with the following exceptions:

- Auto-tuning, which causes the motor to start up
- The adjustment parameters on page 38

[^1]The [1.1 SIMPLY START] (SIM-) menu should be configured on its own or before the other drive configuration menus. If a modification has previously been made to any of them, in particular in [1.4 MOTOR CONTROL] (drC-), some [1.1 SIMPLY START] (SIM-) parameters may be changed, for example, the motor parameters, if a synchronous motor has been selected. Returning to the [1.1 SIMPLY START] (SIM-) menu after modifying another drive configuration menu is unnecessary but does not pose any risk. Changes following modification of another configuration menu are not described, to avoid unnecessary complication in this section.

## Macro configuration

Macro configuration provides a means of speeding up the configuration of functions for a specific field of application. 5 macro configurations are available:

- Start/stop
- General use
- PID regulator
- Communication bus
- Pumps/fans (factory configuration)

Selecting a macro configuration assigns the parameters in this macro configuration.

Each macro configuration can still be modified in the other menus.

## [1.1 SIMPLY START] (SIM-)

## Macro configuration parameters

## Assignment of the inputs/outputs

| Input/ output | [Start/Stop] | [Gen. Use] | [PID regul.] | [Network C.] | [Pumps.Fans] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Al1 | [Ref. 1 channel] | [Ref. 1 channel] | [Ref. 1 channel] (PID reference) | [Ref. 2 channel] ([Ref. 1 channel] = integrated Modbus) (1) | [Ref. 1 channel] |
| Al2 | [No] | [Summing ref. 2] | [PID feedback] | [No] | [Ref.1B channel] |
| AO1 | [ No ] | [No] | [No] | [ No ] | [No] |
| R1 | [No drive fit] |
| R2 | [No] | [No] | [No] | [No] | [Drv running] |
| LI1 (2-wire) | [Forward] | [Forward] | [Forward] | [Forward] | [Forward] |
| LI2 (2-wire) | [Fault reset] | [Reverse] | [Fault reset] | [Fault reset] | [ No ] |
| LI3 (2-wire) | [No] | [Jog] | [PID integral reset] | [Ref. 2 switching] | [Ref 1B switching] |
| LI4 (2-wire) | [No] | [Fault reset] | [2 preset PID ref.] | [Forced local] | [Fault reset] |
| LI5 (2-wire) | [No] | [Torque limitation] | [4 preset PID ref.] | [No] | [No] |
| LI6 (2-wire) | [No] | [No] | [No] | [No] | [No] |
| LI1 (3-wire) | Stop | Stop | Stop | Stop | Stop |
| LI2 (3-wire) | [Forward] | [Forward] | [Forward] | [Forward] | [Forward] |
| LI3 (3-wire) | [Fault reset] | [Reverse] | [Fault reset] | [Fault reset] | [ No ] |
| LI4 (3-wire) | [No] | [Jog] | [PID integral reset] | [Ref. 2 switching] | [Ref 1B switching] |
| LI5 (3-wire) | [No] | [Fault reset] | [2 preset PID ref.] | [Forced local] | [Fault reset] |
| LI6 (3-wire) | [No] | [Torque limitation] | [4 preset PID ref.] | [No] | [ No ] |
| Option cards |  |  |  |  |  |
| LI7 to LI14 | [No] | [No] | [No] | [No] | [No] |
| LO1 to LO4 | [No] | [No] | [No] | [No] | [No] |
| R3/R4 | [No] | [No] | [No] | [No] | [No] |
| Al3, Al4 | [No] | [No] | [No] | [No] | [No] |
| RP | [No] | [No] | [No] | [No] | [ No ] |
| AO2 | [1 motor] | [1 motor] | [I motor] | [1 motor] | [1 motor] |
| AO3 | [No] | [No] | [PID Output] | [No] | [No] |
| Graphic display terminal keys |  |  |  |  |  |
| F1 key | [No] | [No] | [No] | [No] | [No] |
| F2, F3 keys | [No] | [No] | [No] | [No] | [No] |
| F4 key | [T/K] (Control via graphic display terminal) |

$\square$ In 3-wire control, the assignment of inputs LI1 to LI7 shifts.
(1) To start up with integrated Modbus, [Modbus Address] (Add) must first be configured, page $\underline{217}$.

Note: These assignments are reinitialized every time the macro configuration changes.

## Return to factory settings:

Returning to factory settings with [Config. source] (FCSI) = [Macro-Conf] (InI) page 224 will restore the selected macro configuration. The [Macro configuration] (CFG) parameter does not change, although [Customized macro] (CCFG) disappears.

Note:

- The factory settings in the parameter tables correspond to [Macro configuration] (CFG) = [Pumps.Fans] (PnF). This is the macro configuration set at the factory.

| Code | Name/Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| $\begin{aligned} & t[\Sigma \\ & \\ &=[ \\ & \exists[ \end{aligned}$ | [2/3 wire control] [2 wire] (2C) [3 wire] (3C) <br> 2-wire control: This is the input state ( 0 or 1 ) or edge ( 0 to 1 or 1 to 0 ), which controls running or stopping. <br> Example of "source" wiring: <br> LII: forward <br> LIx: reverse <br> 3-wire control (pulse control): A "forward" or "reverse" pulse is sufficient to command starting, a "stop" pulse is sufficient to command stopping. <br> Example of "source" wiring: <br> LI1: stop <br> LI2: forward <br> LIx: reverse <br> UNINTENDED EQUIPMENT OPERATION <br> To change the assignment of [ $2 / 3$ wire control] (tCC) press the "ENT" key for 2 s. <br> The following function will be returned to factory settings: [2 wire type] (tCt) page $\underline{82}$ as will all functions which assign logic inputs. <br> The macro configuration selected will also be reset if it has been customized (loss of custom settings). <br> Check that this change is compatible with the wiring diagram used. <br> Failure to follow these instructions can result in death or serious injury. |
| $\begin{aligned} & \text { LFG } \\ & \text { 5E5 } \\ & \text { GEn } \\ & P I d \\ & \cap E E \\ & P \cap F \end{aligned}$ | [Macro configuration] [Start/Stop] (StS): Start/stop [Gen. Use] (GEn): General use [PID regul.] (PId): PID regulation [Network C.] (nEt): Communication bus [Pumps.Fans] (PnF): Pumps/fans <br> A WARNING <br> UNINTENDED EQUIPMENT OPERATION <br> To change the assignment of [Macro configuration] (CFG) press the "ENT" key for 2 s . Check that the selected macro configuration is compatible with the wiring diagram used. <br> Failure to follow these instructions can result in death or serious injury. |
| L L F L YES | [Customized macro] <br> Read-only parameter, only visible if at least one macro configuration parameter has been modified. [Yes] (YES) |

\begin{tabular}{|c|c|c|}
\hline Code \& Name/Description ${ }^{\text {a }}$ Adjustment range \& Factory setting <br>
\hline bFr

50

50 \& \multicolumn{2}{|l|}{| [Standard mot. freq] |
| :--- |
| [50Hz IEC] (50): IEC. |
| [60Hz NEMA] (60): NEMA. |
| This parameter modifies the presets of the following parameters: [Rated motor power] (nPr), [Rated motor volt.] (UnS), [Rated drive current] (nCr), [Rated motor freq.] (FrS), [Rated motor speed] (nSP), and [Max frequency] (tFr) below, [Mot. therm. current] (ItH) page 38, [High speed] (HSP) page 38. |} <br>

\hline | IPL |
| :--- |
| $\cap \square$ |
| YE 5 | \& | $\square$ [Input phase loss] [Ignore] (nO): Fault ignored, to be used when the drive is supplied via a single-phase [Freewheel] (YES): Fault, with freewheel stop. If one phase disappears, the drive switches to fault mode [Input phase loss] (IPL) but disappear, the drive continues to operate until it trips on an undervoltage fault. |
| :--- |
| This parameter is accessible in this menu only on ATV61H037M3 to HU75M3 drive phase supply). | \& | According to drive rating |
| :--- |
| supply or by the DC bus. |
| ut if 2 or 3 phases |
| (used with a single | <br>


\hline $n P r$ \& | $\square$ [Rated motor power] |
| :--- |
| Rated motor power given on the nameplate, in kW if [Standard mot. freq] (bFr) $=[50 \mathrm{~Hz}$ [Standard mot. freq] (bFr) $=[60 \mathrm{~Hz}$ NEMA] (60). | \& | According to drive rating |
| :--- |
| z IEC] (50), in HP if | <br>


\hline $U \sim 5$ \& | $\square$ [Rated motor volt.] |
| :--- |
| According to drive rating |
| Rated motor voltage given on the nameplate. |
|  to 690 V . | \& | According to drive rating and [Standard mot. freq] (bFr) |
| :--- |
| V - ATV61•0७Y: 400 | <br>


\hline $n[r$ \& | $\square$ [Rated mot. current] 0.25 to 1.1 or 1.2 Hz <br> according to rating (1) |
| :--- |
| Rated motor current given on the nameplate. | \& According to drive rating and [Standard mot. freq] (bFr) <br>


\hline Fr 5 \& | $\square$ [Rated motor freq.] |
| :--- |
| Rated motor frequency given on the nameplate. |
| The factory setting is 50 Hz , or preset to 60 Hz if [Standard mot. freq] (bFr) is set to 60 | \& | $50 \mathrm{~Hz}$ |
| :--- |
| Hz. | <br>


\hline n $5 P$ \& | [Rated motor speed] |
| :--- |
| Rated motor speed given on the nameplate. |
| 0 to $9,999 \mathrm{rpm}$ then 10.00 to 60.00 krpm on the integrated display terminal. |
| If, rather than the rated speed, the nameplate indicates the synchronous speed and the calculate the rated speed as follows: |
| - Nominal speed $=$ Synchronous speed $x \frac{100-\text { slip as a } \%}{100}$ or |
| - Nominal speed $=$ Synchronous speed $x$ $\qquad$ ( 50 Hz motors) or |
| - Nominal speed $=$ Synchronous speed x $\qquad$ $60-$ slip in Hz 60 ( 60 Hz motors) | \& | According to drive rating |
| :--- |
| slip in Hz or as a \%, | <br>


\hline EFr \& | [Max frequency] |
| :--- |
| The factory setting is 60 Hz , or preset to 72 Hz if [Standard mot. freq] (bFr) is set to 60 The maximum value is limited by the following conditions: |
| - It must not exceed 10 times the value of [Rated motor freq.] (FrS) |
| - Values between 500 Hz and 599 Hz are not possible for ATV61HゃoゃY (500 to 690 V ) |
| - Values between 500 Hz and 599 Hz are only possible in V/F control and for powers lim for ATV61H ee๗ and $45 \mathrm{~kW}(60 \mathrm{HP})$ for ATV61Weee. In this case, configure [Motor co [Max frequency] (tFr). | \& | $60 \mathrm{~Hz}$ |
| :--- |
| Hz . | <br>

\hline
\end{tabular}

(1)In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.


## Parameters that can be changed during operation or when stopped

| Code | Name/Description | Factory setting |
| :---: | :---: | :---: |
| It H | $\square$ [Mot. therm. current] 0 to 1.1 or $1.2 \ln (1)$ <br> according to rating | According to drive rating |
|  | Motor thermal protection current, to be set to the rated current indicated on the motor nameplate. See page 195 |  |
| A [ [ | $\square$ [Acceleration] 0.1 to 999.9 s | 3.0 s |
|  | Time to accelerate from 0 to the [Rated motor freq.] (FrS) (page 36). Make sure that this value is compatible with the inertia being driven. |  |
| dE [ | $\square$ [Deceleration] 0.1 to 999.9 s | 3.0 s |
|  | Time to decelerate from the [Rated motor freq.] (FrS) (page 36) to 0 . Make sure that this value is compatible with the inertia being driven. |  |
| L 5 P | $\square$ [Low speed] | 0 |
|  | Motor frequency at minimum reference, can be set between 0 and [High speed] (HSP). |  |
| H5P | $\square$ [High speed] | 50 Hz |
|  | Motor frequency at maximum reference, can be set between [Low speed] (LSP) and [Max frequency] (tFr). The factory setting changes to 60 Hz if [Standard mot. freq] (bFr) $=[60 \mathrm{~Hz}$ NEMA] (60). |  |

(1)In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

## [1.2 MONITORING] (SUP-)

With graphic display terminal:


## With integrated display terminal:



## [1.2 MONITORING] (SUP-)

## With graphic display terminal

This menu can be used to display the inputs/outputs, the drive internal states and values, and the communication data and values.


I/O

| RUN $\quad$ Term $\quad+50.00 \mathrm{~Hz}$ | REM |  |  |
| :--- | :--- | :---: | :---: |
| I/O MAP |  |  |  |
| LOGIC INPUT MAP |  |  |  |
| ANALOG INPUTS IMAGE |  |  |  |
| LOGIC OUTPUT MAP |  |  |  |
| ANALOG OUTPUTS IMAGE |  |  |  |
| FREQ. SIGNAL IMAGE |  |  |  |
| Code |  |  | T/K |

Move from one screen to another (from LOGIC INPUT MAP
to FREQ. SIGNAL IMAGE)
by turning the navigation button


| Access to the selected input or output configuration: Press ENT. | RUN Term | $+50.00 \mathrm{~Hz}$ | REM |
| :---: | :---: | :---: | :---: |
|  | LI1 assignment |  |  |
|  | Forward <br> Pre Fluxing LI1 On Delay |  | 0 ms |
|  | << | >> | T/K |


| RUN | Term | +50.00 Hz | REM |
| :---: | :---: | :---: | :---: |
| ANALOG INPUTS IMAGE |  |  |  |
| Al1 | $\vdots$ | 9.87 V |  |
| Al2 |  | $\vdots$ |  |
|  |  |  |  |
|  |  |  |  |
| Code | $\ll$ | $\gg$ | T/K |


$\otimes$ State 0
(3) State 1

| RUN | Term | +50.00 Hz | REM |
| :---: | :---: | :---: | :---: |
| LOGIC OUTPUT MAP |  |  |  |
| R1 | R2 | LO |  |
| 8 |  | $\otimes$ |  |
| LOA: |  | 0000000000000010 b |  |
|  |  |  |  |
|  |  | $\ll$ | $\gg$ |



| RUN | Term | +50.00 Hz | REM |
| :--- | :---: | ---: | :--- |
| ANALOG OUTPUTS IMAGE |  |  |  |
| AO1 |  | $\vdots$ |  |
|  |  |  | 9.87 V |
|  |  |  |  |
|  |  |  |  |
| Code | $\ll$ | $\gg$ | T/K |



| RUN | Term | +50.00 Hz | REM |  |
| :--- | :--- | :--- | ---: | :--- |
| FREQ. SIGNAL IMAGE |  |  |  |  |
| RP input | $\vdots$ | 25.45 kHz |  |  |
| Encoder | $\vdots$ | 225 kHz |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| Code | $\ll$ | $\gg$ | T/K |  |


| ENT | RUN Term | $+50.00 \mathrm{~Hz}$ | REM |
| :---: | :---: | :---: | :---: |
|  | RP assignment |  |  |
|  | Frequency ref. |  |  |
|  | RP min value | : | 2 kHz |
|  | RP max value | : $\quad 50$ | 50 kHz |
|  | RP filter | : | 0 ms |
|  |  |  | T/K |

## With graphic display terminal

## Controller Inside card I/O

| RUN | Term $\quad+50.00 \mathrm{~Hz}$ | REM |
| :--- | :--- | :--- |
| PROG. CARD I/O MAP |  |  |
| PROG CARD LI MAP |  |  |
| PROG. CARD AI MAP |  |  |
| PROG CARD LO MAP |  |  |
| PROG. CARD AO MAP |  |  |
| Code |  |  |

Move from one screen to another (from PROG CARD LI MAP
to PROG. CARD AO MAP)
by turning the navigation button



## With graphic display terminal

## Communication

| RUN | Term |
| :--- | :---: |
| COMMUNICATION MAP |  |
| Command Channel: | Modbus |
| Cmd value: | ABCD Hex |
| Active ref. channel: | CANopen |
| Frequency ref.: | -12.5 Hz |
| ETA status word: | 2153 Hex |
| Code | T/K |

W3141: F230 Hex
W2050: F230 Hex
W4325: F230 Hex
W0894: F230 Hex
COM. SCANNER INPUT MAP
COM SCAN OUTPUT MAP
CMD. WORD IMAGE
FREQ. REF. WORD MAP
MODBUS NETWORK DIAG
MODBUS HMI DIAG
M
CANopen MAP
PROG. CARD SCANNER

[COM. SCANNER INPUT MAP] and [COM SCAN OUTPUT MAP]:
Visualization of registers exchanged periodically ( 8 input and 8 output) for integrated Modbus and for fieldbus cards.

## With graphic display terminal

## Communication (continued)


MODBUS NETWORK DIAG

The state of the LEDs, the periodic data, the address, the speed, and the format, etc,. is given for each bus.
$\otimes$ LED off
LED on
Communication via Modbus

| RUN | Term | +50.00 Hz |
| :--- | :---: | :---: |
| MODBUS NETWORK DIAG |  |  |
| COM LED | $\vdots$ | $\bigotimes$ |
| Mb NET frames nb. |  |  |
| Mb NET CRC errors |  |  |
|  |  |  |
| Code |  |  |

Communication via the graphic display terminal

| RUN | Term | $+50.00 \mathrm{~Hz}$ | REM |
| :---: | :---: | :---: | :---: |
| MODBUS HMI DIAG |  |  |  |
| COM LED <br> Mb HMI frames nb. Mb HMI CRC errors |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Code |  |  | T/K |



Communication via CANopen

| RUN Term | $+50.00 \mathrm{~Hz} \mathrm{REM}$ |
| :---: | :---: |
| CANopen MAP |  |
| RUN LED | $\otimes$ |
| ERR LED | $\otimes$ |
| poil image |  |
| PDO2 IMAGE |  |
| PDO3 IMAGE |  |
| Code | T/K |
| Canopen NMT stat |  |
| Number of TX PDO | 0 |
| Number of RX PDO | 0 |
| Error codes | 0 |
| RX Error Counter | 0 |
| TX Error Counter |  |

PDO configuration using the network tool.
Some PDOs cannot be used.

| RUN $\quad$ Term | +50.00 Hz | REM |
| :--- | :---: | :---: |
| PDO1 IMAGE |  |  |
| Received PDO1-1 : FDBA Hex <br> Received PDO1-2  <br> Received PDO1-3  <br> Received PDO1-4  <br> Transmit PDO1-1 : FDBA Hex <br> Code T/K <br> Transmit PDO1-2  <br> Transmit PDO1-3  <br> Transmit PDO1-4  |  |  |

DO images are only visible if
CANopen has been enabled (address other than OFF) and if the PDOs are active.

| RUN $\quad$ Term | +50.00 Hz |  |
| :--- | :---: | :---: |
| REM |  |  |
| Received PDO2-1 IMAGE |  |  |
| Received PDO2-2 | : FDBA Hex |  |
| Received PDO2-3 |  |  |
| Received PDO2-4 |  |  |
| Transmit PDO2-1 | : FDBA Hex |  |
| Code | T/K |  |

Transmit PDO2-2
Transmit PDO2-3
Transmit PDO2-4

| RUN $\quad$ Term | +50.00 Hz | REM |
| :--- | :---: | :---: |
| PDO3 IMAGE |  |  |
| Received PDO3-1 <br> Received PDO3-2 <br> Received PDO3-3 <br> Received PDO3-4 <br> Transmit PDO3-1 | : FDBA Hex |  |
| Code |  |  |
| Transmit PDO3-2 | T/K |  |
| Transmit PDO3-3 |  |  |
| Transmit PDO3-4 |  |  |

## With graphic display terminal

## Communication (continued)


[Input scanner] and [Output scanner]:
Visualization of registers exchanged periodically (8 input and 8 output).

## With graphic display terminal: Drive internal states and values

## Name/Description

[Alarm groups] (ALGr) [HMI Frequency ref.] (LFr) [Internal PID ref.] (rPI)
[Multiplying coeff.] (MFr)
[Frequency ref.] (FrH)
[Output frequency] (rFr)
[Measured output fr.] (MMF)
[Pulse in. work. freq.] (FqS)
[Motor current] (LCr)
[Motor speed] (SPd)
[Motor voltage] (UOP)
[Motor power] (OPr)
[Motor torque] (Otr)
[Mains voltage] (ULn)
[Motor thermal state] (tHr)
[Drv. thermal state] (tHd)
[DBR thermal state] (tHb)
[Input Power] (IPr)
[Consumption] (IPHr)
[Run time] (rtH)
[Power on time] (PtH)
[Proc. Operat. Time] (PEt)
[IGBT alarm counter] (tAC)
[PID reference] (rPC)
[PID feedback] (rPF)
[PID error] (rPE)
[PID Output] (rPO)
[Date/Time] (CLO)
[- - - - 2] (o02)
to
[- - - - 6] (o06)
[Config. active] (CnFS)
[Utilised param. set] (CFPS)
[ALARMS] (ALr-)
[OTHER STATUS] (SSt-)

[^2]Active configuration [Config. $\mathrm{n}^{\circ} 0,1$ or 2]
[Set $\mathrm{n}^{\circ} 1,2$ or 3] (can be accessed if parameter switching has been enabled, see page 176)
List of current alarms. If an alarm is present, a appears.
List of secondary states:

- [In motor fluxing] (FLX): In motor fluxing
- [PTC1 alarm] (PtC1): Probe alarm 1
- [PTC2 alarm] (PtC2): Probe alarm 2
- [LI6=PTC alarm] (PtC3): LI6 = PTC probe alarm
- [Fast stop in prog.] (FSt): Fast stop in progress
- [Current Th. attained] (CtA): Current threshold attained ([Current threshold] (Ctd) page 60)
- [Freq. Th. attained] (FtA): Frequency threshold attained ([Freq. threshold] (Ftd) page 60)
- [Freq. Th. 2 attained] (F2A): $2^{\text {nd }}$ frequency threshold attained ([Freq. threshold 2] (F2d) page 60)
- [Frequency ref. att.] (SrA): Frequency reference attained
- [Motor th. state att.] (tSA): Motor 1 thermal state attained
- [External fault alarm] (EtF): External fault alarm
- [Auto restart] (AUtO): Automatic restart in progress
- [Remote] (FtL): Line mode control
- [Auto-tuning] (tUn): Performing auto-tuning
- [Undervoltage] (USA): Undervoltage alarm
- [Cnfg. 1 act.] (CnF1): Configuration 1 active
- [Cnfg. 2 act.] (CnF2): Configuration 2 active
- [HSP attained] (FLA): High speed attained
- [Set 1 active] (CFP1): Parameter set 1 active
- [Set 2 active] (CFP2): Parameter set 2 active
- [Set 3 active] (CFP3): Parameter set 3 active
- [In braking] (brS): Drive braking
- [DC bus loading] (dbL): DC bus loading
- [Forward] (MFrd): Motor running forward
- [Reverse] (MrrS): Motor running in reverse
- [High torque alarm] (ttHA): Motor torque greater than high threshold [High torque thd.] (ttH) page 60.
- [Low torque alarm] (ttLA): Motor torque less than low threshold [Low torque thd.] (ttL) page 60 .
- [Freq. meter Alarm] (FqLA):

Measured speed threshold attained: [Pulse warning thd.] (FqL) page 60.

## [1.2 MONITORING] (SUP-)

## With integrated display terminal

This menu can be used to display the drive inputs, states and internal values.


## With integrated display terminal：Drive internal states and values

| Code | Name／Description | Unit |
| :---: | :---: | :---: |
| ALEr | Alarm groups：Current alarm group numbers |  |
| r P I | Internal PID reference：PID reference via graphic display terminal（can be accessed if the function has been configured）． | as a process value |
| M F r | Multiplication coefficient（can be accessed if［Multiplier ref．－］（MA2，MA3）page $\underline{130}$ has been assigned） | \％ |
| FrH | Frequency ref． | Hz |
| $r \mathrm{Fr}$ | Output frequency | Hz |
| ППF | The measured motor speed is displayed if an encoder card has been inserted，otherwise 0 appears． | Hz |
| F 95 | Frequency of the＂Pulse input＂used by the［FREQUENCY METER］（FqF－）function，page $\underline{207}$ | Hz |
| L［ r | Motor current | A |
| 5 Pd | Motor speed | rpm |
| $\triangle \square P$ | Motor voltage | V |
| ロPr | Motor power | \％ |
| ロヒr | Motor torque | \％ |
| $U L \cap$ | Line voltage：Line voltage from the point of view of the DC bus，motor running or stopped． | V |
| t Hr | Motor thermal state | \％ |
| thd | Drive thermal state | \％ |
| ヒHb | DBR thermal state：as a \％（can be accessed if［DB res．protection］（brO）has been configured，page 208） | \％ |
| IPr | Electrical power consumed by the drive | W or kW |
| 1 PHr | Accumulated electrical consumption of drive | Wh，kWh or MWh |
| rEH | Run time：Length of time the motor has been turned on | seconds， |
| Pt H | Power on time：Length of time the drive has been turned on | hours |
| PEE | Length of time the process has been turned on：in hours．This parameter can be initialized by the user if the drive is replaced，in order to maintain a record of previous times． | hours |
| t 月［ $^{\text {c }}$ | IGBT alarm counter：Length of time the＂IGBT temperature＂alarm has been active | seconds |
| r P［ | PID reference：Can be accessed if the PID function has been configured | as a process |
| $r P F$ | PID feedback：Can be accessed if the PID function has been configured |  |
| $r P E$ | PID error：Can be accessed if the PID function has been configured |  |
| rPD | PID Output：Can be accessed if the PID function has been configured | Hz |
| ［Lロ－ | tIME，dAY：Current date and time generated by the Controller Inside card（can be accessed if the card has been inserted） |  |
|  | －－－2：Word generated by the Controller Inside card（can be accessed if the card has been inserted） <br> …－－6：Word generated by the Controller Inside card（can be accessed if the card has been inserted） |  |
| ［ $n$ F5 | Config．active：CnFO， 1 or 2 （can be accessed if motor or configuration switching has been enabled， see page 181） |  |
| ［FP5 | Utilised param．set：CFP1， 2 or 3 （can be accessed if parameter switching has been enabled，see page 176 ） |  |

## [1.3 SETTINGS] (SEt-)

With graphic display terminal:

| RDY | Term $\quad+0.00 \mathrm{~Hz}$ |
| :--- | :--- |
| MAIN MENU |  |
| 1 DRIVE MENU |  |
| 2 ACCESS LEVEL |  |
| 3 OPEN / SAVE AS |  |
| 4 PASSWORD |  |
| 5 LANGUAGE |  |
| Code | T/K |



## With integrated display terminal:



The adjustment parameters can be modified with the drive running or stopped．

## DANGER

## UNINTENDED EQUIPMENT OPERATION

－Check that changes made to the settings during operation do not present any danger．
－We recommend stopping the drive before making any changes．
Failure to follow these instructions will result in death or serious injury．

| Code | Name／Description $\quad$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| In r <br> ロ．$\square 1$ <br> ロ．I | ［Ramp increment］ ［0．01］：Ramp up to 99.99 seconds ［0．1］：Ramp up to 999.9 seconds ［1］：Ramp up to 9,000 seconds <br> This parameter is valid for［Acceleration］（ACC），［Deceleration］（dEC），［Acceleration 2］ （dE2）． | $0.1$ <br> 2）and［Deceleration 2］ |
| A［［ | ［Acceleration］ <br> Time to accelerate from 0 to the［Rated motor freq．］（FrS）（page 65）．Make sure th with the inertia being driven． | $3.0 \mathrm{~s}$ <br> is value is compatible |
| d E［ | ［Deceleration］ <br> Time to decelerate from the［Rated motor freq．］（FrS）（page 65）to 0 ．Make sure th with the inertia being driven． | $3.0 \mathrm{~s}$ <br> is value is compatible |
| A $¢ ~$ $\star$ $\star$ | ［Acceleration 2］ <br> See page 133 <br> Time to accelerate from 0 to the［Rated motor freq．］（FrS）．Make sure that this value inertia being driven． | $5.0 \mathrm{~s}$ <br> compatible with the |
| $d E 己$ $\star$ | ［Deceleration 2］ <br> See page 133 <br> Time to decelerate from the［Rated motor freq．］（FrS）to 0 ．Make sure that this value inertia being driven． | $5.0 \mathrm{~s}$ <br> compatible with the |
| E I t | ［Begin Acc round］ <br> See page 132 <br> Rounding of start of acceleration ramp as a \％of the［Acceleration］（ACC）or［Acce | $10 \%$ <br> ion 2］（AC2）ramp time． |
| ヒ 月 2 $\star$ $\star$ | ［End Acc round］ <br> See page 132 <br> －Rounding of end of acceleration ramp as a \％of the［Acceleration］（ACC）or［Ac time． <br> －Can be set between 0 and（ $100 \%$－［Begin Acc round］（tA1）） | $10 \%$ <br> leration 2］（AC2）ramp |
| $\begin{gathered} \text { ヒ 月 ヨ } \\ \star \end{gathered}$ | ［Begin Dec round］ <br> See page 132 <br> Rounding of start of deceleration ramp as a \％of the［Deceleration］（dEC）or［Decel | $10 \%$ <br> ion 2］（dE2）ramp time |

（1）Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to $9,000 \mathrm{~s}$ according to［Ramp increment］（Inr）．

[^3]
(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.


These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

## Adjusting the [K speed loop filter] (SFC), [Speed prop. gain] (SPG), and [Speed time integral] (SIt) parameters

- The following parameters can only be accessed in vector control profiles: [Motor control type] (Ctt) page $\underline{69}=[\mathrm{SVC} \mathrm{V}]$ (UUC), [Energy Sav.] (nLd) and [Sync. mot.] (SYn).
- The factory settings are suitable for most applications.


## General case: Setting with [K speed loop filter] (SFC) $=0$

The regulator is an "IP" type with filtering of the speed reference, for applications requiring flexibility and stability (high inertia, for example).

- [Speed prop. gain] (SPG) affects excessive speed.
- [Speed gain] (SIt) affects the passband and response time.


## Initial response

Reference division


## Reduction in SIT

Reference division



Reduction in SIT
Reference division


## Increase in SPG

Reference division


## Special case: Parameter [K speed loop filter] (SFC) not 0

This parameter must be reserved for specific applications that require a short response time (trajectory positioning or servo control).

- When set to 100 as described above the regulator is a "Pl" type, without filtering of the speed reference.
- Settings between 0 and 100 will obtain an intermediate function between the settings below and those on the previous page.


## Example: Setting with [K speed loop filter] (SFC) = 100

- [Speed prop. gain] (SPG) affects the passband and response time.
- [Speed time integral] (SIt) affects excessive speed.


Initial response
Reference division


## Reduction in SIT

Reference division


## Increase in SPG

Reference division


## Reduction in SIT

Reference division


## Increase in SPG

Reference division


(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.


These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.


These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.


These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.


These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.


These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| $5 \mathrm{r} P$ |  | 0 to 50\% | 10\% |
| - | See page 146 <br> Limitation of $+/$ - speed variation |  |  |
| $r P G$ | $\square$ [PID prop. gain] | 0.01 to 100 | 1 |
| * | See page 153 <br> Proportional gain |  |  |
| $r \operatorname{la}$ | $\square$ [PID integral gain] <br> See page 154 Integral gain | 0.01 to 100 | 1 |
|  |  |  |  |
| $r d[$ | [PID derivative gain] <br> See page 154 <br> Derivative gain | 0.00 to 100 | 0 |
|  |  |  |  |
| PrP | $\square$ [PID ramp] | 0 to 99.9 s | 3.0 s |
|  | See page 154 <br> PID acceleration/deceleration ramp, defined to go from [Min PID reference] (PIP1) to [Max PID reference] (PIP2) and vice versa. |  |  |
| $P \square L$ | [Min PID output] <br> See page 154 <br> Minimum value of regulator output in | -500 to 500 or -599 Hz to 599 Hz according to rating | 0 Hz |
|  |  |  |  |
| PロH | $\square$ [Max PID output] | 0 to 500 or 599 Hz according to rating | 60 Hz |
|  | See page 154 <br> Maximum value of regulator output in Hz |  |  |
| PAL | [Min fbk alarm] <br> See page 154 <br> Minimum monitoring threshold for regulator feedback | See page 154 (1) | 100 |
|  |  |  |  |
| PAH | [Max fbk alarm] <br> See page 154 <br> Maximum monitoring threshold for regulator feedback | See page 154 (1) | 1,000 |
|  |  |  |  |

(1) If a graphic display terminal is not in use, values greater than 9,999 will be displayed on the 4 -digit display with a period mark after the thousand digit, e.g. 15.65 for 15,650 .


These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| PEr | $\square$［PID error Alarm］ | 0 to 65，535（1） | 100 |
| ＊ | See page 154 <br> Regulator error monitoring threshold． |  |  |
| P5r | $\square$［Speed input\％］ | 1 to 100\％ | 100\％ |
| $\star$ | See page 155 <br> Multiplying coefficient for predictive speed input． |  |  |
| rP己 | $\square$［Preset ref．PID 2］ | See page 158 （1） | 300 |
| ＊ | See page 158 <br> Preset PID reference |  |  |
| 「Pヨ | $\square$［Preset ref．PID 3］ | See page 158 （1） | 600 |
| $\star$ | See page 158 <br> Preset PID reference |  |  |
| rP4 | $\square$［Preset ref．PID 4］ | See page 158 （1） | 900 |
| $\star$ | See page 158 <br> Preset PID reference |  |  |
|  | $\square$［PID Threshold］ |  | 100 |
| ח | See page 157 <br> PID regulator feedback supervision threshold（alarm can be assigned to a relay or a logic output，page 96）． Adjustment range： ［ No ］（nO）：Function inactive between［Min PID feedback］（PIF1）and［Max PID feedback］（PIF2）（2）． |  |  |
| EP I | $\square$［PID Ctrl．time delay］ | 0 to 600 s | 0 s |
| ＊ | See page 157 <br> PID regulator feedback supervision time delay |  |  |

（1）If a graphic display terminal is not in use，values greater than 9,999 will be displayed on the 4 －digit display with a period mark after the thousand digit，e．g． 15.65 for 15,650 ．


These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

| Code | Name/Description $\quad$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| L $1 \Pi$ $>$ | [Motoring torque lim] <br> See page 166 <br> Torque limitation in motor mode, as a whole \% or in $0.1 \%$ increments of the rated the [Torque increment] (IntP) parameter, page 166. | 100\% <br> e in accordance with |
|  | [Gen. torque lim] <br> 0 to 300\% <br> See page 166 <br> Torque limitation in generator mode, as a whole \% or in $0.1 \%$ increments of the rated the [Torque increment] (IntP) parameter, page 166. | $100 \%$ <br> que in accordance with |
| [td | $\square$ [Current threshold] $\quad$0 to 1.1 or 1.2 In (1) <br> according to rating <br> Upper current threshold for [I attained] (CtA) function assigned to a relay or a logic | $\ln (1)$ <br> put (see page 96). |
| ctdL | $\square$ [Low I Threshold] <br> 0 to 1.1 or $1.2 \ln (1)$ according to rating <br> Lower current threshold for [Low I Th.At.] (CtAL) function assigned to a relay or a log | $0$ <br> output (see page 96 ). |
| EtH | [High torque thd.] <br> High current threshold for [High tq. att.] (ttHA) function assigned to a relay or a logic a \% of the rated motor torque. | $100 \%$ <br> tput (see page 96), as |
| $t \in L$ | $\square$ [Low torque thd.] <br> Low current threshold for [Low tq. att.] (ttLA) function assigned to a relay or a logic $\%$ of the rated motor torque. | $50 \%$ <br> ut (see page $\underline{96}$ ), as a |
| F $~$ 人 大 | [Pulse warning thd.] <br> 0 Hz to 30.00 kHz <br> Speed threshold measured by the [FREQUENCY METER] (FqF-) function, page $\underline{207}$ logic output (see page 97). | $0 \mathrm{~Hz}$ <br> ssigned to a relay or a |
| Ftd | $\square$ [Freq. threshold] 0 to 500 or 599 Hz <br> according to rating <br> High frequency threshold for the [Freq.Th.att.] (FtA) function assigned to a relay or a l or used by the [PARAM. SET SWITCHING] (MLP-) function, page 176. | [Standard mot. freq] (bFr) <br> output (see page 96) |
| FEdL | $\square$ [Low Freq.Threshold] <br> 0 to 500 or 599 Hz according to rating <br> Lower frequency threshold for [Low Frq. Th. Attain.] (FtAL) function assigned to a re (see page 96). | $0$ <br> or a logic output |
| $F 2 d$ | $\square$ [Frequency 2 threshold] $\begin{array}{l}0 \text { to } 500 \text { or } 599 \mathrm{~Hz} \\ \text { according to rating }\end{array}$ <br> Frequency threshold for [Freq. Th. 2 attain.] (F2A) function assigned to a relay or a l or used by the [PARAM. SET SWITCHING] (MLP-) function, page 176. | [Standard mot. freq] (bFr) <br> output (see page 96) |
| $F 2 d L$ | [2 Freq. Threshold] 0 to 500 or 599 Hz <br> according to rating <br> Lower frequency threshold for [2Low F.Thld] (F2AL) function assigned to a relay or a  | $0$ <br> c output (see page 96) |

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| FFt | $\square$ [Freewheel stop Thd] | 0.0 to 599 Hz | 0.0 |
|  | See page 135 <br> This parameter supports switching from a ramp stop or a fast stop to a freewheel stop below a low speed threshold. <br> It can be accessed if [Type of stop] (Stt) = [Fast stop] (FSt) or [Ramp stop] (rMP). 0.0: Does not switch to freewheel stop. 0.1 to 599 Hz : Speed threshold below which the motor will switch to freewheel stop. |  |  |
| tヒd | $\square$ [Motor therm. level] | 0 to 118\% | 100\% |
| * | See page 196 <br> Trip threshold for motor thermal alarm (logic output or relay) |  |  |
| rtd | $\square$ [High Freq. Ref. Thr.] | 0 to 500 or 599 Hz according to rating | 0 |
|  | Upper frequency reference threshold for [High Ref.] (rtAH) function assigned to a relay or a logic output (see page 96). |  |  |
| $r t d L$ | $\square$ [Low Freq. Ref. Thr.] | 0 to 500 or 599 Hz according to rating | 0 |
|  | Lower frequency reference threshold for [Low Ref.] (rtAL) function assigned to a relay or a logic output (see page 96). |  |  |

(1) In corresponds to the rated drive current indicated in the Installation Manual or on the drive nameplate.


These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.


[^4]| Code | Name/Description $\quad$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| $L \square[$ | [OvId Detection Thr.] <br> See page 212. <br> Overload detection threshold, as a \% of the rated motor current [Rated mot. curren less than the limit current in order for the function to work. | 110\% <br> Cr). This value must be |
| $F \in \square$ | [Overload T.B.Rest.] <br> See page 212. <br> Minimum time permitted between an overload being detected and any automatic In order for an automatic restart to be possible, the value of [Max. restart time] (tAr) of this parameter by at least one minute. | 0 min <br> t. <br> 193 must exceed that |
| FFd | [NoFlo.Freq.Thres.Ac.] <br> 0 to 500 or 599 Hz according to rating <br> See page 183. <br> Zero flow detection activation threshold <br> The parameter can be accessed if [PID feedback ass.] (PIF) is not [ No ] ( nO ) and if $(\mathrm{nFd})$ is not 0 . | $0 \mathrm{~Hz}$ <br> Flow Period Det.] |
| LFd | [No Flow Offset] <br> 0 to 500 or 599 Hz according to rating <br> See page 183. <br> Zero flow detection offset <br> The parameter can be accessed if [PID feedback ass.] (PIF) is not [ No ] ( nO ) and if $(\mathrm{nFd})$ is not 0 . | $0 \mathrm{~Hz}$ <br> Flow Period Det.] |
| $\cap F F E$ | $\square$ [Freq.Th.Sensor. Act.] 0 to 500 or 599 Hz <br> according to rating <br> See page 183.  <br> Zero fluid detection activation threshold <br> The parameter can be accessed if [No Flow Sensor] (nFS) is not [ No ] ( nO )..  | $0 \mathrm{~Hz}$ |
| nF5t | - [Flow Times Ctrl] <br> 0 to 999 s <br> See page 183. <br> Zero fluid detection activation time delay <br> The parameter can be accessed if [No Flow Sensor] ( nFS ) is not $[\mathrm{No}](\mathrm{nO})$. | $10 \mathrm{~s}$ |
| CHE | $\square$ [Flow.Lim.Th.Active] <br> See page 185. <br> Function activation threshold, as a \% of the max. signal of the assigned input The parameter can be accessed if [Flow.Sen.Inf] $(\mathrm{CHI})$ is not $[\mathrm{No}](\mathrm{nO})$. | $0 \%$ |
| $r[H E$ | $\square$ [Flo.Lim.Thres. Inact.] <br> See page 185. <br> Function deactivation threshold, as a \% of the max. signal of the assigned input The parameter can be accessed if [Flow.Sen.Inf] (CHI) is not [ No ] ( nO ). | $0 \%$ |
| $d F L$ | [Dec. Flow. limit] <br> See page 185. <br> The parameter can be accessed if [Flow.Sen.Inf] (CHI) is not [ No ] ( nO ) . <br> Time to decelerate from [Rated motor freq.] (FrS) to 0 . Make sure that this value is being driven. | $5.0 \mathrm{~s}$ <br> patible with the inertia |

(1)Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to $9,000 \mathrm{~s}$ according to [Ramp increment] (Inr).


These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

With graphic display terminal:

| RDY | Term | $+0.00 \mathrm{~Hz}$ | REM | ENT | 1.2 MONITORING <br> 1.3 SETTINGS |  |  |  | ENT | RUN | Term | +0.0 | REM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAIN MENU |  |  |  |  |  |  |  |  | 1.4 MOTOR CONTROL |
| 1 DRIVE MENU |  |  |  |  | 1.4 MOTOR CONTROL |  |  |  |  |  | Standard mot. freq |  |  |  |
| 2 ACCESS LEVEL |  |  |  |  | 1.5 INPUTS / OUTPUTS CFG |  |  |  |  | Rated motor power |  |  |  |
|  |  |  |  |  | Code | << | >> | T/K |  | Rated motor volt. Rated mot. current |  |  |  |
| 4 PASS | ORD |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 LANG | AGE |  |  |  |  |  |  |  |  | Rated m |  |  |  |
| Code |  |  | T/K |  |  |  |  |  |  | Code | $\ll$ | >> | T/K |

With integrated display terminal:


The parameters in the [1.4 MOTOR CONTROL] (drC-) menu can only be modified when the drive is stopped and no run command is present, with the following exceptions:

- [Auto tuning] (tUn) page 67, which causes the motor to start up.
- Parameters containing the sign () in the code column, which can be modified with the drive running or stopped.

\begin{tabular}{|c|c|c|}
\hline Code \& Name/Description ${ }^{\text {a }}$ Adjustment range \& Factory setting <br>
\hline bFr

50

50 \& \begin{tabular}{l}
$\square$ [Standard mot. freq]
[50Hz IEC] (50): IEC.
[60Hz NEMA] (60): NEMA. <br>
This parameter modifies the presets of parameters [Rated motor power] (nPr), [Rated m [Rated mot. current] (nCr), [Rated motor freq.] (FrS), [Rated motor speed] (nSP) and [M below, [Mot. therm. current] (ItH) page 50, [High speed] (HSP) page 50, [Freq. threshold [Freq. threshold 2] (F2d) page 60, [V. constant power] (UCP) page 71, [Freq. Const Pow [Nominal freq sync.] (FrSS) page 72, [Preset speed 8] (SP8) page 142, [Forced Run Ref.]

 \& 

[50Hz IEC] (50) <br>
motor volt.] (UnS), Max frequency] (tFr) Id] (Ftd) page 60, wer] (FCP) page 71, Ref.] ( InHr ) page 203.
\end{tabular} <br>

\hline \multirow[t]{2}{*}{$n \mathrm{Pr}$} \& $\square$ [Rated motor power] \& According to drive rating <br>
\hline \& \multicolumn{2}{|l|}{The parameter cannot be accessed if [Motor control type] (Ctt) page $69=$ [Sync. mot.] (SYn) Rated motor power given on the nameplate, in kW if [Standard mot. freq] (bFr) $=[50 \mathrm{~Hz}$ IEC] (50), in HP if [Standard mot. freq] (bFr) $=[60 \mathrm{~Hz} \mathrm{NEMA}]$ (60).} <br>
\hline \multirow[t]{2}{*}{$U \cap 5$} \& $\square$ [Rated motor volt.] \& According to drive rating and [Standard mot. freq] (bFr) <br>

\hline \& \multicolumn{2}{|l|}{| The parameter cannot be accessed if [Motor control type] (Ctt) page $\underline{69}=[$ Sync. mot.] (SYn) Rated motor voltage given on the nameplate. |
| :--- |
| ATV61•e०M3X: 100 to 240 V |
| ATV61•eッN4: 200 to 480 V |
| ATV61•00 Y: 400 to 690 V |} <br>

\hline \multirow[t]{2}{*}{$n[r$} \& $\square$ [Rated mot. current] \& According to drive rating and [Standard mot. freq] (bFr) <br>
\hline \& \multicolumn{2}{|l|}{The parameter cannot be accessed if [Motor control type] (Ctt) page $69=[$ Sync. mot.] (SYn) Rated motor current given on the nameplate.} <br>
\hline \multirow[t]{2}{*}{Fr 5} \& $\square$ [Rated motor freq.] \& 50 Hz <br>

\hline \& \multicolumn{2}{|l|}{| The parameter cannot be accessed if [Motor control type] (Ctt) page $\underline{69}=[$ Sync. mot.] (SYn) Rated motor frequency given on the nameplate. |
| :--- |
| The factory setting is 50 Hz , or preset to 60 Hz if [Standard mot. freq] (bFr) is set to 60 Hz . |
| The maximum value is limited to 599 Hz if [Motor control type] (Ctt) (page 69) is not V/F or if the drive rating is higher than ATV61HD37• or ATV61WD45• or if the drive is an ATV61 $\bullet \bullet$ Y ( 500 to 690 V ). |
| Values between 500 Hz and 599 Hz are only possible in V/F control and for powers limited to 37 kW ( 50 HP ) for the ATV61H ee» and $45 \mathrm{~kW}(60 \mathrm{HP}$ ) for ATV61W•⿰๑. In this case, configure [Motor control type] (Ctt) before [Rated motor freq.] (FrS). |} <br>

\hline
\end{tabular}

(1) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| n5P | [Rated motor speed] <br> The parameter cannot be accessed if [Motor control type] (C Rated motor speed given on the nameplate. 0 to $9,999 \mathrm{rpm}$ then 10.00 to 60.00 krpm on the integrated dis If, rather than the rated speed, the nameplate indicates the sy calculate the rated speed as follows: <br> - Nominal speed $=$ Synchronous speed $\times \frac{100-\text { slip as a }}{100}$ or <br> - Nominal speed $=$ Synchronous speed $x$ $\qquad$ or <br> - Nominal speed $=$ Synchronous speed $x$ $\qquad$ | 0 to 60,000 rpm <br> page $\underline{69}=[$ Sync. mo <br> play terminal. chronous speed and <br> - ( 50 Hz motors) <br> - ( 60 Hz motors) | According to drive rating <br> (SYn) <br> slip in Hz or as a \%, |
| $t \mathrm{Fr}$ | $\square$ [Max frequency] <br> The factory setting is 60 Hz , or preset to 72 Hz if [Standard The maximum value is limited by the following conditions: <br> - It must not exceed 10 times the value of de [Rated motor frea <br> - It cannot exceed 500 Hz if the [Motor control type] (Ctt) (pa than ATV61HD37• or ATV61WD45•, or if the drive is an A Values between 500 Hz and 599 Hz are only possible in V/F for the ATV61H $\bullet \bullet \bullet$ and 45 kW ( 60 HP ) for ATV61W $\bullet \bullet$. I before [Max frequency] (tFr). | 10 to 500 or 599 Hz according to rating <br> t. freq] (bFr) is set to <br> q.] (FrS) <br> 69) is not V/F or if th V61 $\bullet 00$ Y ( 500 to 690 control and for powers this case, configure [M | 60 Hz <br> Hz. <br> drive rating is higher <br> mited to 37 kW ( 50 HP ) or control type] (Ctt) |



| Code | Name／Description $\quad$ Factory setting |
| :---: | :---: |
| t U 5 <br> ヒ月レ <br> PEnd <br> Prat <br> FAIL <br> dロпE <br> ［ U 5 | ［Auto tuning status］ <br> For information only，cannot be modified． ［Not done］（ tAb ）：The default stator resistance value is used to control the motor． ［Pending］（PEnd）：Auto－tuning has been requested but not yet performed． ［In Progress］（PrOG）：Auto－tuning in progress ［Failed］（FAIL）：Auto－tuning has failed． ［Done］（dOnE）：The stator resistance measured by the auto－tuning function is used to control the motor． ［Customized］（CUS）：Auto－tuning has been performed，but at least one parameter set by this auto－tuning operation has subsequently been modified．The［Auto tuning］（tUn）parameter then returns to［ No ］（ nO ）． <br> The following auto－tuning parameters are concerned： <br> ［Cust．stator R syn］（rSAS）page $\underline{72}$ ，［R1w］（rSA），［Idw］（IdA），［LFw］（LFA）and［T2w］（trA）page $\underline{74}$ ． |
| PHr <br> 月レ <br> 月白 | $\square$［Output Ph rotation］ ［ABC］（AbC）：Forward ［ACB］（ACb）：Reverse <br> This parameter can be used to reverse the direction of rotation of the motor without reversing the wiring． |



| Code | Name／Description $\quad$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| $P F L$ | ［U／F Profile］ <br> Adjustment of the［U／F Quad．］（UFq）ratio．The parameter can be accessed if［Moto （Ctt）＝［U／F Quad．］（UFq）． <br> It defines the magnetizing current at zero frequency，as a \％of the rated magnetizing <br> Magnetizing current | 20 <br> ntrol type］ <br> urrent． |
| Uロ | $\square$［U0］ 0 to 800 or 1，000 V <br> according to rating <br> V／f ratio <br> The parameter can be accessed if［Motor control type］（Ctt） <br> or［U／F Quad．］（UFq）．  | 0 <br> 5pts］（UF5） |
| 41 | $\square$［U1］ 0 to 800 or $1,000 \mathrm{~V}$ <br> according to rating <br> V／F profile setting．The parameter can be accessed if［Motor control type］（Ctt）$=$［V | 0 <br> pts］（UF5） |
| F I |  | 0 <br> pts］（UF5） |
| リこ | $\square$［U2］ 0 to 800 or $1,000 \mathrm{~V}$ <br> according to rating <br> V／F profile setting．The parameter can be accessed if［Motor control type］（Ctt）$=$［V | 0 jpts] (UF5) |
| F ᄅ | $\square$［F2］$\quad 0$ to 599 Hz <br> V／F profile setting．The parameter can be accessed if［Motor control type］（Ctt）$=$［V | 0 <br> pts］（UF5） |
| Uヨ | $\square$［U3］ 0 to 800 or $1,000 \mathrm{~V}$ <br> according to rating <br> V／F profile setting．The parameter can be accessed if［Motor control type］（Ctt）$=$［V | 0 <br> pts］（UF5） |
| F $\exists$ | $\square[F 3]$ 0 to 599 Hz <br> $\quad$ V／F profile setting．The parameter can be accessed if［Motor control type］（Ctt）$=[\mathrm{V}$  | 0 <br> pts］（UF5） |

[^5]

## Synchronous motor parameters

These parameters can be accessed if [Motor control type] (Ctt) page $\underline{69}=$ [Sync. mot.] (SYn). In this case, the asynchronous motor parameters cannot be accessed.

(1)In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

Synchronous motor parameters that can be accessed in [Expert] mode

| Code | Name/Description |
| :---: | :---: |
| r 5 $\quad 5$ | $\square$ [R1rS] <br> Cold state stator resistance (per winding), in read-only mode. This is the drive factory setting or the result of the auto-tuning operation, if it has been performed. <br> Value in milliohms ( $\mathrm{m} \Omega$ ) up to 75 kW ( 100 HP ), in hundredths of milliohms ( $\mathrm{m} \Omega / 100$ ) above 75 kW ( 100 HP ). On the integrated display unit: 0 to 9,999 then 10.00 to 65.53 ( 10,000 to 65,536 ). |
| Fr 55 | $\square$ [Nominal freq sync.] <br> Motor frequency at rated speed in Hz , calculated by the drive (rated motor frequency), in read-only mode. |


(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) Parameter that can be modified during operation or when stopped.

## Parameter can be accessed in [Expert] mode.

| Code | Name/Description |
| :---: | :--- |
| Prt | $\square$ [Power Ident] |
|  | Parameter reserved for Schneider Electric product support. Do not modify. <br> To modify this parameter with the integrated terminal, press and hold down the "ENT" key for 2 s. |

## Asynchronous motor parameters that can be accessed in [Expert] mode

These parameters can be accessed if [Motor control type] (Ctt) page 69 is not [Sync. mot.] (SYn).
These include:

- Parameters calculated by the drive during auto-tuning, in read-only mode. For example, R1r, calculated cold stator resistance.
- The possibility of replacing some of these calculated parameters by other values, if necessary. For example, R1w, measured cold stator resistance.
When a parameter Xyw is modified by the user, the drive uses it in place of the calculated parameter Xyr.
If auto-tuning is performed or if one of the motor parameters on which auto-tuning depends is modified ([Rated motor volt.] (UnS), [Rated motor freq.] (FrS), [Rated mot. current] ( nCr ), [Rated motor speed] ( nSP ), [Rated motor power] ( nPr )), parameters Xyw return to their factory settings.

| Code | Name/Description |
| :---: | :---: |
| r $5 \Pi$ | [Stator R measured] <br> Cold stator resistance, calculated by the drive, in read-only mode. Value in milliohms ( $\mathrm{m} \Omega$ ) up to 75 kW ( 100 HP ), in hundredths of milliohms ( $\mathrm{m} \Omega / 100$ ) above $75 \mathrm{~kW}(100 \mathrm{HP}$ ). |
| $1 d 7$ | $\square$ [Idr] <br> Magnetizing current in A , calculated by the drive, in read-only mode. |
| LF $\quad$ I | $\square$ [Lfr] <br> Leakage inductance in mH , calculated by the drive, in read-only mode. |
| Er | $\square[\mathrm{T} 2 \mathrm{r}]$ <br> Rotor time constant in mS, calculated by the drive, in read-only mode. |
| n5L | [Nominal motor slip] <br> Rated slip in Hz, calculated by the drive, in read-only mode. To modify the rated slip, modify the [Rated motor speed] (nSP) (page 66). |
| PPn | $\square$ [Pr] <br> Number of pairs of poles, calculated by the drive, in read-only mode. |
| r 5 A | [R1w] <br> Cold state stator resistance (per winding), modifiable value. In milliohms (m $\Omega$ ) up to 75 kW ( 100 HP ), in hundredths of milliohms ( $\mathrm{m} \Omega / 100$ ) above 75 kW ( 100 HP ). On the integrated display unit: 0 to 9,999 then 10.00 to $65.53(10,000$ to 65,536$)$. |
| $1 d A$ | [Idw] <br> Magnetizing current in A, modifiable value. |
| LFA | $\square$ [Lfw] <br> Leakage inductance in mH , modifiable value. |
| ErA | [T2w] <br> Rotor time constant in mS , modifiable value. |

## Selecting the encoder

Follow the recommendations in the catalog and the Installation Manual.

(1)The encoder parameters can only be accessed if the encoder card has been inserted, and the available selections will depend on the type of encoder card used. The encoder configuration can also be accessed in the [1.5- INPUTS / OUTPUTS CFG] (I/O) menu.

## Encoder check procedure

1. Set up in open-loop mode, following the recommendations on page $\underline{9}$.
2. Set $[$ Encoder usage $](E n U)=[\mathrm{No}](\mathrm{nO})$.
3. Set [Encoder type] (EnS) and [Number of pulses] (PGI) accordingly for the encoder used.
4. Set [Encoder check] (EnC) $=[\mathrm{Yes}](\mathrm{YES})$
5. Check that the rotation of the motor is safe.
6. Set the motor rotating at stabilized speed $\approx 15 \%$ of the rated speed for at least 3 seconds, and use the [1.2-MONITORING] (SUP-) menu to monitor its behavior.
7. If it trips on an [Encoder fault] (EnF), [Encoder check] (EnC) returns to [No] (nO).

- Check [Number of pulses] (PGI) and [Encoder type] (EnS).
- Check that the mechanical and electrical operation of the encoder, its power supply and connections are all correct.
- Reverse the direction of rotation of the motor ([Output Ph rotation] ( PHr ) parameter page 68 ) or the encoder signals.

8. Repeat the operations from 5 onwards until [Encoder check] (EnC) changes to [Done] (dOnE).

| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| EnL $\begin{array}{r} n \square \\ \text { YE5 } \\ d \square \cap E \end{array}$ | [Encoder check] <br> Encoder feedback check See the procedure below. <br> The parameter can be accessed if an encoder card has been inserted (1). [Not done] (nO) Check not performed. [Yes] (YES): Activates monitoring of the encoder. [Done] (dOnE): Check performed successfully. <br> The check procedure checks: <br> - The direction of rotation of the encoder/motor <br> - The presence of signals (wiring continuity) <br> - The number of pulses/revolution <br> If a fault is detected, the drive locks in [Encoder fault] (EnF) fault mode. |
| $\begin{aligned} & \text { חロ } \\ & \text { SEL } \\ & \text { rEL } \\ & \text { PEG } \end{aligned}$ | [Encoder usage] <br> The parameter can be accessed if an encoder card has been inserted (1). [ No ] ( nO ): Function inactive [Fdbk monit.] (SEC): The encoder provides speed feedback for monitoring only. [Spd fdk reg.] (rEG): The encoder provides speed feedback for regulation and monitoring. If [Motor control type] (Ctt) = [SVC U] (UUC) the encoder operates in speed feedback mode and enables static correction of the speed to be performed. This configuration is not accessible for other [Motor control type] (Ctt) values. [Speed ref.] (PGr): The encoder provides a reference. |

(1)The encoder parameters can only be accessed if the encoder card has been inserted, and the available selections will depend on the type of encoder card used. The encoder configuration can also be accessed in the [1.5- INPUTS / OUTPUTS CFG] (I/O) menu.

| Code | Name／Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| DF I $\begin{array}{r} \cap \square \\ Y E 5 \end{array}$ | ［Sinus filter］ ［No］（nO）：No sinus filter ［Yes］（YES）：Use of a sinus filter，to limit overvoltages on the motor and reduce the ground fault leakage current． <br> －［Sinus filter］（OFI）is forced to［ No ］（ nO ）for ATV61•075 $\bullet$ ratings． <br> －［Sinus filter］（OFI）is forced to［No］（nO）for ATV61•⿰๑Y if［Motor control type］（Ctt）page $6 \underline{9}$ is not set to［U／F 2pts］（UF2）or［U／F 5pts］（UF5）． <br> CAUTION <br> If［Sinus filter］（OFI）＝［Yes］（YES），［Max frequency］（tFr）must not exceed $\mathbf{1 0 0} \mathbf{~ H z}$ and［Motor control type］（Ctt）page 69 must not be： <br> －［Sync．mot．］（SYn），irrespective of the drive rating <br> －［SVC V］（UUC）or［Energy Sav．］（nLd）at and above 55 kW （75 HP）for ATV61HeゃゃM3X and at and above 90 kW（120 HP）for ATV61HeeoN4 <br> Failure to follow this instruction can result in equipment damage． |
| $\begin{equation*} 5 F_{r} \tag{1} \end{equation*}$ | ［Switching freq．］ <br> Switching frequency setting． <br> Adjustment range：It can vary between 1 and 16 kHz ，but the minimum and maximum values，as well as the factory setting，can be limited in accordance with the type of drive（ATV61H or W），the rating（power and voltage）and the configuration of the［Sinus filter］（OFI）parameter above and［Motor surge limit．］（SUL） parameter page $\underline{78}$ ． <br> If［Sinus filter］（OFI）＝［YES］（YES）and if the caliber is 690 V ，the minimum［Switching freq．］（SFr）value is 2.5 kHz otherwise the minimum［Switching freq．］（SFr）value is 4.0 kHz ． <br> Adjustment with drive running： <br> －If the initial value is less than 2 kHz ，it is not possible to increase it above 1.9 kHz while running． <br> －If the initial value is greater than or equal to 2 kHz ，a minimum of 2 kHz must be maintained while running． <br> Adjustment with the drive stopped：No restrictions． <br> Note：In the event of excessive temperature rise，the drive will automatically reduce the switching frequency and reset it once the temperature returns to normal． <br> CAUTION <br> On ATV61•075N4 to U40N4 drives，if the RFI filters are disconnected（operation on an IT system），the switching frequency of the drive must not exceed 4 kHz ． <br> Failure to follow this instruction can result in equipment damage． |
| ［ L I （2） | ［Current Limitation］ <br> Used to limit the motor current． <br> Note：If the setting is less than 0.25 In ，the drive may lock in［Output Phase Loss］（OPF）fault mode if this has been enabled（see page 196）．If it is less than the no－load motor current，the limitation no longer has any effect． <br> CAUTION <br> Check that the motor will withstand this current，particularly in the case of permanent magnet synchronous motors，which are susceptible to demagnetization． <br> Failure to follow this instruction can result in equipment damage． |

（1）The parameter can also be accessed in the［1．3 SETTINGS］（SEt－）menu．
（2）In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate．

\begin{tabular}{|c|c|c|}
\hline Code \& Name/Description \({ }^{\text {a }}\) Adjustment range \& Factory setting \\
\hline \begin{tabular}{l}
nrd \\
n \\
YE 5
\end{tabular} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
- [Noise reduction]
[No] (nO): Fixed frequency. Factory setting at and above ATV61HD55M3X, ATV61HD90N4 and ATV61HC11Y.
[Yes] (YES): Frequency with random modulation. Factory setting up to ATV61HD45M3X, ATV61HD75N4 and ATV61HD90Y. \\
Random frequency modulation prevents any resonance, which may occur at a fixed frequency.
\end{tabular}} \\
\hline SUL

n

YE \& \begin{tabular}{l}
[Motor surge limit.] <br>
This function limits motor overvoltages and is useful in the following applications: <br>
- NEMA motors <br>
- Spindle motors <br>
- Rewound motors
[ No ] (nO): Function inactive
[Yes] (YES): Function active <br>
This parameter is forced to $[\mathrm{No}](\mathrm{nO})$ if a sinus filter is used. <br>
This parameter can remain $=[\mathrm{No}](\mathrm{nO})$ for $230 / 400 \mathrm{~V}$ motors used at 230 V , or if the the drive and the motor does not exceed: <br>
- 4 m with unshielded cables <br>
- 10 m with shielded cables

 \& 

$$
[\mathrm{No}](\mathrm{nO})
$$ <br>

ngth of cable between
\end{tabular} <br>

\hline $5 \square P$ \& | [Volt surge limit. opt] |
| :--- |
| Optimization parameter for transient overvoltages at the motor terminals. Accessible (SUL) = [Yes] (YES). |
| Set to 6,8 , or $10(\mu \mathrm{~s})$, according to the following table. | \& | $10(\mu \mathrm{~s})$ |
| :--- |
| [Motor surge limit.] | <br>

\hline
\end{tabular}

The value of the "SOP" parameter corresponds to the attenuation time of the cable used. It is defined to prevent the superimposition of voltage wave reflections resulting from long cable lengths. It limits overvoltages to twice the DC bus rated voltage.
The tables on the following page give examples of correspondence between the "SOP" parameter and the length of the cable between the drive and the motor. For longer cable lengths, a sinus filter or a $\mathrm{dV} / \mathrm{dt}$ protection filter must be used.

- For motors in parallel, the sum of all the cable lengths must be taken into consideration. Compare the length given in the line corresponding to the power for one motor with that corresponding to the total power, and select the shorter length. Example: Two $7.5 \mathrm{~kW}(10 \mathrm{HP})$ motors - take the lengths on the $15 \mathrm{~kW}(20 \mathrm{HP})$ line, which are shorter than those on the $7.5 \mathrm{~kW}(10 \mathrm{HP})$ line, and divide by the number of motors to obtain the length per motor (with unshielded "GORSE" cable and SOP $=6$, the result is $40 / 2$ $=20 \mathrm{~m}$ maximum for each $7.5 \mathrm{~kW}(10 \mathrm{HP})$ motor).

In special cases (for example, different types of cable, different motor powers in parallel, different cable lengths in parallel, etc.), we recommend using an oscilloscope to check the overvoltage values obtained at the motor terminals.

To retain the overall drive performance, do not increase the SOP value unnecessarily.

Tables giving the correspondence between the SOP parameter and the cable length, for 400 V line supply

| Altivar 61 | Motor |  | Cable cross-section |  | Maximum cable length in meters |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| reference | Power |  |  |  | Unshielded "GORSE" cable Type H07 RN-F 4Gxx |  |  | Shielded "GORSE" cable Type GVCSTV-LS/LH |  |  |
|  | kW | HP | in $\mathrm{mm}^{2}$ | AWG | SOP = 10 | SOP = 8 | SOP $=6$ | SOP = 10 | SOP = 8 | SOP $=6$ |
| ATV61H075N4 | 0.75 | 1 | 1.5 | 14 | 100 m | 70 m | 45 m | 105 m | 85 m | 65 m |
| ATV61HU15N4 | 1.5 | 2 | 1.5 | 14 | 100 m | 70 m | 45 m | 105 m | 85 m | 65 m |
| ATV61HU22N4 | 2.2 | 3 | 1.5 | 14 | 110 m | 65 m | 45 m | 105 m | 85 m | 65 m |
| ATV61HU30N4 | 3 | - | 1.5 | 14 | 110 m | 65 m | 45 m | 105 m | 85 m | 65 m |
| ATV61HU40N4 | 4 | 5 | 1.5 | 14 | 110 m | 65 m | 45 m | 105 m | 85 m | 65 m |
| ATV61HU55N4 | 5.5 | 7.5 | 2.5 | 14 | 120 m | 65 m | 45 m | 105 m | 85 m | 65 m |
| ATV61HU75N4 | 7.5 | 10 | 2.5 | 14 | 120 m | 65 m | 45 m | 105 m | 85 m | 65 m |
| ATV61HD11N4 | 11 | 15 | 6 | 10 | 115 m | 60 m | 45 m | 100 m | 75 m | 55 m |
| ATV61HD15N4 | 15 | 20 | 10 | 8 | 105 m | 60 m | 40 m | 100 m | 70 m | 50 m |
| ATV61HD18N4 | 18.5 | 25 | 10 | 8 | 115 m | 60 m | 35 m | 150 m | 75 m | 50 m |
| ATV61HD22N4 | 22 | 30 | 16 | 6 | 150 m | 60 m | 40 m | 150 m | 70 m | 50 m |
| ATV61HD30N4 | 30 | 40 | 25 | 4 | 150 m | 55 m | 35 m | 150 m | 70 m | 50 m |
| ATV61HD37N4 | 37 | 50 | 35 | 5 | 200 m | 65 m | 50 m | 150 m | 70 m | 50 m |
| ATV61HD45N4 | 45 | 60 | 50 | 0 | 200 m | 55 m | 30 m | 150 m | 60 m | 40 m |
| ATV61HD55N4 | 55 | 75 | 70 | 2/0 | 200 m | 50 m | 25 m | 150 m | 55 m | 30 m |
| ATV61HD75N4 | 75 | 100 | 95 | 4/0 | 200 m | 45 m | 25 m | 150 m | 55 m | 30 m |


| Altivar 61 | Motor |  | Cable cross-section | Maximum cable length in meters |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note: For $230 / 400 \mathrm{~V}$ used at 230 V , the [Motor surge limit.] (SUL) parameter can remain $=[\mathrm{No}](\mathrm{nO})$.

| Code | Name/Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| Ubr () | [Braking level] <br> DC bus voltage threshold above which the braking transistor cuts in to limit this voltage. <br> ATV61•eッ०M3•: factory setting 395 V . <br> ATV61 0000 N4: factory setting 785 V . <br> ATV61 $0 \cdot 0 \cdot$ S6Y: factory setting 980 V . <br> ATV61 000 Y : factory setting 1127 V or 1080 V according to rating. <br> The adjustment range depends on the voltage rating of the drive and the [Mains voltage] (UrES) parameter, page 200. |
| $\begin{array}{r} \text { मЬA } \\ \text { пロ } \\ \text { YE } \end{array}$ | [Braking balance] [No] (nO): Function inactive [Yes] (YES): Function active, to be used on drives connected in parallel via their DC bus. Used to balance the braking power between the drives. The [Braking level] (Ubr) parameter, page 80, must be set to the same value on the various drives. <br> The value [Yes] (YES) is only possible if [Dec ramp adapt.] (brA) $=[\mathrm{No}](\mathrm{nO})$ (see page $\underline{\text { 134 }}$ ). |

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
() Parameter that can be modified during operation or when stopped.

## [1.5 INPUTS / OUTPUTS CFG] (I-O-)

With graphic display terminal:

| RDY $\quad$ Term $\quad+0.00 \mathrm{~Hz} \quad$ REM |  |
| :--- | ---: |
| MAIN MENU |  |
| 1 DRIVE MENU |  |
| 2 ACCESS LEVEL |  |
| 3 OPEN / SAVE AS |  |
| 4 PASSWORD |  |
| 5 LANGUAGE |  |
| Code | T/K |



## With integrated display terminal:



The parameters in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu can only be modified when the drive is stopped and no run command is present.

\begin{tabular}{|c|c|c|}
\hline Code \& Name/Description \({ }^{\text {a }}\) Adjustment range \& Factory setting \\
\hline  \& \multicolumn{2}{|l|}{\begin{tabular}{l}
[2/3 wire control] \\
[2 wire] (2C) \\
[3 wire] (3C) \\
2-wire control: This is the input state ( 0 or 1 ) or edge ( 0 to 1 or 1 to 0 ), which controls running or stopping. \\
Example of "source" wiring: \\
LI1: forward \\
LIx: reverse \\
3-wire control (pulse control): A "forward" or "reverse" pulse is sufficient to command starting, a "stop" pulse is sufficient to command stopping. \\
Example of "source" wiring: \\
LI1: stop \\
LI2: forward \\
LIx: reverse \\
A WARNING \\
UNINTENDED EQUIPMENT OPERATION \\
To change the assignment of [ \(2 / 3\) wire control] (tCC) press the "ENT" key for 2 s . It causes the following functions to return to factory setting: [2 wire type] (tCt) and [Reverse assign.] (rrS) below, and all functions which assign logic inputs and analog inputs. \\
The macro configuration selected will also be reset if it has been customized (loss of custom settings). It is advisable to configure this parameter before configuring the [1.6 COMMAND] (CtL-) and [1.7 APPLICATION FUNCT.] (FUn-) menus. \\
Check that this change is compatible with the wiring diagram used. \\
Failure to follow these instructions can result in death or serious injury.
\end{tabular}} \\
\hline t[t
LEL
trn
PFB \& \(\square\) [2 wire type]
[Level] (LEL): State 0 or 1 is taken into account for run (1) or stop (0).
[Transition] (trn): A change of state (transition or edge) is necessary to initiate ope accidental restarts after a break in the power supply.
[Fwd priority] (PFO): State 0 or 1 is taken into account for run or stop, but the "for priority over the "reverse" input. \& \begin{tabular}{l}
[Transition] (trn) \\
on, in order to prevent rd" input always takes
\end{tabular} \\
\hline  \& \begin{tabular}{l}
\(\square\) [Reverse assign.]
[No] (nO): Not assigned
[LII] (LII) to [LI6] (LI6)
[LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted
[LI11] (LI11) to [LI14] (LI
[C101] (C101) to [C115]

<br>
[C201] (C201) to [C215] <br>
[C301] (C301) to [C315] <br>
card [IV profile] (IO)

[CDO1] (C401) to [C415] (C415): With a Controller Inside card in [//O profile] (IO)
[CD14] (Cd14) to [CD15] (Cd15): In [I/O profile] (IO) can be switched without logic Assignment of the reverse direction command.

 \& 

[ No ] (nO) <br>
ogic inputs puts
\end{tabular} <br>

\hline
\end{tabular}

| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| L 1- | - [LI1 CONFIGURATION] |
| L I A | - [LI1 assignment] <br> Read-only parameter, cannot be configured. <br> It displays all the functions that are assigned to input LI1 in order to check multiple assignments. |
| LId | $\square$ [LI1 On Delay] <br> 0 to 200 ms $0$ |
|  | This parameter is used to take account of the change of the logic input to state 1 with a delay that can be adjusted between 0 and 200 milliseconds, in order to filter out possible interference. The change to state 0 is taken into account without delay. |
| L - - | [LIX CONFIGURATION] |
|  | All the logic inputs available on the drive are processed as in the example for LI1 above, up to LI6, LI10 or LI14, depending on whether or not option cards have been inserted. |

## Configuration of analog inputs and Pulse input

The minimum and maximum input values (in volts, mA, etc.) are converted to \% in order to adapt the references to the application.

## Minimum and maximum input values:

The minimum value corresponds to a reference of $0 \%$ and the maximum value to a reference of $100 \%$. The minimum value may be greater than the maximum value:



For $+/-$ bidirectional inputs, the min. and max. are relative to the absolute value, for example, $+/-2$ to 8 V .
Negative min. value of Pulse input:


## Range (output values): For analog inputs only

This parameter is used to configure the reference range to $[0 \% \rightarrow 100 \%]$ or $[-100 \% \rightarrow+100 \%]$ in order to obtain a bidirectional output from a unidirectional input.



## [1.5 INPUTS / OUTPUTS CFG] (I-O-)

## Delinearization: For analog inputs only

The input can be delinearized by configuring an intermediate point on the input/output curve of this input:
For range $0 \rightarrow 100 \%$


Note: For [Interm. point X], 0\% corresponds to [Min value] and 100\% to [Max value]
For range $-100 \% \rightarrow 100 \%$



| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| －1 2－ | －［AI2 CONFIGURATION］ |  |  |
| （12月 | ［Al2 assignment］ <br> Read－only parameter，cannot be configured． <br> It displays all the functions associated with input Al2 in order to check，for example，for compatibility problems． |  |  |
| $\begin{array}{r} \text { A Iコヒ } \\ \text { IロU } \\ \text { ロA } \end{array}$ | ［Al2 Type］ ［Voltage］（10U）：Voltage input ［Current］（0 A）：Current input |  | ［Current］（0 A） |
| 「rL己 | $\square$［Al2 min．value］ <br> The parameter can be accessed if［AI2 Type］（Al2t）＝［Current | $\begin{aligned} & 0 \text { to } 20.0 \mathrm{~mA} \\ & \text { ent] }(0 \mathrm{~A}) \end{aligned}$ | $0 \mathrm{~mA}$ |
| リIL己 | $\square$［AI2 min．value］ <br> The parameter can be accessed if［AI2 Type］（Al2t）$=$［Volta | $\begin{aligned} & 0 \text { to } 10.0 \mathrm{~V} \\ & \text { age] (10U) } \end{aligned}$ | 0 V |
| ［rH己 | $\square$［Al2 max．value］ <br> The parameter can be accessed if［AI2 Type］（Al2t）$=$［Curre | $\begin{aligned} & 0 \text { to } 20.0 \mathrm{~mA} \\ & \text { ent] (0 A) } \end{aligned}$ | $20.0 \mathrm{~mA}$ |
| UIH己 | ［AI2 max．value］ <br> The parameter can be accessed if［AI2 Type］（Al2t）$=$［Volta | $\begin{aligned} & \hline 0 \text { to } 10.0 \mathrm{~V} \\ & \text { age] (10U) } \end{aligned}$ | 10.0 V |
| －I FF | ［Al2 filter］ <br> Interference filtering． | $0 \text { to } 10.00 \mathrm{~s}$ | 0 s |
| $\begin{aligned} & \text { AICL } \\ & \text { PQS } \\ & \text { } E E L \end{aligned}$ | $\square$［AI2 range］ <br> $\square[0-100 \%]$（POS）：Unidirectional input ［＋l－100\％］（nEG）：Bidirectional input Example：On a $0 / 10 \mathrm{~V}$ input <br> － 0 V corresponds to reference－100\％ <br> － 5 V corresponds to reference $0 \%$ <br> － 10 V corresponds to reference $+100 \%$ |  | [0-100\%] (POS) |
| （12E | ［AI2 Interm．point X］ <br> Input delinearization point coordinate． <br> － $0 \%$ corresponds to［Min value］if the range is $0 \rightarrow 100 \%$ ． <br> － $0 \%$ corresponds to $\qquad$ <br> $\frac{\text {［Max value］＋}}{2}$ if th <br> － $100 \%$ corresponds to［Max value］． | 0 to 100\％ <br> the range is $-100 \%$ | 0\％ |
| （125 | ［AI2 Interm．point Y］ <br> Output delinearization point coordinate（frequency reference） | 0 to 100\％ <br> e）． | 0\％ |



| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| A 14－ | ［AI4 CONFIGURATION］ <br> Can be accessed if a VW3A3202 option card has been inserted |  |  |
| A 14月 | ［AI4 assignment］ <br> Read－only parameter，cannot be configured． <br> It displays all the functions associated with input AI4 in order to check，for example，for compatibility problems． |  |  |
| $\begin{array}{r} \text { A } 14 t \\ \text { IロU } \\ \square A \end{array}$ | －［AI4 Type］ ［Voltage］（10U）：Voltage input ［Current］（0 A）：Current input |  | ［Voltage］（10U） |
| ［rL4 | ［AI4 min value］ <br> The parameter can be accessed if［AI4 Type］（AI4t）＝［Curre | 0 to 20.0 mA <br> （0 A） | $0 \mathrm{~mA}$ |
| UIL 4 | ［Al4 min value］ <br> The parameter can be accessed if［AI4 Type］（AI4t）$=$［Volta | 0 to 10.0 V <br> ge］（10U） | 0 V |
| ［rH4 | ［AI4 max value］ <br> The parameter can be accessed if［AI4 Type］（AI4t）$=$［Curre | 0 to 20.0 mA <br> ent］（0 A） | $20.0 \mathrm{~mA}$ |
| UIH4 | ［AI4 max value］ <br> The parameter can be accessed if［AI4 Type］（AI4t）$=$［Volta | $\begin{aligned} & 0 \text { to } 10.0 \mathrm{~V} \\ & \text { age] }(10 \mathrm{U}) \end{aligned}$ | 10.0 V |
| F $14 \%$ | ［AI4 filter］ <br> Interference filtering． | 0 to 10.00 s | 0 s |
| $\begin{aligned} & \text { A } 14 L \\ & \text { Pロ5 } \\ & \cap E L \end{aligned}$ | $\square$［AI4 range］ ［0－100\％］（POS）：Unidirectional input ［＋／－100\％］（nEG）：Bidirectional input Example：On a $0 / 10 \mathrm{~V}$ input <br> － 0 V corresponds to reference $-100 \%$ <br> － 5 V corresponds to reference $0 \%$ <br> － 10 V corresponds to reference $+100 \%$ |  | [0 - 100\%] (POS) |
| A 14E | ［AI4 Interm．point X］ <br> Input delinearization point coordinate． <br> － $0 \%$ corresponds to［Min value］if the range is $0 \rightarrow 100 \%$ ． <br> － $0 \%$ corresponds to $\frac{[\mathrm{Max} \text { value }]+[\mathrm{Min} \text { value }]}{2}$ if the rang <br> － $100 \%$ corresponds to［Max value］． | 0 to 100\％ <br> nge is $-100 \% \rightarrow+100$ | 0\％ |
| A 145 | ［AI4 Interm．point Y］ <br> Output delinearization point coordinate（frequency reference） | 0 to 100\％ <br> e）． | 0\％ |


| Code | Name/Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| FU I - | [VIRTUAL Al1] |
|  | $\square\left[\right.$ Al net. channel] $\square^{\square}$ [ No$](\mathrm{nO})$ |
|  | Virtual input. <br> This parameter can also be accessed in the [PID REGULATOR] (PId-) submenu, page 153. <br> [Non] (nO): Not assigned (in this case, the virtual input does not appear in the analog input assignment parameters for the functions) [Modbus] (Mdb): Integrated Modbus [CANopen] (CAn): Integrated CANopen [Com. card] (nEt): Communication card (if inserted) [C.Insid. card] (APP): Controller Inside card (if inserted) <br> Scale: The value 8192 transmitted by this input is equivalent to 10 V on a 10 V input. |
|  | $\square$ WARNING <br> UNINTENDED EQUIPMENT OPERATION <br> If the equipment switches to forced local mode (see page 218), the virtual input remains frozen at the last value transmitted. <br> Do not use the virtual input and forced local mode in the same configuration. Failure to follow this instruction can result in death or serious injury. |



## Configuration of the encoder input serving as a reference, with a frequency generator

This reference is not signed, therefore the directions of operation must be given via the control channel (logic inputs, for example).

## Minimum and maximum values (input values):

The minimum value corresponds to a minimum reference of $0 \%$ and the maximum value to a maximum reference of $100 \%$. The minimum value may be greater than the maximum value. It may also be negative.


A reference can be obtained at zero frequency by assigning a negative value to the minimum value.

## ［1．5 INPUTS／OUTPUTS CFG］（I－O－）

The encoder configuration can also be accessed in the［1．4 MOTOR CONTROL］（drC－）menu．

| Code | Name／Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| IEn－ | ［ENCODER CONFIGURATION］ <br> The encoder parameters can only be accessed if a compatible encoder card has been inserted，and the available selections will depend on the type of encoder card used． |
| $E \cap 5$ <br> А月レь月ь A | ［Encoder type］ <br> The parameter can be accessed if an encoder card has been inserted． To be configured in accordance with the type of encoder used． ［AABB］（AAbb）：For signals A，A－，B，B－． ［AB］（Ab）：For signals A，B． ［A］（A）：For signal A．Value cannot be accessed if［Encoder usage］（EnU）page $\underline{95}=[$［Spd fdk reg．］（rEG）． |
|  | ［Encoder check］ <br> Encoder feedback check See procedure page 76. <br> The parameter can be accessed if an encoder card has been inserted and if［Encoder usage］（EnU）page 95 is not［Speed ref．］（PGr）． ［Not done］（nO）Check not performed． ［Yes］（YES）：Activates monitoring of the encoder． ［Done］（dOnE）：Check performed successfully． <br> The check procedure checks： <br> －The direction of rotation of the encoder／motor <br> －The presence of signals（wiring continuity） <br> －The number of pulses／revolution <br> If a fault is detected，the drive locks in［Encoder fault］（EnF）fault mode． |



| Code | Name／Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| r 1－ | －［R1 CONFIGURATION］ |
| r I |  |
|  | ［No］（nO）：Not assigned <br> ［No drive flt］（FLt）：Drive not faulty（relay normally energized，and de－energized if there is a fault） <br> ［Drv running］（rUn）：Drive running <br> ［Freq．Th．attain．］（FtA）：The relay is closed if the frequency is greater than［Freq．threshold］（Ftd） page 60 ． <br> ［HSP attain．］（FLA）：High speed reached <br> ［Current Th．attained］（CtA）：The relay is closed if the current is greater than［Current threshold］（Ctd）page 60 ． <br> ［Freq．ref．att］（SrA）：Frequency reference reached <br> ［Th．mot．att．］（tSA）：Motor 1 thermal state reached <br> $\square$［PID error al］（PEE）：PID error alarm <br> ［PID fdbk al．］（PFA）：PID feedback alarm（greater than［Max fbk alarm］（PAH）page 154 or less than ［Min fbk alarm］（PAL）page 154） <br> ［AI2 AI．4－20］（AP2）：Alarm indicating absence of $4-20 \mathrm{~mA}$ signal on input AI2 <br> ［Freq．Th． 2 attain．］（F2A）：The relay is closed if the frequency is greater than［Freq．threshold 2］（F2d）page 60. <br> ［Th．drv．att．］（tAd）：Drive thermal state reached <br> ［High tq．att．］（ttHA）：Motor torque greater than high threshold［High torque thd．］（ttH）page $6 \underline{0}$ <br> ［Low tq．att．］（ttLA）：Motor torque less than low threshold［Low torque thd．］（ttL）page $\underline{60}$ <br> ［Forward］（MFrd）：Motor running forward <br> ［Reverse］（MrrS）：Motor running in reverse <br> ［High Reference Att．］（rtAH）：The relay is closed if the frequency reference is greater than［High Freq． Ref．Thr．］（rtd）page 61. <br> ［Low Reference Att．］（rtAL）：The relay is closed if the frequency reference is less than［Low Freq．Ref． Thr．］（rtdL）page 61. ［Low Frq．Th．Attain．］（FtAL）：The relay is closed if the frequency is less than［Low Freq．Threshold］ （FtdL）page 60. ［2Low F．Thid］（F2AL）：The relay is closed if the frequency is less than［2 Freq．Threshold］（F2dL） page 60. ［Low I Th．At．］（CtAL）：The relay is closed if the current is less than［Low I Threshold］（CtdL）page 60. ［Pro．Undload］（ULA）：Process underload（see page 210） ［OvId．P．AIrm］（OLA）：Process overload（see page 212） ［PID high AI．］（PFAH）：PID feedback alarm（greater than［Max fbk alarm］（PAH）page 154）． ［PID low Alarm］（PFAL）：PID feedback alarm（less than［Min fbk alarm］（PAL）page 154）． ［Regul．Alarm］（PISH）：PID regulator feedback supervision fault page 157. ［Emerg．Run］（Ern）：The relay is closed if the drive is in emergency run．See［Forced Run］（InHS） page 203. ［Th．mot2 att．］（tS2）：Motor 2 thermal state reached ［Th．mot3 att］（tS3）：Motor 3 thermal state reached ［Drive start］（Strt） <br> 1 ：A run order has been received <br> 0 ：A stop order has been received ［Rem．Cmd］（bMP）：Control via the graphic display terminal is activated via a function key on the terminal． |


| Code | Name／Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| r 1－ | ［R1 CONFIGURATION］（continued） |
| $[\cap F \square$ $[\cap F 1$ $[\cap F 己$ [FP I [FP己 $[F P \exists$ <br> dbL <br> br 5 $\text { Pr } \Pi$ <br> F 7 L A <br> ПГ P <br> 日［ I <br> 月 <br> ค■ ヨ <br> P I 月 <br> P己月 <br> PLA <br> EFA <br> ப5月 <br> リPA <br> ヒHA <br> 5 5月 <br> E」A <br> ロロ月 <br> AP月 <br> คРヨ <br> AP4 <br> F5月 <br> rdy | ［R1 Assignment］（continued） ［Neg Torque］（AtS）：Negative torque（braking） ［Cnfg． 0 act．］（CnF0）：Configuration 0 active ［Cnfg． 1 act．］（CnF1）：Configuration 1 active ［Cnfg． 2 act．］（CnF2）：Configuration 2 active ［Set 1 active］（CFP1）：Parameter set 1 active ［Set 2 active］（CFP2）：Parameter set 2 active ［Set 3 active］（CFP3）：Parameter set 3 active ［DC charged］（dbL）：DC bus loading ［In braking］（brS）：Drive braking ［P．removed］（PRM）：Drive locked by＂Power removal＂input ［Fr．met．alar．］（FqLA）：Measured speed threshold attained：［Pulse warning thd．］（FqL）page $\underline{60}$ ［l present］（MCP）：Motor current present ［Alarm Grp 1］（AGI）：Alarm group 1 ［Alarm Grp 2］（AG2）：Alarm group 2 ［Alarm Grp 3］（AG3）：Alarm group 3 ［PTC1 alarm］（P1A）：Probe alarm 1 $\square$［PTC2 alarm］（P2A）：Probe alarm 2 <br> $\square$［LI6＝PTC al．］（PLA）：LI6＝PTC probe alarms <br> $\square$［Ext．fault al］（EFA）：External fault alarm <br> $\square$［Under V．al．］（USA）：Undervoltage alarm <br> $\square$［Uvolt warn］（UPA）：Undervoltage warning <br> $\square$［AI．${ }^{\circ} \mathrm{C}$ drv］（tHA）：Drive overheating <br> $\square$［Lim T／I att．］（SSA）：Torque limit alarm <br> $\square$［IGBT al．］（tJA）：IGBT alarm <br> $\square$［Brake R．al．］（bOA）：Braking resistor temperature alarm <br> $\square$［Option al．］（APA）：Alarm generated by the Controller Inside card <br> $\square$［AI3 AI．4－20］（AP3）：Alarm indicating absence of 4－20 mA signal on input AI3 <br> $\square$［AI4 AI．4－20］（AP4）：Alarm indicating absence of 4－20 mA signal on input AI4 <br> $\square$［Flow Limit．］（FSA）：Flow rate limiting active（see page 184） <br> $\square$［Ready］（rdY）：Drive ready |


(1) 0 to 9999 ms then 10.00 to 60.00 s on the integrated display terminal.

| Code | Name/Description $\quad$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| r $\exists$ - | - [R3 CONFIGURATION] <br> Can be accessed if a VW3A3201 option card has been inserted |  |
| r $\exists$ | $\square$ [R3 Assignment] <br> Identical to R2 | [ No ] (nO) |
| rヨd | [R3 Delay time] <br> The delay cannot be set for the [No drive flt] (FLt), [Output cont] (OCC), [DC ch and [Input cont.] (LLC) assignments, and remains at 0 . <br> The change in state only takes effect once the configured time has elapsed, wh becomes true. | 0 <br> g] (dCO), <br> he information |
| $r \exists 5$ $\begin{aligned} & P Q 5 \\ & R E G \end{aligned}$ | [R3 Active at] <br> Configuration of the operating logic: [1]: State 1 when the information is true [0]: State 0 when the information is true The [1] (POS) configuration cannot be modified for the[No drive flt] (FLt), [DC and [Input cont.] (LLC), assignments. | [1] (POS) fing] (dCO) |
| r $\exists \mathrm{H}$ | [R3 Holding time] <br> The holding time cannot be set for the [No drive flt] (FLt), [DC charging] (dCO) assignments, and remains at 0 . <br> The change in state only takes effect once the configured time has elapsed, wh becomes false. | 0 <br> [Input cont.] (LLC) <br> he information |
| r 4 - | [R4 CONFIGURATION] <br> Can be accessed if a VW3A3202 option card has been inserted |  |
| r 4 | [R4 Assignment] <br> Identical to R2 (see page 98). | $[\mathrm{No}](\mathrm{nO})$ |
| r 4d | [R4 Delay time] <br> The delay cannot be set for the [No drive flt] (FLt), [Output cont] (OCC), [DC cha and [Input cont.] (LLC) assignments, and remains at 0. <br> The change in state only takes effect once the configured time has elapsed, whe becomes true. | 0 <br> g] (dCO), <br> he information |
| $r 45$ $\begin{aligned} & P Q 5 \\ & \cap E[ \end{aligned}$ | [R4 Active at] <br> Configuration of the operating logic: [1]: State 1 when the information is true [0]: State 0 when the information is true <br> The [1] (POS) configuration cannot be modified for the[No drive fit] (FLt), [DC ch and [Input cont.] (LLC), assignments. | [1] (POS) fing] (dCO) |
| r 4 H | [R4 Holding time] <br> The holding time cannot be set for the [No drive flt] (FLt), [DC charging] (dCO) a (LLC) assignments, and remains at 0 . <br> The change in state only takes effect once the configured time has elapsed, whe becomes false. | 0 <br> [Input cont.] <br> he information |

[^6]\begin{tabular}{|c|c|c|}
\hline Code \& Name／Description \({ }^{\text {a }}\)（ Adjustment range \& Factory setting \\
\hline L－1－ \& \multicolumn{2}{|l|}{\begin{tabular}{l}
［LO1 CONFIGURATION］ \\
Can be accessed if a VW3A3201 option card has been inserted
\end{tabular}} \\
\hline LQI

LL \& \multicolumn{2}{|l|}{| Identical to R1（see page 96）with the addition of（shown for information only as these selections can only be configured in the［APPLICATION FUNCT．］（Fun－））menu： |
| :--- |
| ［Input cont．］（LLC）：Line contactor control ［Output cont］（OCC）：Output contactor control |
| ［［DC charging］（dCO）：DC bus precharging contactor control |
| ［Damper］（dAM）：Damper control |} <br>

\hline \multirow[t]{2}{*}{LQId} \& $\square$［LO1 delay time］ \& 0 <br>

\hline \& \multicolumn{2}{|l|}{| The delay cannot be set for the［No drive fit］（FLt），［Output cont］（OCC），［DC charging］（dCO）， and［Input cont．］（LLC）assignments，and remains at 0 ． |
| :--- |
| The change in state only takes effect once the configured time has elapsed，when the information becomes true． |} <br>

\hline Lロ15 \& $\square$［LO1 active at］ \& ［1］（POS） <br>
\hline PGS

OEL \& \multicolumn{2}{|l|}{| Configuration of the operating logic： ［1］：State 1 when the information is true ［0］：State 0 when the information is true |
| :--- |
| The［1］（POS）configuration cannot be modified for the［No drive fit］（FLt），［DC charging］（dCO） and［lnput cont．］（LLC），assignments． |} <br>

\hline \multirow[t]{2}{*}{LQIH} \& $\square$［LO1 holding time］ \& 0 <br>

\hline \& \multicolumn{2}{|l|}{| The holding time cannot be set for the［No drive flt］（FLt），［DC charging］（dCO）and［Input cont．］ （LLC）assignments，and remains at 0 ． |
| :--- |
| The change in state only takes effect once the configured time has elapsed，when the information becomes false． |} <br>


\hline Lロこ－ \& \multicolumn{2}{|l|}{| ［LO2 CONFIGURATION］ |
| :--- |
| Can be accessed if a VW3A3201 option card has been inserted |} <br>

\hline \multirow[t]{2}{*}{Lロ己} \& \multirow[t]{2}{*}{［LO2 assignment］ Identical to LO1．} \& ［ No ］（ nO ） <br>
\hline \& \& <br>
\hline \multirow[t]{2}{*}{Lロ己d} \& $\square$［LO2 delay time］ \& 0 <br>

\hline \& \multicolumn{2}{|l|}{| The delay cannot be set for the［No drive fit］（FLt），［Output cont］（OCC），［DC charging］（dCO）， and［Input cont．］（LLC）assignments，and remains at 0 ． |
| :--- |
| The change in state only takes effect once the configured time has elapsed，when the information becomes true． |} <br>

\hline Lロ己5 \& $\square$［LO2 active at］ \& ［1］（POS） <br>
\hline PGS

OEL \& \multicolumn{2}{|l|}{| Configuration of the operating logic： ［1］：State 1 when the information is true ［0］：State 0 when the information is true |
| :--- |
| The［1］（POS）configuration cannot be modified for the［No drive fit］（FLt），［DC charging］（dCO） and［Input cont．］（LLC），assignments． |} <br>

\hline \multirow[t]{2}{*}{Lロ己H} \& $\square$［LO2 holding time］ \& 0 <br>

\hline \& \multicolumn{2}{|l|}{| The holding time cannot be set for the［No drive flt］（FLt），［DC charging］（dCO）and［Input cont．］（LLC） assignments，and remains at 0 ． |
| :--- |
| The change in state only takes effect once the configured time has elapsed，when the information becomes false． |} <br>

\hline
\end{tabular}

[^7]

[^8]
## [1.5 INPUTS / OUTPUTS CFG] (I-O-)

## Use of analog output AO1 as a logic output

Analog output AO1 can be used as a logic output, by assigning DO1. In this case, state 0 of this output corresponds to the minimum value of AO1 ( 0 V or 0 mA , for example), and state 1 corresponds to the maxium value of AO 1 ( 10 V or 20 mA , for example). The electrical characteristics of this analog output remain unchanged. As they differ from logic output characteristics, it is important to ensure that they are compatible with the intended application.

(1) 0 to 9999 ms then 10.00 to 60.00 s on the integrated display terminal.

## Configuration of analog outputs

## Minimum and maximum values (output values):

The minimum output value, in volts or mA, corresponds to the lower limit of the assigned parameter and the maximum value corresponds to its upper limit. The minimum value may be greater than the maximum value:


## Outputs AO2 and AO3 configured as bipolar outputs (strongly recommended for signed parameters):

The [min Output] (UOLx) and [max Output] (UOHx) parameters are absolute values, although they function symmetrically. In the case of bipolar outputs, always set the maximum value higher than the minimum value.
The [max Output] ( UOHx ) corresponds to the upper limit of the assigned parameter, and the [min Output] (UOLx) corresponds to an average value between the upper and lower limits ( 0 for a signed and symmetrical parameter such as in the example below).


## Scaling of the assigned parameter

The scale of the assigned parameter can be adapted in accordance with requirements by modifying the values of the lower and upper limits by means of two parameters for each analog output.
These parameters are given as a $\% ; 100 \%$ corresponds to the total variation range of the configured parameter, so:

- $100 \%$ = upper limit - lower limit. For example, for [Sign. torque] (Stq), which varies between -3 and +3 times the rated torque, $100 \%$ corresponds to 6 times the rated torque.
- The parameter [Scaling AOx min] (ASLx) modifies the lower limit: new value = lower limit + (range $x$ ASLx). The value 0\% (factory setting) does not modify the lower limit.
- The [Scaling AOx max] (ASHx) parameter modifies the upper limit: new value = lower limit + (range $x$ ASHx). The value $100 \%$ (factory setting) does not modify the upper limit.
- [Scaling AOx min] (ASLx) must always be lower than [Scaling AOx max] (ASHx).

Upper limit of the assigned parameter


Lower limit of the assigned parameter

## Application example 1

The value of the signed motor torque at the AO2 output is to be transferred with $+/-10 \mathrm{~V}$, with a range of -2 Tr to +2 Tr
The parameter [Sign. torque.] (Stq) varies between -3 and +3 times the rated torque, or a range of 6 times the rated torque.
[Scaling AO2 min] (ASL2) must modify the lower limit by 1 x the rated torque, or $100 / 6=16.7 \%$ (new value $=$ lower limit + (range $\times$ ASL2).
[Scaling AO2 max] (ASH2) must modify the upper limit by 1 x the rated torque, or $100-100 / 6=83.3 \%$ (new value $=$ lower limit + (range x ASH2).

## Application example 2

The value of the motor current at the AO2 output is to be transferred with 0-20 mA, with a range of 2 In motor, In motor being the equivalent of a 0.8 In drive.

The parameter [l motor] ( OCr ) varies between 0 and 2 times the rated drive current, or a range of 2.5 times the rated drive current.
[Scaling AO2 min] (ASL2) must not modify the lower limit, which therefore remains at its factory setting of 0\%.
[Scaling AO2 max] (ASH2) must modify the upper limit by $0.5 x$ the rated motor torque, or 100-100/5 $=80 \%$ (new value $=$ lower limit + (range $\times \mathrm{ASH} 2$ ).





The following submenus group the alarms into 1 to 3 groups，each of which can be assigned to a relay or a logic output for remote signaling． These groups can also be displayed on the graphic display terminal（see［6 MONITORING CONFIG．］menu）and viewed via the ［1．2 MONITORING］（SUP）menu．
When one or a number of alarms selected in a group occurs，this alarm group is activated．

| Code | Name／Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| A IL－ | －［ALARM GRP1 DEFINITION］ |
|  | Selection to be made from the following list： <br> ［LI6＝PTC al．］（PLA）：LI6＝PTC probe alarms <br> ［PTC1 alarm］（P1A）：Probe alarm 1 <br> ［PTC2 alarm］（P2A）：Probe alarm 2 <br> ［Ext．fault al］（EFA）：External fault alarm <br> ［Under V．al．］（USA）：Undervoltage alarm <br> ［I attained］（CtA）：The current is greater than［Current threshold］（Ctd）page 60. <br> ［Low I Thres．Attain．］（CtAL）：The current is less than［Low I Threshold］（CtdL）page 60. <br> ［Freq．Th．attain．］（FtA）：The frequency is greater than［Freq．threshold］（Ftd）page 60. <br> ［Low Frq．Th．Attain．］（FtAL）：The frequency is less than［Low Freq．Threshold］（FtdL）page 60. <br> ［Freq．Th． 2 attain．］（F2A）：The frequency is greater than［Freq．threshold 2］（F2d）page 60. <br> ［Fq．Low Th． 2 attain］（F2AL）：The frequency is less than［2 Freq．Threshold］（F2dL）page 60. <br> ［Freq．ref．att］（SrA）：Frequency reference reached <br> ［Th．mot．att．］（tSA）：Motor 1 thermal state reached <br> ［Th．mot2 att．］（tS2）：Motor 2 thermal state reached <br> ［Th．mot3 att］（tS3）：Motor 3 thermal state reached <br> ［Uvolt warn］（UPA）：Undervoltage warning <br> ［HSP attain．］（FLA）：High speed reached <br> ［AI．${ }^{\circ} \mathrm{C}$ drv］（tHA）：Drive overheating <br> ［PID error al］（PEE）：PID error alarm <br> ［PID fdbk al．］（PFA）：PID feedback alarm（greater than［Max fbk alarm］（PAH）page 154 or less than ［Min fbk alarm］（PAL）page 154） <br> ［PID high Alarm］（PFAH）：PID feedback alarm（greater than［Max fbk alarm］（PAH）page 154）． <br> ［PID low Alarm］（PFAL）：PID feedback alarm（less than［Min fbk alarm］（PAL）page 154）． <br> ［Regulation Alarm］（PISH）：PID regulator feedback supervision fault page 157. <br> ［AI2 AI．4－20］（AP2）：Alarm indicating absence of $4-20 \mathrm{~mA}$ signal on input AI2 <br> ［AI3 AI．4－20］（AP3）：Alarm indicating absence of $4-20 \mathrm{~mA}$ signal on input AI3 <br> ［AI4 AI．4－20］（AP4）：Alarm indicating absence of $4-20 \mathrm{~mA}$ signal on input AI4 <br> ［Lim T／l att．］（SSA）：Torque limit alarm <br> ［Th．drv．att．］（tAd）：Drive thermal state reached <br> ［IGBT alarm］（JJA）：IGBT alarm <br> ［Brake R．al．］（bOA）：Braking resistor temperature alarm <br> ［Option alarm］（APA）：Alarm generated by an option card． <br> ［Regen．underV．al．］（UrA）：Reserved． <br> ［High Reference Att．］（rtAH）：The frequency reference is greater than［High Freq．Ref．Thr．］（rtd） page 61 ． <br> ［Low Reference Att．］（rtAL）：The frequency reference is less than［Low Freq．Ref．Thr．］（rtdL）page 61. <br> ［Underload．Proc．AI．］（ULA）：Process underload（see page 210） <br> ［Overload．Proc．AI．］（OLA）：Process overload（see page 212） <br> ［Flow Limit．active］（FSA）：Flow rate limiting active（see page 184） <br> ［Emerg．Run］（Ern）：Emergency run in progress（see page 203） <br> ［High torque alarm］（ttHA）：Motor torque greater than high threshold［High torque thd．］（ttH）page 60 <br> ［Low torque alarm］（ttLA）：Motor torque less than low threshold［Low torque thd．］（ttL）page $\underline{60}$ <br> ［Freq．meter Alarm］（FqLA）：Measured speed threshold attained：［Pulse warning thd．］（FqL）page 60 |
| Aご－ | －［ALARM GRP2 DEFINITION］ |
|  | Identical to［ALARM GRP1 DEFINITION］（A1C－） |
| คヨ－ | －［ALARM GRP3 DEFINITION］ |
|  | Identical to［ALARM GRP1 DEFINITION］（A1C－） |

With graphic display terminal:

| RDY $\quad$ Term $\quad+0.00 \mathrm{~Hz}$ | REM |
| :--- | :---: |
| MAIN MENU |  |
| 1 DRIVE MENU |  |
| 2 ACCESS LEVEL |  |
| 3 OPEN / SAVE AS |  |
| 4 PASSWORD |  |
| 5 LANGUAGE |  |
| Code | T/K |


1.12 FACTORY SETTINGS
1.13 USER MENU
1.14 PROGRAMMABLE CARD

## With integrated display terminal:



The parameters in the [1.6 COMMAND] (CtL) menu can only be modified when the drive is stopped and no run command is present.

## Command and reference channels

Run commands (forward, reverse, stop, etc.) and references can be sent using the following channels:

| Command | Reference |
| :--- | :--- |
| - Terminals: Logic inputs LI | - Terminals: Analog inputs AI, frequency input, encoder |
| - Graphic display terminal | - Graphic display terminal |
| - Integrated Modbus | - Integrated Modbus |
| - Integrated CANopen | - Integrated CANopen |
| - Communication card | - Communication card |
| - Controller Inside card | - Controller Inside card |
|  | - +/- speed via the terminals |
|  | - +/- speed via the graphic display terminal |

## The behavior of the Altivar 61 can be adapted according to requirements:

- [8 serie] (SE8): To replace an Altivar 58. See the Migration Manual.
- [Not separ.] (SIM): Command and reference are sent via the same channel.
- [Separate] (SEP): Command and reference may be sent via different channels.

In these configurations, control via the communication bus is performed in accordance with the DRIVECOM standard with only 5 freelyassignable bits (see Communication Parameters Manual). The application functions cannot be accessed via the communication interface.

- [I/O profile] (IO): Command and reference may be sent via different channels. This configuration both simplifies and extends use via the communication interface.
Commands may be sent via the logic inputs on the terminals or via the communication bus.
When commands are sent via a bus, they are available on a word, which acts as virtual terminals containing only logic inputs. Application functions can be assigned to the bits in this word. More than one function can be assigned to the same bit.

Note: Stop commands from the terminals remain active even if the terminals are not the active command channel.

Note: The integrated Modbus channel has 2 physical communication ports:

- The Modbus network port
- The Modbus HMI port

The drive does not differentiate between these two ports, but recognizes the graphic display terminal irrespective of the port to which it is connected.

## Reference channel for [Not separ.] (SIM), [Separate] (SEP) and [I/O profile] (IO) configurations, PID not configured



## References

## Fr1, SA2, SA3, dA2, dA3, MA2, MA3:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card


## Fr1b, for SEP and IO:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card


## Fr1b, for SIM:

- Terminals, only accessible if Fr1 = terminals

Fr2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card, and +1 -speed

Note: [Ref.1B channel] (Fr1b) and [Ref 1B switching] (rCb) must be configured in the [APPLICATION FUNCT.] (Fun-) menu.

Reference channel for [Not separ.] (SIM), [Separate] (SEP) and [I/O profile] (IO) configurations, PID configured with PID references at the terminals


Parameter:
The black square represents the factory setting assignment

## References

Fr1:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card

Fr1b, for SEP and IO:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card


## Fr1b, for SIM:

- Terminals, only accessible if Fr1 = terminals


## SA2, SA3, dA2, dA3:

- Terminals only

Fr2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card, and $+/$ - speed
(1) Ramps not active if the PID function is active in automatic mode.

Note: [Ref.1B channel] (Fr1b) and [Ref 1B switching] (rCb) must be configured in the [APPLICATION FUNCT.] (Fun-) menu.

## [1.6 COMMAND] (CtL-)

## Command channel for [Not separ.] (SIM) configuration

Reference and command, not separate
The command channel is determined by the reference channel. Parameters Fr1, Fr2, rFC, FLO and FLOC are common to reference and command.
Example: If the reference is $\mathrm{Fr} 1=\mathrm{Al} 1$ (analog input at the terminals), control is via LI (logic input at the terminals).


Key:


Parameter:
The black square represents the factory setting assignment.

## Command channel for [Separate] (SEP) configuration

## Separate reference and command

Parameters FLO and FLOC are common to reference and command.
Example: If the reference is in forced local mode via Al1 (analog input at the terminals), command in forced local mode is via LI (logic input at the terminals).
The command channels Cd1 and Cd2 are independent of the reference channels Fr1, Fr1b and Fr2.


Key:


Parameter:
The black rectangle represents the factory
setting assignment, except for [Profile].

## Commands

Cd1, Cd2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card


## Command channel for [I/O profile] (IO) configuration

Separate reference and command, as in [Separate] (SEP) configuration

The command channels Cd1 and Cd2 are independent of the reference channels Fr1, Fr1b and Fr2.


Key:


Parameter:
The black rectangle represents the factory
setting assignment, except for [Profile].

## Commands

## Cd1, Cd2:

- Terminals, graphic display terminal, integrated Modbus, integrated CANopen, communication card, Controller Inside card


## Command channel for [I/O profile] (IO) configuration

## Selection of a command channel:

A command or an action can be assigned:

- To a fixed channel by selecting an LI input or a Cxxx bit:
- By selecting e.g., LI3, this action will always be triggered by LI3 regardless of which command channel is switched.
- By selecting e.g., C214, this action will always be triggered by integrated CANopen with bit 14 regardless of which command channel is switched.
- To a switchable channel by selecting a CDxx bit:
- By selecting, e.g., CD11, this action will be triggered by LI12 if the terminals channel is active
C111 if the integrated Modbus channel is active
C211 if the integrated CANopen channel is active
C311 if the communication card channel is active
C411 if the Controller Inside card channel is active
If the active channel is the graphic display terminal, the functions and commands assigned to CDxx switchable internal bits are inactive.

Note:

- CD14 and CD15 can only be used for switching between 2 networks. They do not have equivalent logic inputs.

| Terminals | Integrated Modbus | Integrated CANopen | Communication card | Controller Inside card | Internal bit, can be switched |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | CDOO |
| LI2 (1) | C101 (1) | C201 (1) | C301 (1) | C401 (1) | CD01 |
| LI3 | C102 | C202 | C302 | C402 | CD02 |
| LI4 | C103 | C203 | C303 | C403 | CD03 |
| LI5 | C104 | C204 | C304 | C404 | CD04 |
| LI6 | C105 | C205 | C305 | C405 | CD05 |
| LI7 | C106 | C206 | C306 | C406 | CD06 |
| LI8 | C107 | C207 | C307 | C407 | CD07 |
| LI9 | C108 | C208 | C308 | C408 | CD08 |
| LI10 | C109 | C209 | C309 | C409 | CD09 |
| LI11 | C110 | C210 | C310 | C410 | CD10 |
| LI12 | C111 | C211 | C311 | C411 | CD11 |
| LI13 | C112 | C212 | C312 | C412 | CD12 |
| LI14 | C113 | C213 | C313 | C413 | CD13 |
| - | C114 | C214 | C314 | C414 | CD14 |
| - | C115 | C215 | C315 | C415 | CD15 |

(1) If [2/3 wire control] (tCC) page $\underline{82}=[3$ wire $](3 C), L I 2, C 101, C 201, C 301$, and C401 cannot be accessed.

## [1.6 COMMAND] (CtL-)

## Assignment conditions for logic inputs and control bits

The following elements are available for every command or function that can be assigned to a logic input or a control bit:

| $\begin{gathered} \text { [LI1] (LI1) } \\ \text { to } \\ \text { [LI6] (LI6) } \end{gathered}$ | Drive with or without option |
| :---: | :---: |
| $\begin{gathered} \text { [LI7] (LI7) } \\ \text { to } \\ \text { [LI10] (LI10) } \end{gathered}$ | With VW3A3201 logic I/O card |
| $\begin{gathered} \text { [LI11] (LI11) } \\ \text { to } \\ \text { [LI14] (LI14) } \end{gathered}$ | With VW3A3202 extended I/O card |
| $\begin{gathered} {[\mathrm{C} 101](\mathrm{C} 101)} \\ \text { to } \\ {[\mathrm{C} 110](\mathrm{C} 110)} \end{gathered}$ | With integrated Modbus in [I/O profile] (IO) configuration |
| $\begin{gathered} {[\mathrm{C} 111](\mathrm{C} 111)} \\ \text { to } \\ {[\mathrm{C} 115](\mathrm{C} 115)} \end{gathered}$ | With integrated Modbus regardless of configuration |
| $\begin{gathered} {[\mathrm{C} 201](\mathrm{C} 201)} \\ \text { to } \\ {[\mathrm{C} 210](\mathrm{C} 210)} \end{gathered}$ | With integrated CANopen in [l/O profile] (IO) configuration |
| $\begin{gathered} {[\mathrm{C} 211](\mathrm{C} 211)} \\ \text { to } \\ {[\mathrm{C} 215](\mathrm{C} 215)} \end{gathered}$ | With integrated CANopen regardless of configuration |
| $\begin{gathered} {[\mathrm{C} 301](\mathrm{C} 301)} \\ \text { to } \\ {[\mathrm{C} 310](\mathrm{C} 310)} \end{gathered}$ | With a communication card in [//O profile] (IO) configuration |
| $\begin{gathered} {[\mathrm{C} 311](\mathrm{C} 311)} \\ \text { to } \\ {[\mathrm{C} 315](\mathrm{C} 315)} \end{gathered}$ | With a communication card regardless of configuration |
| $\begin{gathered} {[\mathrm{C} 401](\mathrm{C} 401)} \\ \text { to } \\ {[\mathrm{C} 410](\mathrm{C} 410)} \end{gathered}$ | With Controller Inside card in [1/O profile] (IO) configuration |
| $\begin{gathered} {[\mathrm{C} 411](\mathrm{C} 411)} \\ \text { to } \\ {[\mathrm{C} 415](\mathrm{C} 415)} \end{gathered}$ | With Controller Inside card regardless of configuration |
| $\begin{gathered} {[C D 00](C d 00)} \\ \text { to } \\ {[C D 10](C d 10)} \end{gathered}$ | In [I/O profile] (IO) configuration |
| $\begin{gathered} \text { [CD11] (Cd11) } \\ \text { to } \\ {[C D 15](C d 15)} \end{gathered}$ | Regardless of configuration |

Note: In [I/O profile] (IO) configuration, LI1 cannot be accessed and if [2/3 wire control] (tCC) page $\underline{82}=[3$ wire $](3 \mathrm{C})$, LI2, C101, C201, C301, and C401 cannot be accessed either.

## A WARNING

## UNINTENDED EQUIPMENT OPERATION

Inactive communication channels are not monitored (no lock following malfunction in the event of a communication bus failure). Make sure that the commands and functions assigned to bits C 101 to C 415 will not pose a risk in the event of the failure of the associated communication bus.

Failure to follow these instructions can result in death or serious injury.

| Code | Name／Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| Fr I <br> H I I <br> －1 己 <br> －1 ヨ <br> A 14 <br> L［［ <br> П』b <br> ［月п <br> пE <br> カアP <br> P I <br> $P \square$ | ［Ref． 1 channel］ ［AI1］（Al1）：Analog input ［AI2］（Al2）：Analog input ［AI3］（Al3）：Analog input，if VW3A3202 extension card has been inserted ［AI4］（AI4）：Analog input，if VW3A3202 extension card has been inserted ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（ nEt ）：Communication card（if inserted） ［Prog．card］（APP）：Controller Inside card（if inserted） ［RP］（PI）：Frequency input，if VW3A3202 extension card has been inserted ［Encoder］（PG）：Encoder input，if encoder card has been inserted |
| $\left.\begin{aligned} r \ln \\ n \\ y E S \end{aligned} \right\rvert\,$ | $\square$［RV Inhibition］ ［No］（nO） ［Yes］（YES） <br> Inhibition of movement in reverse direction，does not apply to direction requests sent by logic inputs． <br> －Reverse direction requests sent by logic inputs are taken into account． <br> －Reverse direction requests sent by the graphic display terminal are not taken into account． <br> －Reverse direction requests sent by the line are not taken into account． <br> －Any reverse speed reference originating from the PID，summing input，etc．，will stop the motor． |
| $\begin{aligned} \text { PSt } \\ \text { n } \\ \text { YE } \end{aligned}$ | ［Stop Key priority］ ［ No ］（ nO ） ［Yes］（YES）：Gives priority to the STOP key on the graphic display terminal when the graphic display terminal is not enabled as the command channel． <br> Press and hold down ENT for 2 seconds in order for any change in the assignment of［Stop Key priority］ （PSt）to be taken into account． <br> This will be a freewheel stop．If the active command channel is the graphic display terminal，the stop will be performed according to the［Type of stop］（Stt）page 135 irrespective of the configuration of ［Stop Key priority］（PSt）． |
| CHLF <br> 5E日 $\begin{array}{cc} 5 & 17 \\ 5 & E \\ 10 \end{array}$ | －［Profile］ <br> ［8 serie］（SE8）：ATV38 interchangeability（see Migration Manual）．The［8 serie］（SE8）configuration is used to load，via PC－Software，for example，an ATV38 drive configuration in an ATV61 that has already been set to this configuration．This assignment cannot be accessed if a Controller Inside card has been inserted． <br> Note：Modifications to the configuration of the ATV61 must only be made using PC－Software when it is in this configuration，otherwise operation cannot be guaranteed． ［Not separ．］（SIM）：Reference and command，not separate ［Separate］（SEP）：Separate reference and command This assignment cannot be accessed in ［I／O profile］（IO）． ［I／O profile］（IO）：I／O profile <br> When［8 serie］（SE8）is selected and［／／O profile］（IO）is deselected，the drive automatically returns to the factory setting（this is mandatory）．This factory setting only affects the［1 DRIVE MENU］menu．It does not affect either ［1．9 COMMUNICATION］or［1．14 PROGRAMMABLE CARD］． <br> －With the graphic display terminal，a screen appears to perform this operation．Follow the instructions on the screen． <br> －With the integrated display terminal，press ENT and hold it down（for 2 s ）．This will save the selection and return to the factory setting． |


| Code | Name／Description ${ }^{\text {a }}$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| $\text { [ [ } 5$ <br> ［d I ［d己 <br> LII | ［Cmd switching］ <br> The parameter can be accessed if［Profile］（CHCF）$=$［Separate］（SEP）or［I／O profile］（IO） ［ch1 active］（Cd1）：［Cmd channel 1］（Cd1）active（no switching） ［ch2 active］（Cd2）：［Cmd channel 2］（Cd2）active（no switching） ［LII］（LII） ［．．．］（．．．）：See the assignment conditions on page 118 （not CDOO to CD14）． <br> If the assigned input or bit is at 0 ，channel［Cmd channel 1］（Cd1）is active． If the assigned input or bit is at 1 ，channel［Cmd channel 2］（Cd2）is active． |  |
| ［d I <br> tEr <br> L L［ <br> пыь <br> ［月n <br> nEt <br> APP | ［Cmd channel 1］ ［Terminals］（tEr）：Terminals ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（ nEt ）：Communication card（if inserted） ［Prog．card］（APP）：Controller Inside card（if inserted） <br> The parameter is available if［Profile］（CHCF）＝［Separate］（SEP）or［I／O profile］（IO） | ［Terminals］（tEr） |
| $\begin{aligned} & \text { Cde } \\ & \text { tEr } \\ & \text { LEL } \\ & \text { חdb } \\ & \text { CRn } \\ & \text { nEt } \\ & \text { RPP } \end{aligned}$ | $\square$［Cmd channel 2］ ［Terminals］（tEr）：Terminals ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（ nEt ）：Communication card（if inserted） ［Prog．card］（APP）：Controller Inside card（if inserted） <br> The parameter is available if［Profile］（CHCF）＝［Separate］（SEP）or［I／O profile］（IO | ［Modbus］（Mdb） |
| $\left.\begin{array}{cl} r F & \\ F_{r} & \\ F & 1 \\ F_{r} & 己 \\ L & 1 \end{array} \right\rvert\,$ | $\square$［Ref． 2 switching］ ［ch1 active］（Fr1）：No switching，［Ref． 1 channel］（Fr1）active ［ch2 active］（Fr2）：No switching，［Ref． 2 channel］（Fr2）active ［LII］（LII） ［．．．］（．．．）：See the assignment conditions on page 118 （not CDOO to CD14）． <br> If the assigned input or bit is at 0 ，channel［Ref． 1 channel］（ Fr 1 ）is active． If the assigned bit or input is at 1 ，channel［Ref． 2 channel］（Fr2）is active． | ［ch1 active］（Fr1） |
|  | ［Ref． 2 channel］ ［No］（nO）：Not assigned If［Profile］（CHCF）＝［Not separ．］（SIM），command is at the a zero reference．If［Profile］（CHCF）$=$［Separate］（SEP）or［I／O profile］（IO），the refe ［AI1］（Al1）：Analog input ［AI2］（AI2）：Analog input ［AI3］（AI3）：Analog input，if VW3A3202 extension card has been inserted ［AI4］（AI4）：Analog input，if VW3A3202 extension card has been inserted ［＋／－Speed］（UPdt）：＋／－Speed command ［HMI］（LCC）：Graphic display terminal ［Modbus］（Mdb）：Integrated Modbus ［CANopen］（CAn）：Integrated CANopen ［Com．card］（ nEt ）：Communication card（if inserted） ［Prog．card］（APP）：Controller Inside card（if inserted） ［RP］（PI）：Frequency input，if VW3A3202 extension card has been inserted ［Encoder］（PG）：Encoder input，if encoder card has been inserted | $[\mathrm{No}](\mathrm{nO})$ <br> rminals with ce is zero． |


| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| $\angle \square P$ $\begin{array}{r} n \square \\ 5 P \\ C d \\ H L L \end{array}$ | [Copy channel 1 <> 2] <br> Can be used to copy the current reference and/or the command by means of switching, in order to avoid speed surges, for example. <br> If [Profile] (CHCF) page $119=$ [Not separ.] (SIM) or [Separate] (SEP), copying will only be possible from channel 1 to channel 2. <br> If [Profile] (CHCF) $=$ [I/O profile] (IO), copying will be possible in both directions. [No] (nO): No copy [Reference] (SP): Copy reference [Command] (Cd): Copy command [Cmd + ref.] (ALL): Copy command and reference <br> - A reference or a command cannot be copied to a channel on the terminals. <br> - The reference copied is FrH (before ramp) unless the destination channel reference is set via $+/$ - speed. In this case, the reference copied is rFr (after ramp). <br> A WARNING <br> UNINTENDED EQUIPMENT OPERATION <br> Copying the command and/or reference can change the direction of rotation. <br> Check that this is safe. <br> Failure to follow these instructions can result in death or serious injury. |

As the graphic display terminal may be selected as the command and/or reference channel, its action modes can be configured. The parameters on this page can only be accessed on the graphic display terminal, and not on the integrated display terminal.

## Notes:

- The display terminal command/reference is only active if the command and/or reference channels from the terminal are active, with the exception of $[T / K]$ (command and reference via the display terminal), which takes priority over these channels. Press [T/K] again or turn off the drive to revert control to the selected channel.

-Note: The channel selected by pressing $[T / K]$ remains active after a return to factory settings, until $[T / K]$ is pressed again or the drive is turned off.
- Command and reference via the display terminal are impossible if the latter is connected to more than one drive.
- The JOG, preset speed and $+/$ - speed functions can only be accessed if [Profile] (CHCF) $=[$ Not separ.] (SIM).
- The preset PID reference functions can only be accessed if [Profile] (CHCF) $=$ [Not separ.] (SIM) or [Separate] (SEP).
- The [T/K] function (command and reference via the display terminal) can be accessed regardless of the [Profile] (CHCF).



## [F2 key assignment]

## [No]

Identical to [F1 key assignment].

## - [F3 key assignment]

Identical to [F1 key assignment].
[F4 key assignment]
Identical to [F1 key assignment].

## [HMI cmd.]

When the $[T / K]$ function is assigned to a key and that function is active, this parameter defines the behavior at the moment when control returns to the graphic display terminal.
$\square$ [Stop]: Stops the drive (although the controlled direction of operation and reference of the previous channel are copied (to be taken into account on the next RUN command)).
[Bumpless]: Does not stop the drive (the controlled direction of operation and the reference of the previous channel are copied).

## ［1．7 APPLICATION FUNCT．］（FUn－）

## With graphic display terminal：

## With integrated display terminal：



## Summary of functions：

| Code | Name | Page |
| :---: | :---: | :---: |
| r E F－ | ［REFERENCE SWITCH．］ | 129 |
| －1－ | ［REF．OPERATIONS］ | 130 |
| rPt－ | ［RAMP］ | 131 |
| 5tヒ－ | ［STOP CONFIGURATION］ | 135 |
| Ad［－ | ［AUTO DC INJECTION］ | 137 |
| 」 $\square$－ | ［JOG］ | 139 |
| P55－ | ［PRESET SPEEDS］ | 141 |
| UPd－ | ［＋／－Speed］ | 144 |
| 5re－ | ［＋／－SPEED AROUND REF．］ | 146 |
| 5PП－ | ［MEMO REFERENCE］ | 147 |
| FL I－ | ［FLUXING BY LI］ | 148 |
| Pld－ | ［PID REGULATOR］ | 153 |
| Pr 1－ | ［PID PRESET REFERENCES］ | 158 |
| 5rn－ | ［SLEEPING／WAKE UP］ | 160 |
| ヒロL－ | ［TORQUE LIMITATION］ | 166 |
| ［LI－ | ［2nd CURRENT LIMIT．］ | 168 |
| L L L－ | ［LINE CONTACTOR COMMAND］ | 170 |
| －［［－ | ［OUTPUT CONTACTOR CMD］ | 172 |
| d月П－ | ［DAMPER MANAGEMENT］ | 174 |
| ПLP－ | ［PARAM．SET SWITCHING］ | 176 |
| ППレ－ | ［MULTIMOTORS／CONFIG．］ | 181 |
| $t \cap L$－ | ［AUTO TUNING BY LI］ | 181 |
| nF5－ | ［NO FLOW DETECTION］ | 183 |
| FLL－ | ［FLOW LIMITATION］ | 185 |
| d［口－ | ［DC BUS SUPPLY］ | 186 |
| AFE－ | ［REGEN CONNECTION］ | 187 |

## [1.7 APPLICATION FUNCT.] (FUn-)

The parameters in the [1.7 APPLICATION FUNCT.] (FUn-) menu can only be modified when the drive is stopped and there is no run command, except for parameters with a () symbol in the code column, which can be modified with the drive running or stopped.

## Note: Compatibility of functions

The choice of application functions may be limited by the number of I/O and by the fact that some functions are incompatible with one another. Functions that are not listed in the table below are fully compatible. If there is an incompatibility between functions, the first function configured will prevent the others being configured.

Each of the functions on the following pages can be assigned to one of the inputs or outputs
A single input can activate several functions at the same time (reverse and $2^{\text {nd }}$ ramp, for example). The user must therefore ensure that these functions can be used at the same time. It is only possible to assign one input to several functions at [Advanced] (AdU) and [Expert] (EPr) level.

Before assigning a command, reference or function to an input or output, the user must make sure that this input or output has not already been assigned and that another input or output has not been assigned to an incompatible or undesirable function.
The drive factory setting or macro configurations automatically configure functions, which may prevent other functions being assigned. It may be necessary to unconfigure one or more functions in order to be able to enable another. Check the compatibility table below.

## [1.7 APPLICATION FUNCT.] (FUn-)

## Compatibility table

|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ref. operations (page 130) |  |  | $\uparrow$ | $\bullet$ (3) | $\uparrow$ |  |  |  |  |  |
| +/- speed (2) (page 144) |  |  |  |  | - |  |  |  |  |  |
| Preset speeds (page 141) | $\leftarrow$ |  |  |  | $\uparrow$ |  |  |  |  |  |
| PID regulator (page 153) | $\bullet$ (3) |  |  |  | - |  |  |  | - |  |
| JOG operation (page 139) | $\leftarrow$ | - | $\leftarrow$ | $\bullet$ |  |  |  |  | - |  |
| DC injection stop (page 135) |  |  |  |  |  |  | $\bullet$ (1) | $\uparrow$ |  | $\bullet$ |
| Fast stop (page 135) |  |  |  |  |  | $\bullet$ (1) |  | $\uparrow$ |  |  |
| Freewheel stop (page 135) |  |  |  |  |  | $\leftarrow$ | $\leftarrow$ |  |  |  |
| +/-speed around a reference (page 146) |  |  |  | $\bullet$ | $\bullet$ |  |  |  |  |  |
| Synchronous motor (page 69) |  |  |  |  |  | $\bullet$ |  |  |  |  |

(1) Priority is given to the first of these two stop modes to be activated.
(2)Excluding special application with reference channel Fr2 (see diagrams on pages 112 and 113 ).
(3) Only the multiplier reference is incompatible with the PID regulator.

- Incompatible functions $\square$ Compatible functions

Priority functions (functions, which cannot be active at the same time):
$\leftarrow ~ \uparrow ~ T h e ~ f u n c t i o n ~ m a r k e d ~ w i t h ~ t h e ~ a r r o w ~ t a k e s ~ p r i o r i t y ~ o v e r ~ t h e ~ o t h e r . ~$

Stop functions have priority over run commands.
Speed references via logic command have priority over analog references.
な
Note: This compatibility table does not affect commands that can be assigned to the keys of the graphic display terminal (see page 122).

## [1.7 APPLICATION FUNCT.] (FUn-)

## Incompatible functions

The following functions will be inaccessible or deactivated in the cases described below:

## Automatic restart

This is only possible for control type [2/3 wire control] (tCC) $=[2$ wire] (2C) and [2 wire type] (tCt) $=[$ Level] (LEL) or [Fwd priority] (PFO). See page 82 .

## Catch on the fly

This is only possible for control type [2/3 wire control] (tCC) $=[2$ wire] (2C) and [2 wire type] (tCt) = [Level] (LEL) or [Fwd priority] (PFO). See page 82 .
This function is locked if automatic injection on stop [Auto DC injection] (AdC) = [Continuous] (Ct). See page 137.
The SUP- monitoring menu (page $\mathbf{3 9}$ ) can be used to display the functions assigned to each input in order to check their compatibility.
When a function is assigned, a $\checkmark$ appears on the graphic display terminal, as illustrated in the example below:

| RDY $\quad$ Term $\quad+0.00 \mathrm{~Hz} \quad$ REM |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: |
| 1.7 APPLICATION FUNCT. |  |  |  |  |
| REFERENCE SWITCH. |  |  |  |  |
| REF. OPERATIONS |  |  |  |  |
| RAMP | $\checkmark$ |  |  |  |
| STOP CONFIGURATION |  |  |  |  |
| AUTO DC INJECTION |  |  |  |  |
| Code $\ll \quad \gg$ |  |  |  | T/K |
| JOG |  |  |  |  |

## If you attempt to assign a function that is incompatible with another function that has already been assigned, an alarm message will appear:

With the graphic display terminal

| RDY $\quad$ Term $\quad+0.00 \mathrm{~Hz} \quad$ REM |
| :--- |
| INCOMPATIBILITY |
| The function can't be assigned |
| because an incompatible |
| function is already selected. See |
| programming book. |
| ENT or ESC to continue |
|  |

With the integrated display terminal:
COMP flashes until ENT or ESC is pressed.
When you assign a logic input, an analog input, a reference channel or a bit to a function, pressing the HELP button will display the functions that may already have been activated by this input, bit or channel.

## [1.7 APPLICATION FUNCT.] (FUn-)

When a logic input, an analog input, a reference channel or a bit that has already been assigned is assigned to another function, the following screens appear:
With the graphic display terminal

| RUN $\quad+50.00 \mathrm{~Hz} \quad 1250 \mathrm{~A}+50.00 \mathrm{~Hz}$ |  |
| :--- | :--- |
| WARNING - ASSIGNED TO |  |
| Reference switch. 2 |  |
|  |  |
|  |  |
| ENT->Continue | ESC->Cancel |

If the access level permits this new assignment, pressing ENT confirms the assignment.
If the access level does not permit this new assignment, pressing ENT results in the following display.

| RUN $\quad+50.00 \mathrm{~Hz} \quad 1250 \mathrm{~A}+50.00 \mathrm{~Hz}$ |
| :--- |
| ASSIGNMENT FORBIDDEN |
| Un-assign the present <br> functions, or select <br> Advanced access level <br>  |

## With the integrated display terminal:

The code for the first function, which is already assigned, is displayed flashing.
If the access level permits this new assignment, pressing ENT confirms the assignment.
If the access level does not permit this new assignment, pressing ENT has no effect, and the message continues to flash. It is only possible to exit by pressing ESC.

## [1.7 APPLICATION FUNCT.] (FUn-)

## Summing input/Subtracting input/Multiplier


$A=(F r 1$ or $F r 1 b+S A 2+S A 3-d A 2-d A 3) \times M A 2 \times M A 3$

- If SA2, SA3, dA2, dA3 are not assigned, they are set to 0 .
- If MA2, MA3 are not assigned, they are set to 1.
- A is limited by the minimum LSP and maximum HSP parameters.
- For multiplication, the signal on MA2 or MA3 is interpreted as a \%; $100 \%$ corresponds to the maximum value of the corresponding input. If MA2 or MA3 is sent via the communication bus or graphic display terminal, an MFr multiplication variable (see page 45) must be sent via the bus or graphic display terminal.
- Reversal of the direction of operation in the event of a negative result can be inhibited (see page 119).

| Code | Name/Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| rEF - | [REFERENCE SWITCH.] |
|  | [Ref 1B switching] <br> See the diagrams on pages 112 and 113. [ch1 active] (Fr1): No switching, [Ref. 1 channel] (Fr1) active [ch1B active] (Fr1b): No switching, [Ref.1B channel] (Fr1b) active [LII] (LII) [...] (...): See the assignment conditions on page 118 (not CDOO to CD14). <br> - If the assigned input or bit is at 0 , [Ref. 1 channel] (Fr1) is active (see page 119). <br> - If the assigned input or bit is at $1,[$ Ref.1B channel] (Fr1b) is active. <br> [Ref 1B switching] (rCb) is forced to [ch1 active] (Fr1) if [Profile] (CHCF) $=[$ Not separ.] (SIM) with [Ref. 1 channel] (Fr1) assigned via the terminals (analog inputs, encoder, pulse input); see page 119. |
|  | $\square$ [Ref.1B channel] [No] ( nO ): Not assigned [AI1] (AI1): Analog input [AI2] (AI2): Analog input [AI3] (AI3): Analog input, if VW3A3202 extension card has been inserted [AI4] (AI4): Analog input, if VW3A3202 extension card has been inserted [HMI] (LCC): Graphic display terminal [Modbus] (Mdb): Integrated Modbus [CANopen] (CAn): Integrated CANopen [Com. card] (nEt): Communication card (if inserted) [Prog. card] (APP): Controller Inside card (if inserted) [RP] (PI): Frequency input, if VW3A3202 extension card has been inserted [Encoder] (PG): Encoder input, if encoder card has been inserted <br> Note: <br> In the following instances, only assignments via the terminals are possible: <br> - [Profile] (CHCF) = [Not separ.] (SIM) with [Ref. 1 channel] (Fr1) assigned via the terminals (analog inputs, encoder, pulse input); see page 119. <br> - PID configured with PID references via the terminals |



(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to $9,000 \mathrm{~s}$ according to [Ramp increment] (Inr).

## [1.7 APPLICATION FUNCT.] (FUn-)


(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

## [1.7 APPLICATION FUNCT.] (FUn-)


(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2)Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to $9,000 \mathrm{~s}$ according to [Ramp increment] (Inr) page 131.
() Parameter that can be modified during operation or when stopped.


| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| $5 t$ - | [STOP CONFIGURATION] <br> Note: Some types of stop cannot be used with all other functions. Follow the instructions on page 124. |
| $\begin{array}{ll} 5 t E & \\ \\ \text { rחP } \\ \text { F5t } \\ \text { n5t } \\ \\ d[1 \end{array}$ | $\square$ [Type of stop] <br> Stop mode on disappearance of the run command or appearance of a stop command. [Ramp stop] (rMP): On ramp [Fast stop] (FSt): Fast stop [Freewheel] (nSt): Freewheel stop This selection will not appear if [Motor fluxing] (FLU) page 148 = [Continuous] (FCt). [DC injection] (dCI): DC injection stop <br> If the [Low speed time out] (tLS) parameter page $\underline{56}$ or $\underline{160}$ is not 0 , [Type of stop] (Stt) is forced to [Ramp stop] (rMP). |
| FFE (1) | [Freewheel stop Thd] <br> (1) <br> This parameter supports switching from a ramp stop or a fast stop to a freewheel stop below a low speed threshold. <br> It can be accessed if [Type of stop] (Stt) = [Fast stop] (FSt) or [Ramp stop] (rMP). 0.0: Does not switch to freewheel stop 0.1 to 599 Hz : Speed threshold below which the motor will switch to freewheel stop |
|  | [Freewheel stop ass.] [No] (nO): Not assigned [LI1] (LI1) to [LI6] (LI6) [LI7] <br> (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LII1] [C101] <br> (C101) to [C115] <br> (C115): With integrated Modbus in [I/O profile] (IO) [C201] <br> (C201) to [C215] <br> (C215): With integrated CANopen in [//O profile] (IO) [C301] <br> (C315): With a communication card in [I/O profile] (IO) [C401] (C401) to [C415] (C415): With a Controller Inside card in [I/O profile] (IO) [CD00] (Cd00) to [CD13] (Cd13): In [I/O profile] (IO) can be switched with possible logic inputs [CD14] (Cd14) to [CD15] (Cd15): In [I/O profile] (IO) can be switched without logic inputs <br> The stop is activated when the input or bit is at 0 . If the input returns to state 1 and the run command is still active, the motor will only restart if [2/3 wire control] (tCC) page $\underline{82}=[2$ wire] (2C) and [2 wire type] $(\mathrm{tCt})=[$ Level] (LEL) or [Fwd priority] (PFO). If not, a new run command must be sent. |
| $F 5 t$ | [Fast stop assign.] <br> Note: This function cannot be used with certain other functions. Follow the instructions on page 124. $\square[\mathrm{No}](\mathrm{nO})$ : Not assigned [LII] (LI1) [...] (...): See the assignment conditions on page 118. <br> The stop is activated when the input changes to 0 or the bit changes to 1 (bit in [I/O profile] (IO) at 0 ). If the input returns to state 1 and the run command is still active, the motor will only restart if [ $2 / 3$ wire control] (tCC) page $\underline{82}=[2$ wire $](2 \mathrm{C})$ and [2 wire type] (tCt) $=[$ Level] (LEL) or [Fwd priority] (PFO). If not, a new run command must be sent. |
| $\begin{gathered} d[F \\ \mathbf{Q} \end{gathered}$ | [Ramp divider] <br> (1) <br> The parameter can be accessed if [Type of stop] (Stt) = [Fast stop] (FSt) and if [Fast stop assign.] (FSt) is not $[\mathrm{No}](\mathrm{nO})$. <br> The ramp that is enabled ( dEC or dE 2 ) is then divided by this coefficient when stop requests are sent. Value 0 corresponds to a minimum ramp time. |

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
(3)Warning: These settings are independent of the [AUTO DC INJECTION] (AdC-) function.

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

## [1.7 APPLICATION FUNCT.] (FUn-)


(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(】 Parameter that can be modified during operation or when stopped.

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

## [1.7 APPLICATION FUNCT.] (FUn-)

## Preset speeds

2,4 or 8 speeds can be preset, requiring 1,2 or 3 logic inputs respectively.
$\sqrt{\text { Note: }} \quad$ You must configure 2 and 4 speeds in order to obtain 4 speeds.
You must configure 2, 4 and 8 speeds in order to obtain 8 speeds.

Combination table for preset speed inputs

| 8 speeds <br> LI (PS8) | 4 speeds <br> LI (PS4) | 2 speeds <br> LI (PS2) | Speed reference |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | Reference (1) |
| 0 | 0 | 1 | SP2 |
| 0 | 1 | 0 | SP3 |
| 0 | 1 | 1 | SP4 |
| 1 | 0 | 0 | SP5 |
| 1 | 0 | 1 | SP6 |
| 1 | 1 | 0 | SP7 |
| 1 | 1 | 1 | SP8 |

(1)See the diagram on page 112: Reference $1=(S P 1)$.

## [1.7 APPLICATION FUNCT.] (FUn-)



## [1.7 APPLICATION FUNCT.] (FUn-)

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
|  | [PRESET SPEEDS] (continued) <br> The appearance of these [Preset speed $x$ ] (SPx) parameters is determined by the number of speeds configured. |  |  |
| $\begin{gathered} 5 P 2 \\ 1 \end{gathered}$ | $\square$ [Preset speed 2] (1) | 0 to 500 or 599 Hz according to rating | 10 Hz |
| $\begin{gathered} 5 Р \exists \\ (1) \end{gathered}$ | $\square$ [Preset speed 3] (1) |  | 15 Hz |
| $\begin{gathered} 5 P 4 \\ \text { (? } \end{gathered}$ | $\square$ [Preset speed 4] (1) |  | 20 Hz |
| $\begin{gathered} 5 P 5 \\ () \end{gathered}$ | $\square$ [Preset speed 5] (1) |  | 25 Hz |
| $\begin{gathered} 5 P 6 \\ (1) \end{gathered}$ | $\square$ [Preset speed 6] (1) |  | 30 Hz |
| $\begin{gathered} 5 P 7 \\ ()^{2} \end{gathered}$ | $\square$ [Preset speed 7] (1) |  | 35 Hz |
| $\begin{gathered} 5 P 日 \\ \text { () } \end{gathered}$ | [Preset speed 8] <br> The factory setting changes to 60 Hz if [Standard mot. freq] (bFr) $=[60 \mathrm{~Hz}$ NEMA] (60). |  | 50 Hz |

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

## [1.7 APPLICATION FUNCT.] (FUn-)

## +/- speed

Two types of operation are available.

1. Use of single-press buttons: Two logic inputs are required in addition to the operating direction(s).

The input assigned to the "+ speed" command increases the speed, the input assigned to the "- speed" command decreases the speed.
2. Use of double-press buttons: Only one logic input assigned to "+ speed" is required.
+/- speed with double-press buttons:
Description: 1 button pressed twice ( 2 steps) for each direction of rotation. A contact closes each time the button is pressed.

|  | Released (- speed) | $1^{\text {st }}$ press <br> (speed maintained) | $2^{\text {nd }}$ press <br> (faster) |
| :--- | :---: | :---: | :---: |
| Forward button | - | a | a and b |
| Reverse button | - | c | c and d |

Example of wiring:



Do not use this +/-speed type with 3-wire control.

Whichever type of operation is selected, the max. speed is set by [High speed] (HSP) (see page 38).

## Note:

If the reference is switched via rFC (see page 120) from any one reference channel to another reference channel with " $+/$ - speed", the value of reference rFr (after ramp) may be copied at the same time in accordance with the [Copy channel 1 --> 2] (COP) parameter, see page 121. If the reference is switched via rFC (see page 120) from one reference channel to any other reference channel with " $+/$ - speed", the value of reference rFr (after ramp) is always copied at the same time.

This prevents the speed being incorrectly reset to zero when switching takes place.

| Code | Name／Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| UPd－ | [+/-Speed] <br> Function can be accessed if reference channel［Ref． 2 channel］（Fr2）＝［＋／－Speed］（UPdt）see page 120. <br> Note：This function cannot be used with certain other functions．Follow the instructions on page 124. |
| U 5 P | ［［＋speed assignment］ ［No］（nO）：Function inactive ［LI1］（LI1）to［LI6］（LI6） ［LI7］（LI7）to［LI10］（LI10）：If VW3A3201 logic I／O card has been inserted ［LI11］（LI11）to［LI14］（LI14）：If VW3A3202 extended I／O card has been inserted ［C101］（C101）to［C115］（C115）：With integrated Modbus in［I／O profile］（IO） ［C201］（C201）to［C215］（C215）：With integrated CANopen in［I／O profile］（IO） ［C301］（C301）to［C315］（C315）：With a communication card in［I／O profile］（IO） ［C401］（C401）to［C415］（C415）：With a Controller Inside card in［I／O profile］（IO） ［CD00］（Cd00）to［CD13］（Cd13）：In［I／O profile］（IO）can be switched with possible logic inputs ［CD14］（Cd14）to［CD15］（Cd15）：In［I／O profile］（IO）can be switched without logic inputs <br> Function active if the assigned input or bit is at 1. |
|  | ［－Speed assignment］ ［No］（nO）：Function inactive ［LI1］（LI1）to［LI6］（LI6） ［LI7］（LI7）to［LI10］（LI10）：If VW3A3201 logic I／O card has been inserted ［LI11］（LI11）to［LI14］（LI14）：If VW3A3202 extended I／O card has been inserted ［C101］（C101）to［C115］（C115）：With integrated Modbus in［I／O profile］（IO） ［C201］（C201）to［C215］（C215）：With integrated CANopen in［I／O profile］（IO） ［C301］（C301）to［C315］（C315）：With a communication card in［I／O profile］（IO） ［C401］（C401）to［C415］（C415）：With a Controller Inside card in［I／O profile］（IO） ［CD00］（Cd00）to［CD13］（Cd13）：In［I／O profile］（IO）can be switched with possible logic inputs ［CD14］（Cd14）to［CD15］（Cd15）：In［I／O profile］（IO）can be switched without logic inputs <br> Function active if the assigned input or bit is at 1. |
|  | $\square$［Reference saved］ <br> Associated with the＂$+/$－speed＂function，this parameter can be used to save the reference： <br> －When the run commands disappear（saved to RAM） <br> －When the line supply or the run commands disappear（saved to EEPROM） <br> Therefore，the next time the drive starts up，the speed reference is the last reference saved． ［No］（nO）：No save（the next time the drive starts up，the speed reference is［Low speed］（LSP）， see page 38） ［RAM］（rAM）：Save to RAM ［EEprom］（EEP）：Save to EEPROM |
| $5 r t$ $\begin{gathered} \text { חロ } \\ \text { YES } \end{gathered}$ | ［＋／－speed reference．］ <br> Allow to choose the type of［＋／－speed reference．］． <br> ［No］（ nO ）：The reference is given by the measured motor speed． <br> ［Yes］（YES）：The reference is given by $F r 己$ ． |

## [1.7 APPLICATION FUNCT.] (FUn-)

## +/- speed around a reference

The reference is given by Fr1 or Fr1b with summing/subtraction/multiplication functions and preset speeds if relevant (see the diagram on page 112. For improved clarity, we will call this reference A. The action of the +speed and -speed buttons can be set as a $\%$ of this reference A. On stopping, the reference ( $\mathrm{A}+/$-speed) is not saved, so the drive restarts with reference A only.

The maximum total reference is always limited by [High speed] (HSP) and the minimum reference by [Low speed] (LSP), see page 38 .
Example of 2-wire control:


(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to $9,000 \mathrm{~s}$ according to [Ramp increment] (Inr) page 131.
() Parameter that can be modified during operation or when stopped.

## [1.7 APPLICATION FUNCT.] (FUn-)

## Reference saving:

Saving a speed reference value using a logic input command lasting longer than 0.1 s .

- This function is used to control the speed of several drives alternately via a single analog reference and one logic input for each drive.
- It is also used to confirm a line reference (communication bus or network) on several drives via a logic input. This allows movements to be synchronized by getting rid of variations when the reference is sent.
- The reference is acquired 100 ms after the rising edge of the request. A new reference is not then acquired until a new request is made.


| Code | Name/Description ${ }^{\text {a }}$ ( Adjustment range | Factory setting |
| :---: | :---: | :---: |
| 5 Р $\quad$ - | - [MEMO REFERENCE] |  |
| 5 РП | $\square$ [Ref. memo ass.] | [ No ] (nO) |
| $\begin{array}{cccc}  & n & 1 \\ L & 1 & 1 \\ L & 1 & - & 4 \end{array}$ | [No] (nO): Function inactive [LII] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted Assignment to a logic input. <br> Function active if the assigned input is at 1. |  |


| Code | Name/Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| FL I- | [FLUXING BY LI] |
| $F L U$()$\begin{aligned} & F \cap L \\ & F[t \\ & F \cap \square \end{aligned}$ | - [Motor fluxing] <br> (1) |
|  | [Not cont.] (FnC): Non-continuous mode [Continuous] (FCt): Continuous mode. This option is not possible if [Auto DC injection] (AdC) page 137 is [Yes] (YES) or if [Type of stop] (Stt) page 135 is [Freewheel] (nSt). <br> [No] (FnO): Function inactive <br> At and above ATV61HD55M3X, ATV61HD90N4 and ATV61HC11Y, if [Motor control type] (Ctt) page $\underline{69}=$ [SVC V] (UUC) or [Energy Sav.] (nLd), this selection cannot be made and the factory setting is replaced by [Not cont.] (FnC). <br> If [Motor control type] $(\mathrm{Ctt})=$ [Sync. mot.] (SYn) the factory setting is replaced by [Not cont.] (FnC). <br> In order to obtain rapid high torque on startup, magnetic flux needs to already have been established in the motor. <br> - In [Continuous] (FCt) mode, the drive automatically builds up flux when it is powered up. <br> - In [Not cont.] (FnC) mode, fluxing occurs when the motor starts up. <br> The flux current is greater than nCr (configured rated motor current) when the flux is established and is then adjusted to the motor magnetizing current... |
|  | CAUTION <br> Check that the motor will withstand this current without overheating. <br> Failure to follow these instructions can result in equipment damage. <br> If [Motor control type] (Ctt) page $\underline{69}=$ [Sync. mot.] (SYn), the [Motor fluxing] (FLU) parameter causes the alignment of the motor and not the fluxing. |
| $F L I$ | [Fluxing assignment] <br> [No] (nO): Function inactive <br> [LII] (LI1) <br> [...] (...): See the assignment conditions on page 118. <br> Assignment is only possible if [Motor fluxing] (FLU) is not [Continuous] (FCt). <br> - In [Not cont.] (FnC) mode: <br> - If an LI or a bit is assigned to the motor fluxing command, flux is built up when the assigned input or bit is at 1 . <br> - If an LI or a bit has not been assigned, or if the LI or bit assigned is at 0 when a run command is sent, fluxing occurs when the motor starts. <br> - In [No] (FnO) mode: <br> - If an LI or a bit is assigned to the motor fluxing command, flux is built up when the assigned input or bit is at 1 and is suppressed when the assigned input or bit is at 0 . |

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

## [1.7 APPLICATION FUNCT.] (FUn-)

## PID regulator

## Block diagram

The function is activated by assigning an analog input to the PID feedback (measurement).


PID feedback:
The PID feedback must be assigned to one of the analog inputs Al1 to Al4, to the frequency input or the encoder, according to whether any extension cards have been inserted.

## PID reference:

The PID reference must be assigned to the following parameters:

- Preset references via logic inputs (rP2, rP3, rP4)
- In accordance with the configuration of [Act. internal PID ref.] (PII) pages 153:
- Internal reference (rPI) or
- Reference A (Fr1 or Fr1b, see page 113)

Combination table for preset PID references

| LI (Pr4) | LI (Pr2) | Pr2 = nO | reference |
| :---: | :---: | :---: | :---: |
|  |  |  | rPI or A |
| 0 | 0 |  | rPI or $A$ |
| 0 | 1 |  | $r P 2$ |
| 1 | 0 | $r P 3$ |  |
| 1 | 1 |  | $r P 4$ |

A predictive speed reference can be used to initialize the speed on restarting the process.

## How the various ramps work:

- ACC and dEC are only active in the event of changes in the predictive reference and not on starting PID regulation.
- AC2 affects the PID output on starting PID regulation and on PID "wake-ups" only.
- PrP is only active in the event of changes in the PID reference.


## [1.7 APPLICATION FUNCT.] (FUn-)

## Scaling of feedback and references:

- PIF1, PIF2 parameters

Can be used to scale the PID feedback (sensor range).
This scale MUST be maintained for all other parameters.

- PIP1, PIP2 parameters

Can be used to scale the adjustment range, i.e., the reference. The adjustment range MUST be within the sensor range.
The scaling parameters must not exceed a value of 32767 . To simplify setup, we recommend that you use values as close as possible to this maximum limit but remain within powers of 10 in respect of the actual values.

Example (see the graph below): Adjustment of the volume in a tank, between $6 \mathrm{~m}^{3}$ and $15 \mathrm{~m}^{3}$.

- Sensor used 4-20 mA, $4.5 \mathrm{~m}^{3}$ for $4 \mathrm{~mA}, 20 \mathrm{~m}^{3}$ for 20 mA , with the result that PIF1 $=4500$ and PIF2 $=20000$.
- Adjustment range 6 to $15 \mathrm{~m}^{3}$, with the result that PIP1 $=6000$ (min. reference) and PIP2 $=15000$ (max. reference).
- Example references:
$-\mathrm{rP1}$ (internal reference) $=9,500$
- rp2 $($ preset reference $)=6,500$
- rP3 (preset reference) $=8,000$
- rP4 (preset reference) $=11,200$

The [DISPLAY CONFIG.] menu can be used to customize the name of the unit displayed and its format.


## Other parameters:

- rSL parameter:

Can be used to set the PID error threshold, above which the PID regulator will be reactivated (wake-up) after a stop due to the max. time threshold being exceeded at low speed (tLS).

- Reversal of the direction of correction (PIC): If $\mathrm{PIC}=\mathrm{nO}$, the speed of the motor will increase when the error is positive, for example: pressure control with a compressor. If PIC $=$ YES, the speed of the motor will decrease when the error is positive, for example: temperature control using a cooling fan.
- UPP parameter:

If PIC = nO, can be used to set the PID feedback threshold, above which the PID regulator will be reactivated (wake-up) after a stop due to the max. time threshold being exceeded at low speed (tLS).
If PIC = YES, can be used to set the PID feedback threshold, below which the PID regulator will be reactivated (wake-up) after a stop due to the max. time threshold being exceeded at low speed (tLS).

- The integral gain may be short-circuited by a logic input.
- An alarm on the PID feedback may be configured and indicated by a logic output.
- An alarm on the PID error may be configured and indicated by a logic output.


## "Manual - Automatic" operation with PID

This function combines the PID regulator, the preset speeds and a manual reference. Depending on the state of the logic input, the speed reference is given by the preset speeds or by a manual reference input via the PID function.

## Manual reference (PIM)

- Analog inputs Al1 to Al4
- Frequency input
- Encoder


## Predictive speed reference (FPI)

- [AI1] (AI1): Analog input
- [AI2] (AI2): Analog input
- [AI3] (AI3): Analog input, if VW3A3202 extension card has been inserted
- [AI4] (AI4): Analog input, if VW3A3202 extension card has been inserted
- [RP] (PI): Frequency input, if VW3A3202 extension card has been inserted
- [Encoder] (PG): Encoder input, if encoder card has been inserted
- [HMI] (LCC): Graphic display terminal
- [Modbus] (Mdb): Integrated Modbus
- [CANopen] (CAn): Integrated CANopen
- [Com. card] ( nEt ): Communication card (if inserted)
- [Prog. card] (APP): Controller Inside card (if inserted)


## Setting up the PID regulator

1. Configuration in PID mode

See the diagram on page 149.
2. Perform a test in factory settings mode (in most cases, this will be sufficient).

To optimize the drive, adjust rPG or rIG gradually and independently and observe the effect on the PID feedback in relation to the reference.
3. If the factory settings are unstable or the reference is incorrect

- Perform a test with a speed reference in Manual mode (without PID regulator) and with the drive on load for the speed range of the system: - In steady state, the speed must be stable and comply with the reference and the PID feedback signal must be stable. - In transient state, the speed must follow the ramp and stabilize quickly, and the PID feedback must follow the speed. If this is not the case, see the settings for the drive and/or sensor signal and wiring.
- Switch to PID mode.
- Set brA to no (no auto-adaptation of the ramp).
- Set the PID ramp (PrP) to the minimum permitted by the mechanism without triggering an ObF fault.
- Set the integral gain (rIG) to minimum.
- Leave the derivative gain (rdG) at 0 .
- Observe the PID feedback and the reference.
- Switch the drive ON/OFF a number of times or vary the load or reference rapidly a number of times.
- Set the proportional gain (rPG) in order to ascertain the best compromise between response time and stability in transient phases (slight overshoot and 1 to 2 oscillations before stabilizing).
- If the reference varies from the preset value in steady state, gradually increase the integral gain (rIG), reduce the proportional gain (rPG) in the event of instability (pump applications), find a compromise between response time and static precision (see diagram).
- Lastly, the derivative gain may permit the overshoot to be reduced and the response time to be improved, although this will make it more difficult to obtain a compromise in terms of stability, as it depends on 3 gains.
- Perform in-production tests over the whole reference range.


## [1.7 APPLICATION FUNCT.] (FUn-)



The oscillation frequency depends on the system kinematics.

| Parameter | Rise time | Overshoot | Stabilization time | Static error |
| :---: | :---: | :---: | :---: | :---: |
| rPG | $4$ | 7 | = | \$ |
| rIG | $\$$ | $\pi$ | 7 | $4$ |
| rdG | = | $\$$ | $\$$ | $=$ |

\begin{tabular}{|c|c|c|c|}
\hline Code \& Name/Desc \& Adjustment rang \& Factory setting \\
\hline Pld- \& \multicolumn{3}{|l|}{\begin{tabular}{l}
[PID REGULATOR] \\
Note: This function cannot be used with certain other functions. Follow the instructions on page 124.
\end{tabular}} \\
\hline  \& \multicolumn{3}{|l|}{\begin{tabular}{l}
[ [PID feedback ass.] \\
\(\square\) [No] (nO): Not assigned (function inactive) In this case, none of the function parameters can be accessed.
[AI1] (AI1): Analog input
[AI2] (AI2): Analog input
[AI3] (AI3): Analog input, if VW3A3202 extension card has been inserted
[AI4] (AI4): Analog input, if VW3A3202 extension card has been inserted
[RP] (PI): Frequency input, if VW3A3202 extension card has been inserted
[Encoder] (PG): Encoder input, if encoder card has been inserted
[Network AI] (AIU1): Virtual input via communication bus. \\
Note: If the equipment switches to forced local mode (see page 218), the virtual input remains frozen at the last value transmitted.
\end{tabular}} \\
\hline A I I

$n \square$
ndb
LAn
$n E t$
APP \& \multicolumn{3}{|l|}{The parameter can be accessed if [PID feedback ass.] (PIF) = [Network AI] (AIU1). This parameter can also be accessed in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu.
[No] (nO): Not assigned
[Modbus] (Mdb): Integrated Modbus
[CANopen] (CAn): Integrated CANopen
[Com. card] (nEt): Communication card (if inserted)
[Prog. card] (APP): Controller Inside card (if inserted)} <br>
\hline \& \multicolumn{3}{|l|}{Value for minimum feedback. Adjustment range from 0 to [Max PID feedback] (PIF2) - 1 (2).} <br>

\hline \& \multicolumn{3}{|l|}{| [Max PID feedback] |
| :--- |
| (1) |
| Value for maximum feedback Adjustment range from [Min PID feedback] (PIF1) +1 to 32,767 (2). |} <br>


\hline \& \multicolumn{3}{|l|}{| [Min PID reference] |
| :--- |
| (1) |
| 150 |
| Minimum process value. Adjustment range between [Min PID feedback] (PIF1) and [Max PID feedback] (PIP2) - 1 (2). |} <br>


\hline \& \multicolumn{3}{|l|}{| [Max PID reference] |
| :--- |
| (1) |
| Maximum process value Adjustment range between [Min PID reference] (PIP1) + 1 to [Max PID reference] (PIF2) (2). |} <br>


\hline  \& \multicolumn{3}{|l|}{| [Act. internal PID ref.] |
| :--- |
| Internal PID regulator reference |
| [No] (nO): The PID regulator reference is given by Fr1 or Fr 1 b with summing/subtraction/multiplication functions (see the diagram on page 112). [Yes] (YES): The PID regulator reference is internal via parameter rPI. |} <br>

\hline r

(1) \& \multicolumn{3}{|l|}{| [Internal PID ref.] |
| :--- |
| Internal PID regulator reference This parameter can also be accessed in the [1.2 MONITORING] (SUP-) menu. |
| Adjustment range between [Min PID reference] (PIP1) and [Max PID reference] (PIP2) (2). |} <br>

\hline ${ }^{\text {r P }}$ \& ID prop. gain
Proportional gain \& 0.01 to 100 \& 1 <br>
\hline
\end{tabular}

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) If a graphic display terminal is not in use, values greater than 9,999 will be displayed on the 4 -digit display with a period mark after the thousand digit, e.g., 15.65 for 15,650.

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) If a graphic display terminal is not in use, values greater than 9,999 will be displayed on the 4-digit display with a period mark after the thousand digit, e.g., 15.65 for 15,650 .

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to 9000 s according to [Ramp increment] (Inr) page 131.

## [1.7 APPLICATION FUNCT.] (FUn-)

## PID feedback supervision

Used to define the operating mode in the event of detection of a PI feedback:

- Lower than the limit set if [PID correct. reverse] (PIC) $=[\mathrm{No}](\mathrm{nO})$
- Higher than the limit set if [PID correct. reverse] (PIC) = [Yes] (YES)

Where [PID correct. reverse] (PIC) $=[\mathrm{No}](\mathrm{nO})$


If, once maximum speed has been reached ([High speed] (HSP)), the PID feedback is lower than the supervision threshold [PID Threshold] (LPI) $-2 \%$, a time delay tPI is launched. If at the end of this time delay the value of the PID feedback is still lower than the supervision threshold [PID Threshold] (LPI) $+2 \%$, the drive switches to fallback mode as defined by parameter MPI.

In all cases the drive reverts to PID regulation mode as soon as the PID feedback exceeds the supervision threshold [PID Threshold] (LPI) $+2 \%$.

Where [PID correct. reverse] (PIC) $=[\mathrm{Yes}]$ (YES)


If, once maximum speed has been reached ([High speed] (HSP)), the PID feedback is higher than the supervision threshold [PID Threshold] $(\mathrm{LPI})+2 \%$, a time delay tPI is launched. If at the end of this time delay the value of the PID feedback is still higher than the supervision threshold [PID Threshold] (LPI) $-2 \%$, the drive switches to fallback mode as defined by parameter MPI.

In all cases the drive reverts to PID regulation mode as soon as the PID feedback undershoots the supervision threshold [PID Threshold] (LPI) $-2 \%$.

## [1.7 APPLICATION FUNCT.] (FUn-)


(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) If a graphic display terminal is not in use, values greater than 9,999 will be displayed on the 4-digit display with a period mark after the thousand digit, e.g., 15.65 for 15,650.
(3) Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.
(2) Parameter that can be modified during operation or when stopped.

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| Pr 1- | [PID PRESET REFERENCES] <br> Function can be accessed if [PID feedback ass.] (PIF) is assigned. |  |  |
|  | $\square$ [2 preset PID ref.][No] (nO): Function inactive[LII] (LII)[...] (...): See the assignment conditions on page 118. If the assigned input or bit is at 0 , the function is inactive. If the assigned input or bit is at 1 , the function is active. |  |  |
| Pr 4 rrer | [4 preset PID ref.] <br> Make sure that [2 preset PID ref.] (Pr2) has been assigned before assigning this function. [No] (nO): Function inactive [LII] (LI1) [...] (...): See the assignment conditions on page 118. <br> If the assigned input or bit is at 0 , the function is inactive. <br> If the assigned input or bit is at 1 , the function is active. |  |  |
| $\begin{gathered} r P \mathcal{~} \\ () \end{gathered}$ | The parameter can be accessed if [2 preset PID ref.] (Pr2) has been assigned. Adjustment range between [Min PID reference] (PIP1) and [Max PID reference] (PIP2) (2). |  |  |
|  | The parameter can be accessed if [2 preset PID ref.] (Pr2) and [4 preset PID ref.] (Pr4) have been assigned. Adjustment range between [Min PID reference] (PIP1) and [Max PID reference] (PIP2) (2). |  |  |
| $\begin{gathered} r P 4 \\ (2) \end{gathered}$ | [Preset ref. PID 4] <br> The parameter can be accessed if [2 preset PID ref.] (Pr2) Adjustment range between [Min PID reference] (PIP1) and | nd [4 preset PID ref.] [Max PID reference] | $\begin{equation*} 900 \tag{1} \end{equation*}$ <br> ) have been assig 2) (2). |

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) If a graphic display terminal is not in use, values greater than 9,999 will be displayed on the 4-digit display with a period mark after the thousand digit, e.g., 15.65 for 15,650.
0 Parameter that can be modified during operation or when stopped.

## [1.7 APPLICATION FUNCT.] (FUn-)

## Sleep/Wake-up

This function supplements the PID regulator, in order to avoid prolonged operation at excessively low speeds when neither useful nor desirable.

- It stops the motor after a period of operation at reduced speed. This time and speed can be adjusted.
- It restarts the motor if the PID error or feedback exceeds an adjustable threshold.



## Sleep:

Following operation at a speed less than [Low speed] (LSP) + [Sleep Offset Thres.] (SLE) for a period of time greater than or equal to [Low speed time out] (tLS), the motor is stopped on a ramp.

## Wake-up:

If the PID error exceeds [PID wake up thresh.] (rSL) (see the example opposite) or if the PID feedback exceeds [PID Wakeup Thres.] (UPP), the PID regulator is reactivated.

| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| $5 r \square-$ | [SLEEP/NG/ WAKE UP] |
| $\begin{gather*} E L 5  \tag{1}\\ () \end{gather*}$ | [Low speed time out] <br> Maximum operating time at [Low speed] (LSP). <br> Following operation at LSP + SLE for a defined period, a motor stop is requested automatically. The motor restarts if the reference exceeds (LSP + SLE) and if a run command is still present. <br> Caution: Value 0 corresponds to an unlimited period. <br> Note: If [Low speed time out] (tLS) is not 0, [Type of stop] (Stt) page $\underline{135}$ is forced to [Ramp stop] (rMP) (only if a ramp stop can be configured). |
| $L 5 P$ | Motor frequency at minimum reference, can be set between 0 and [High speed] (HSP) (see page $\underline{50}$ ). |
| $\begin{gather*} 5 L E  \tag{1}\\ () \end{gather*}$ | $\square$ [Sleep Offset Thres.] <br> Adjustable restart threshold (offset) following a stop after prolonged operation at [Low speed] (LSP) + [Sleep Offset Thres.] (SLE), in Hz. The motor restarts if the reference rises above (LSP + SLE) and if a run command is still present. |
| r 5L | [PID wake up thresh.] <br> If the "PID" and "Low speed operating time" tLS functions are configured at the same time, the PID regulator may attempt to set a speed lower than LSP. <br> This results in unsatisfactory operation, which consists of starting, operating at low speed then stopping, and so on... <br> Parameter rSL (restart error threshold) can be used to set a minimum PID error threshold for restarting after a stop at prolonged LSP. <br> The function is inactive if the PID function has not been configured or if tLS $=0$ or if rSL $=0$. $\square$ WARNING <br> UNINTENDED EQUIPMENT OPERATION <br> Check that unintended restarts will not present any danger. <br> Failure to follow these instructions can result in death or serious injury. <br> Adjustment range from 0.0 to [Max PID feedback] (PIF2) (2). |

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) If a graphic display terminal is not in use, values greater than 9,999 will be displayed on the 4-digit display with a period mark after the thousand digit, e.g., 15.65 for 15,650 .

(1) If a graphic display terminal is not in use, values greater than 9,999 will be displayed on the 4 -digit display with a period mark after the thousand digit, e.g., 15.65 for 15,650 .

## [1.7 APPLICATION FUNCT.] (FUn-)

## Sleeping on the basis of flow detection

## Parameters can be accessed in [Expert] mode.

This function is only active when the motor frequency is less than [NoFlo.Freq.Thres.Ac.] (FFd).
This function is used in applications where zero flow cannot be detected by the sleep function alone. At periodic intervals (based on time [No Flow Period Det.] (nFd)), it forces the drive's frequency reference to [Low speed] (LSP) + [No Flow Offset] (LFd) in order to test for zero flow.

Set the sleep function so that the drive switches to sleep mode when zero flow is detected ([No Flow Offset] (LFd) $\leqslant$ [Sleep Offset Thres.] (SLE) page 160).

The test can be carried out at underpressure or overpressure as appropriate for the type of installation.
Test at underpressure: (LSP + LFd) < FFd

- If the request is still present, the PID regulator error increases (at underpressure), causing the drive to restart at its previous speed above the sleep threshold.

- If the request is no longer present (zero flow), the PID regulator error will not increase, and the speed will remain below the sleep threshold, thereby inducing a stop.



## [1.7 APPLICATION FUNCT.] (FUn-)

## Test at overpressure: (LSP + LFd) > FFd

- If the request is still present, the PID regulator error increases (at overpressure), causing the drive to decelerate. If flow is detected, the speed will stabilize at its previous level, above the sleep threshold.

- If the request is no longer present (zero flow), the PID regulator error increases (at overpressure), causing the drive to decelerate. The absence of flow maintains the overpressure and the speed falls below the sleep threshold, causing the drive to stop.



## [1.7 APPLICATION FUNCT.] (FUn-)

Parameters can be accessed in [Expert] mode.

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
|  | [SLEEPING / WAKE UP] (continued) |  |  |
| nFd | $\square$ [No Flow Period Det.] | 0 to 20 min | 0 min |
|  | Zero flow detection interval, in minutes. <br> The parameter can be accessed if [PID feedback ass.] (PIF) is not [No] (nO). |  |  |
| FFd | [NoFlo.Freq.Thres.Ac.] | 0 to 500 or 599 Hz according to rating | 0 Hz |
| 12 | Zero flow detection activation threshold <br> The parameter can be accessed if [PID feedback ass.] (PIF) is not [ No ] ( nO ) and if [No Flow Period Det.] $(\mathrm{nFd})$ is not 0 . |  |  |
| LFd | [No Flow Offset] | 0 to 500 or 599 Hz according to rating | 0 Hz |
| $\text { ( })$ | Zero flow detection offset <br> The parameter can be accessed if [PID feedback ass.] (PIF) is not [No] (nO) and if [No Flow Period Det.] $(\mathrm{nFd})$ is not 0 . |  |  |

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

[^9]
## [1.7 APPLICATION FUNCT.] (FUn-)

## Torque limitation

There are two types of torque limitation:

- With a value that is fixed by a parameter
- With a value that is set by an analog input (AI, pulse or encoder)

If both types are enabled, the lowest value is taken into account. The two types of limitation can be configured or switched remotely using a logic input or via the communication bus.


\begin{tabular}{|c|c|c|c|}
\hline Code \& Name/Description \& Adjustment range \& Factory setting \\
\hline t \(\square\) L - \& \multicolumn{3}{|l|}{\begin{tabular}{l}
- [TORQUE LIMITATION] \\
This function cannot be accessed in V/F profile mode.
\end{tabular}} \\
\hline  \& \multicolumn{3}{|l|}{\(\square\) [Torque limit. activ.]
[No] (nO): Function inactive
[Yes] (YES): Function always active
[LII] (LI1)
[...] (...): See the assignment conditions on page 118. If the assigned input or bit is at 0 , the function is inactive. If the assigned input or bit is at 1 , the function is active.} \\
\hline \(\begin{array}{rrr}\text { Int } P \& \\ \\ \square \& \\ \& 1\end{array}\) \& \multicolumn{3}{|l|}{\begin{tabular}{l}
[Torque increment] \\
The parameter cannot be accessed if [Torque limit. activ.] (tLA) \(=[\mathrm{No}](\mathrm{nO})\). \\
Selection of units for the [Motoring torque lim] (tLIM) and [Gen. torque lim] (tLIG) parameters
[0.1\%] (0.1): \(0.1 \%\) unit
[1\%] (1): 1\% unit
\end{tabular}} \\
\hline ヒレIП (1) \& \begin{tabular}{l}
- [Motoring torque lim] \\
The parameter cannot be accessed if [Torque limit. activ.] Torque limitation in motor mode, as a whole \(\%\) or in \(0.1 \%\) in the [Torque increment] (IntP) parameter.
\end{tabular} \& \begin{tabular}{l}
\[
\begin{equation*}
0 \text { to } 300 \% \tag{1}
\end{equation*}
\]
\[
(\mathrm{tLA})=[\mathrm{No}](\mathrm{nO})
\] \\
crements of the rated
\end{tabular} \& \begin{tabular}{l}
100\% \\
que in accordance with
\end{tabular} \\
\hline ELIL \& \begin{tabular}{l}
\(\square\) [Gen. torque lim] \\
The parameter cannot be accessed if [Torque limit. activ.] Torque limitation in generator mode, as a whole \% or in 0. with the [Torque increment] (IntP) parameter.
\end{tabular} \& \begin{tabular}{l}
\[
\begin{equation*}
0 \text { to } 300 \% \tag{1}
\end{equation*}
\]
\[
(\mathrm{tLA})=[\mathrm{No}](\mathrm{nO})
\] \\
\(\%\) increments of the
\end{tabular} \& \begin{tabular}{l}
\[
100 \%
\] \\
torque in accordance
\end{tabular} \\
\hline ERA

r \& \begin{tabular}{l}
[Torque ref. assign.] <br>
If the function is assigned, the limitation varies between $0 \%$ the $0 \%$ to $100 \%$ signal applied to the assigned input. <br>
Examples: <br>
- 12 mA on a $4-20 \mathrm{~mA}$ input results in limitation to $150 \%$ <br>
- 2.5 V on a 10 V input results in $75 \%$ of the rated torq
[No] (nO): Not assigned (function inactive)
[AI1] (Al1) <br>
to <br>
[AI4] (AI4): Analog input, if VW3A3202 I/O card has been
[RP] (PI): Frequency input, if VW3A3202 I/O card has be
[Encoder] (PG): Encoder input, if encoder card has bee
[Network AI] (AIU1): Virtual input via communication b page 91 <br>
UNINTENDED EQUIPMENT OPERATION <br>
If the equipment switches to forced local mode (see page $\underline{218}$ ) last value transmitted. <br>
Do not use the virtual input and forced local mode in the same Failure to follow this instruction can result in death or ser

 \& 

and $300 \%$ of the rat of the rated torque. <br>
inserted <br>
n inserted <br>
inserted <br>
s, to be configured via <br>
the virtual input rem <br>
configuration. <br>
ous injury.

 \& 

$$
\text { [ } \mathrm{No} \mathrm{l}(\mathrm{nO})
$$ <br>

torque on the basis of <br>
Al net. channel] (AIC1) <br>
frozen at the
\end{tabular} <br>

\hline
\end{tabular}

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.


Parameter that can be modified during operation or when stopped.

## ［1．7 APPLICATION FUNCT．］（FUn－）

| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| $E L[$ <br> YE 5 $\begin{array}{lll} L & 1 \end{array}$ | ［［Analog limit．act．］ <br> The parameter can be accessed if［Torque ref．assign．］ ［Yes］（YES）：The limitation depends on the input assign ［LII］（LI1） ［．．．］（．．．）：See the assignment conditions on page 118. If the assigned input or bit is at 0 ： <br> －The limit is specified by the［Motoring torque lim］（tLIM） ［Torque limit．activ．］（tLA）is not［ No ］（ nO ）． <br> －No limitation if［Torque limit．activ．］（tLA）$=[\mathrm{No}](\mathrm{nO})$ ． If the assigned input or bit is at 1 ： <br> －The limitation depends on the input assigned by［Torq Note：If［Torque limitation］（tLA）and［Torque ref．assign． value will be taken into account． | A ）is not $[\mathrm{No}](\mathrm{nO})$ ． by［Torque ref．assig <br> and［Gen．torque lim］ <br> ref．assign．］（tAA）． AA）are enabled at th | ［Yes］（YES） <br> （tAA）． <br> G）parameters if <br> same time，the lowest |
| ヒアПா | $\square$［Pmax Motor］ | 10 to 300\％ | 300\％ |
| （） | Maximum power in motor mode <br> The parameter cannot be accessed if［Torque limit．activ．］（tLA）$=[\mathrm{No}](\mathrm{nO})$ |  |  |
| ヒアП゙ | $\square$［Pmax Generator］ | 10 to 300\％ | 300\％ |
| （） | Maximum power in generator mode <br> The parameter cannot be accessed if［Torque limit．activ．］（tLA）$=[\mathrm{No}](\mathrm{nO})$ |  |  |


| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| [LI- | - [2nd CURRENT LIMIT.] |  |  |
| $L[己$ $\begin{array}{cc} n \\ \llcorner & 1 \\ \hline & 1 \\ & - \\ - \\ & - \end{array}$ | $\square$ [Current limit 2] [No] (nO): Function inactive. [LII] (LI1) [...] (...): See the assignment conditions on page 118. If the assigned input or bit is at 0 , the first current limita If the assigned input or bit is at 1 , the second current lim | is active. tion is active. | [ No ] ( nO ) |
| $[L 己$$(2)$ | $\square$ [l Limit. 2 value] | 0 to 1.1 or $1.2 \ln (2)$ according to rating | 1.1 or $1.2 \ln (2)$ according to rating |
|  | Note: If the setting is less than 0.25 In , the drive may lock in [Output Phase Loss] (OPF) fault mode if this has been enabled (see page 196). If it is less than the no-load motor current, the limitation no longer has any effect. |  |  |
|  | Check that the motor will withstand this current, particularly in the case of permanent magnet synchronous motors, which are susceptible to demagnetization. <br> Failure to follow this instruction can result in equipment damage. |  |  |
| [ L I (1) | $\square$ [Current Limitation] | 0 to 1.1 or $1.2 \ln (2)$ according to rating | 1.1 or $1.2 \ln (2)$ according to rating |
|  | Note: If the setting is less than 0.25 In , the drive may lock in [Output Phase Loss] (OPF) fault mode if this has been enabled (see page 196). If it is less than the no-load motor current, the limitation no longer has any effect. |  |  |
|  | CAUTION |  |  |
|  | Check that the motor will withstand this current, particularly in the case of permanent magnet synchronous motors, which are susceptible to demagnetization. <br> Failure to follow this instruction can result in equipment damage. |  |  |

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.

0 Parameter that can be modified during operation or when stopped.

## [1.7 APPLICATION FUNCT.] (FUn-)

## Line contactor command

Example circuit:


The drive control power supply must be provided via an external 24 V source.

## CAUTION

This function can only be used for a small number of consecutive operations with a cycle time longer than 60 s (in order to avoid premature aging of the filter capacitor charging circuit).

Failure to follow these instructions can result in equipment damage.

[^10]

## [1.7 APPLICATION FUNCT.] (FUn-)

## Output contactor command

This allows the drive to control a contactor located between the drive and the motor. The request for the contactor to close is made when a run command is sent. The request for the contactor to open is made when there is no longer any current in the motor.

## CAUTION

If a DC injection braking function has been configured it should not be left operating too long in stop mode, as the contactor only opens at the end of braking.

Failure to follow these instructions can result in equipment damage.

## Output contactor feedback

The corresponding logic input should be at 1 when there is no run command and at 0 during operation.
In the event of an inconsistency, the drive trips on an FCF2 fault if the output contactor fails to close (Llx at 1) and on an FCF1 fault if it is stuck (Llx at 0).
The parameter [Time to motor run] (dbS) can be used to delay tripping in fault mode when a run command is sent and the parameter [Time to open cont.] (dAS) delays the fault when a stop command is set.

## Note:

Fault FCF2 (contactor failing to close) can be reset by the run command changing state from 1 to 0 ( 0 --> 1 --> 0 in 3 -wire control).


The [Out. contactor ass.] (OCC) and [Output contact. fdbk] (rCA) functions can be used individually or together.

| Code | Name/Description | Adjustment range | Factory settin |
| :---: | :---: | :---: | :---: |
| - [ [ - | [ [OUTPUT CONTACTOR CMD] |  |  |
|  | [Out. contactor ass.] <br> Logic output or control relay [No] (nO): Function not assigned (in this case, none of the function parameters can be accessed). [LO1] (LO1) <br> to [LO4] (LO4): Logic output (if one or two l/O cards have been inserted, LO1 to LO2 or LO4 can be selected). [R2] (r2) <br> to <br> [R4] (r4): Relay (selection of R2 extended to R3 or R4 if one or two I/O cards have been inserted) [dO1] (dO1): Analog output AO1 functioning as a logic output. Selection can be made if [AO1 assignment] $(\mathrm{AO} 1)$ page $\underline{105}=[\mathrm{No}](\mathrm{nO})$. |  |  |
|  | [Output contact. fdbk][No] (nO): Function inactive[LII] (LI1)[...] (...): See the assignment conditions on page 118. The motor starts up when the assigned input or bit changes to 0 . |  |  |
| db 5 | [Time to motor run] | 0.05 to 60 s | 0.15 |
|  | Time delay for: <br> - Motor control following the sending of a run command <br> - Output contactor fault monitoring, if the feedback is assigned. If the contactor fails to close at the end of the set time, the drive will lock in FCF2 fault mode. <br> This parameter can be accessed if [Output cont.] (OCC) is assigned or if [Output contact. fdbk] (rCA) is assigned. <br> The time delay must be greater than the closing time of the output contactor. |  |  |
| d ${ }^{\text {S }}$ | [Time to open cont. | 0 to 5.00 s | 0.10 |
|  | Time delay for output contactor opening command following motor stop. <br> This parameter can be accessed if [Output contact. fdbk] (rCA) is assigned. <br> The time delay must be greater than the opening time of the output contactor. If it is set to 0 , the fault will not be monitored. <br> If the contactor fails to open at the end of the set time, the drive will lock in FCF1 fault mode. |  |  |

## [1.7 APPLICATION FUNCT.] (FUn-)

## Damper control

This function applies to the ventilation ducts. The aim is to control the opening of the duct (shutter device called a "damper") when the fan starts up.

## Damper opening command

The opening command can be assigned to a logic output or a relay via the [Damper assignment] (dAM)parameter. The damper is closed automatically when there is no longer an opening command.
Note: With Sleep/Wake-up function, DC injection braking function must be configured to close the damper automatically when the drive is in sleep mode.

## Damper opening feedback

Opening is controlled by a bit or a logic input that can be assigned via the [Damper feedback] (dFb) parameter. The corresponding logic input or bit can be configured (state 0 or 1 for damper open) via the parameter [F.back dam. contact](Fbtd).
When there is an inconsistency, the drive trips on a [Damper stuck] (Fd1) fault if the damper does not open and on a [Damper open] (Fd2) fault if it does not close.
The parameter [Time to open damp.] (tOd) can be used to delay tripping on an opening fault when a run command is sent and the parameter [Time to close damp.] ( tCd ) delays the closing fault when a stop command is sent.


Example of operation with feedback at state 1 for damper open


| Code | Name／Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| － П－ | ［DAMPER MANAGEMENT］ |
|  | ［Damper assignment］ <br> Logic output or opening control relay ［No］（nO）：Function not assigned（in this case，none of the function＇s parameters can be accessed） ［LO1］（LO1） <br> to <br> ［LO4］（LO4）：Logic output（if one or two I／O cards have been inserted，LO1 to LO2 or LO4 can be selected） ［R2］（r2） <br> to <br> ［R4］（r4）：Relay（selection of R2 extended to R3 or R4 if one or two I／O cards have been inserted） ［dO1］（dO1）：Analog output AO1 functioning as a logic output．Selection can be made if［AO1 assignment］ （AO1）page $105=[\mathrm{No}](\mathrm{nO})$ ． |
| $d F b$ $\begin{array}{rr} n \\ L & 1 \\ & - \\ & - \\ & - \end{array}$ | $\square$［Damper feedback］ <br> Feedback of the＂damper open＂information ［No］（nO）：Function inactive ［LII］（LII） ［．．．］（．．．）：See the assignment conditions on page 118. <br> Note：Before assigning damper feedback，check that the input wiring or the state of the assigned bit corresponds to the configuration of parameter［F．back dam．contact］（Fbtd）below．If it does not， the drive may immediately switch to fault mode． |
| $\begin{gathered} \text { tud } \\ (!) \end{gathered}$ | ［Time to open damp．］ <br> Opening fault monitoring time delay．If the damper does not open at the end of the set time，the drive will lock in［Damper stuck］（Fd1）fault mode． <br> The time delay must be greater than the normal opening time of the damper． |
| $\begin{gathered} E[d \\ (!) \end{gathered}$ | ［Time to close damp．］ <br> Closing fault monitoring time delay．If the damper does not close at the end of the set time，the drive will lock in［Damper open．］（Fd1）fault mode． <br> If this parameter is at 0.00 ，the［Damper open．］（Fd2）fault is monitored only at the run command before activation of the relay or the control logic output． <br> The time delay must be greater than the normal closing time of the damper． |
| Fbtd <br> 5 Hリヒ <br> ロPEn | ［F．back dam．contact］ <br> This parameter defines the positive or negative logic of the input or bit assigned by［Damper feedback］ （dFb）． ［Active at 0］（SHUt）：The motor starts up when the assigned input or bit changes to 0 ． ［Active at 1］（OPEn）：The motor starts up when the assigned input or bit changes to 1 ． |

## Parameter set switching [PARAM. SET SWITCHING]

A set of 1 to 15 parameters from the [1.3 SETTINGS] (SEt-) menu on page 48 can be selected and 2 or 3 different values assigned. These 2 or 3 sets of values can then be switched using 1 or 2 logic inputs or control word bits. This switching can be performed during operation (motor running).
It can also be controlled on the basis of one or two frequency thresholds, whereby each threshold acts as a logic input ( $0=$ threshold not attained, 1 = threshold attained).

|  | Values 1 | Values 2 | Values 3 |
| :---: | :---: | :---: | :---: |
| Parameter 1 | Parameter 1 | Parameter 1 | Parameter 1 |
| Parameter 2 | Parameter 2 | Parameter 2 | Parameter 2 |
| Parameter 3 | Parameter 3 | Parameter 3 | Parameter 3 |
| Parameter 4 | Parameter 4 | Parameter 4 | Parameter 4 |
| Parameter 6 | Parameter 5 | Parameter 5 | Parameter 5 |
| Parameter 7 | Parameter 6 | Parameter 6 | Parameter 6 |
| Parameter 8 | Parameter 7 | Parameter 7 | Parameter 7 |
| Parameter 9 | Parameter 8 | Parameter 8 | Parameter 8 |
| Parameteter 11 | Parameter 9 | Parameter 9 | Parameter 9 |
| Parameter 12 | Parameter 10 | Parameter 10 | Parameter 10 |
| Parameter 13 | Parameter 11 | Parameter 11 | Parameter 11 |
| Parameter 14 | Parameter 12 | Parameter 12 | Parameter 12 |
| Parameter 15 | Parameter 13 | Parameter 13 | Parameter 13 |
| Input LI or bit or frequency | Parameter 14 | Parameter 14 | Parameter 14 |
| threshold | Parameter 15 | 0 | Parameter 15 |
| 2 values |  |  | 0 or 1 |
| Input LI or bit or frequency |  |  |  |
| threshold |  |  |  |
| 3 values |  |  | 1 |

Note: Do not modify the parameters in the [1.3 SETTINGS] (SEt-) menu, because any modifications made in this menu will be lost on the next power-up. The parameters can be adjusted during operation in the [PARAM. SET SWITCHING] (MLP-) menu, on the active configuration.

Note: Parameter set switching cannot be configured from the integrated display terminal.
Parameters can only be adjusted on the integrated display terminal if the function has been configured previously via the graphic display terminal, by PC-Software or via the bus or communication network. If the function has not been configured, the MLP- menu and the PS1-, PS2-, PS3- submenus do not appear.

| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
| $\Pi$ LP - | [PARAM. SET SWITCHING] |
|  | [2 Parameter sets] [No] ( nO ): Function inactive. [Freq.Th.att.] (FtA): Switching via [Freq. threshold] (Ftd) page 60 [Freq. Th. 2 attain.] (F2A): Switching via [Freq. threshold 2] (Ftd) page $\underline{60}$ [LII] (LI1) [...] (...): See the assignment conditions on page 118. <br> Switching 2 parameter sets |
|  | [3 Parameter sets] [No] ( nO ): Function inactive. [Freq.Th.att.] (FtA): Switching via [Freq. threshold] (Ftd) page 60 [Freq. Th. 2 attain.] (F2A): Switching via [Freq. threshold 2] (Ftd) page 60 [LII] (LI1) [...] (...): See the assignment conditions on page 118. <br> Switching 3 parameter sets <br> Note: In order to obtain 3 parameter sets, [2 Parameter sets] must also be configured. |
|  | [PARAMETER SELECTION] <br> The parameter can only be accessed on the graphic display terminal if [2 Parameter sets] is not [No]. Making an entry in this parameter opens a window containing all the adjustment parameters that can be accessed. <br> Select 1 to 15 parameters using ENT (a tick then appears next to the parameter). Parameter(s) can also be deselected using ENT. <br> Example: |
| P5 I- | [SET 1] <br> The parameter can be accessed if one or more parameters have been selected in [PARAMETER SELECTION]. <br> Making an entry in this parameter opens a settings window containing the selected parameters in the order in which they were selected. <br> With the graphic display terminal: <br> With the integrated display terminal: <br> Proceed as in the Settings menu using the parameters that appear. |


| Code | Name/Description $\quad$ Adjustment range ${ }^{\text {a }}$ Factory setting |
| :---: | :---: |
|  | $\square$ [PARAM. SET SWITCHING] (continued) |
| P5 - | [SET 2] <br> The parameter can be accessed if one or more parameters have been selected in [PARAMETER SELECTION]. <br> Procedure identical to [SET 1] (PS1-). |
| P5 ${ }^{\text {- }}$ | [SET 3] <br> The parameter can be accessed if [3 parameter sets] is not [ No ] and if one or more parameters have been selected in [PARAMETER SELECTION]. <br> Procedure identical to [SET 1] (PS1-). |

Note: We recommend that a parameter set switching test is carried out on stopping and a check is made to ensure that it has been performed correctly.
Some parameters are interdependent and in this case may be restricted at the time of switching.
Interdependencies between parameters must be respected, even between different sets.
Example: The highest [Low speed] (LSP) must be below the lowest [High speed] (HSP).

## Motor or configuration switching [MULTIMOTORS/CONFIG.]

The drive may contain up to 3 configurations, which can be saved using the [1.12 FACTORY SETTINGS] (FCS-) menu, page 222.
Each of these configurations can be activated remotely, enabling adaptation to:

- 2 or 3 different motors or mechanisms (multimotor mode)
- 2 or 3 different configurations for a single motor (multiconfiguration mode)

The two switching modes cannot be combined.
Note: The following conditions MUST be observed:

- Switching may only take place when stopped (drive locked). If a switching request is sent during operation, it will not be executed until the next stop.
- In the event of motor switching, the following additional conditions apply:
- When the motors are switched, the power and control terminals concerned must also be switched as appropriate.
- The maximum power of the drive must not be exceeded by any of the motors.
- All the configurations to be switched must be set and saved in advance in the same hardware configuration, this being the definitive configuration (option and communication cards). Failure to follow this instruction can cause the drive to lock on an [Incorrect config.] (CFF) fault.


## Menu and parameters switched in multimotor mode

- [1.3 SETTINGS] (SEt-)
- [1.4 MOTOR CONTROL] (drC-)
- [1.5 INPUTS / OUTPUTS CFG] (I-O-)
- [1.6 COMMAND] (CtL-)
- [1.7 APPLICATION FUNCT.] (FUn-) with the exception of the [MULTIMOTORS/CONFIG.] function (to be configured once only)
- [1.8 FAULT MANAGEMENT] (FLt)
- [1.13 USER MENU]
- [USER CONFIG.]: The name of the configuration specified by the user in the [1.12 FACTORY SETTINGS] (FCS-) menu


## Menu and parameters switched in multiconfiguration mode

As in multimotor mode, except for the motor parameters that are common to the three configurations:

- Rated current
- Thermal current
- Rated voltage
- Rated frequency
- Rated speed
- Rated power
- Magnetizing current at zero frequency
- IR compensation
- Slip compensation
- Synchronous motor parameters
- Type of thermal protection
- Thermal state
- The auto-tuning parameters and motor parameters that can be accessed in expert mode
- Type of motor control

Note: No other menus or parameters can be switched.

## Transfer of a drive configuration to another one, with graphic display terminal, when the drive uses [MULTIMOTORSICONFIG.] function

Let $A$ be the source drive and $B$ the drive addressed. In this example, switching are controled by logic input.

1. Connect graphic display terminal to the drive $A$.
2. Put logic input $\mathrm{LI}([2$ Configurations] (CnF1)) and $\mathrm{LI}([3$ Configurations] (CnF2)) to 0 .
3. Download configuration 0 in a file of graphic display terminal (example : file 1 of the graphic display terminal).
4. Put logic input LI ([2 Configurations] (CnF1)) to 1 and leave logic input LI ([3 Configurations] (CnF2)) to 0 .
5. Download configuration 1 in a file of graphic display terminal (example : file 2 of the graphic display terminal).
6. Put logic input LI ([3 Configurations] (CnF2)) to 1 and leave logic input LI ([2 Configurations] (CnF1)) to 1.
7. Download configuration 2 in a file of graphic display terminal (example : file 3 of the graphic display terminal).
8. Connect graphic display terminal to the drive B.
9. Put logic input LI ([2 Configurations] (CnF1)) and LI ([3 Configurations] (CnF2)) to 0 .
10. Make a factory setting of the drive $B$.
11. Download the configuration file 0 in the drive (file 1 of graphic display terminal in this example).
12. Put logic input $\mathrm{LI}([2$ Configurations] (CnF1)) to 1 and leave logic input LI ([3 Configurations] (CnF2)) to 0 .
13. Download the configuration file 1 in the drive (file 2 of graphic display terminal in this example).
14. Put logic input LI ([3 Configurations] (CnF2)) to 1 and leave logic input LI ([2 Configurations] (CnF1)) to 1.
15. Download the configuration file 2 in the drive (file 3 of graphic display terminal in this example).

Nota: Steps 6, 7, 14 et 15 are necessary only if [MULTIMOTORS/CONFIG.] function is used with 3 configurations or 3 motors.


## [1.7 APPLICATION FUNCT.] (FUn-)

## Switching command

Depending on the number of motors or selected configuration (2 or 3 ), the switching command is sent using one or two logic inputs. The table below lists the possible combinations.

| LI <br> 2 motors or configurations | 3 motors or configurations | Number of configuration <br> or active motor |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 1 | 0 | 1 |
| 0 | 1 | 2 |
| 1 | 1 | 2 |

## Schematic diagram for multimotor mode

Configuration 0 if the 2 contacts are open.


## Auto-tuning in multimotor mode

This auto-tuning can be performed:

- Manually using a logic input when the motor changes
- Automatically each time the motor is activated for the $1^{\text {st }}$ time after switching on the drive, if the [Automatic autotune] (AUt) parameter on page $\underline{67}=[$ Yes] (YES).


## Motor thermal states in multimotor mode:

The drive protects the three motors individually. Each thermal state takes into account all stop times, including drive shutdowns.
It is therefore not necessary to perform auto-tuning every time the power is switched on. It is sufficient to auto-tune each motor at least once.

## Configuration information output

In the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu, a logic output can be assigned to each configuration or motor (2 or 3 ) for remote information transmission.

Note: As the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu is switched, these outputs must be assigned in all configurations in which information is required.

| Code | Name/Description $\quad$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| ПП [- | [ [MULTIMOTORS/CONFIG.] |  |
| $\begin{array}{r} \text { Г НП } \\ \text { пロ } \\ \text { ЧE } \end{array}$ | $\square$ [Multimotors] [No] (nO): Multiconfiguration possible [Yes] (YES): Multimotor possible | [ No ] ( nO ) |
| [nFl $\begin{array}{ccc}  & n & 0 \\ L & 1 & 1 \\ & & - \\ {[ } & 1 & 1 \\ \hline \end{array}$ | - [2 Configurations] [No] (nO): No switching. [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C111] (C111) to [C115] (C115): With integrated Modbus [C211] (C211) to [C215] (C215): With integrated CANopen [C311] (C311) to [C315] (C315): With a communication card [C411] (C411) to [C415] (C415): With a Controller Inside card <br> Switching of 2 motors or 2 configurations | $[\mathrm{No}](\mathrm{nO})$ |
| $[\cap F 己$ $\begin{array}{ccc}  & n & 0 \\ L & 1 & 1 \\ & & - \\ {[ } & 1 & 1 \\ \hline \end{array}$ | - [3 Configurations] [No] (nO): No switching [LI1] (LI1) to [LI6] (LI6) [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C111] (C111) to [C115] (C115): With integrated Modbus [C211] (C211) to [C215] (C215): With integrated CANopen [C311] (C311) to [C315] (C315): With a communication card [C411] (C411) to [C415] (C415): With a Controller Inside card <br> Switching of 3 motors or 3 configurations <br> Note: In order to obtain 3 motors or 3 configurations, [2 Configurations] (CnF1) mus | $[\mathrm{No}](\mathrm{nO})$ <br> t also be configured. |
| $t \cap L-$ | $\square$ [AUTO TUNING BY LI] |  |
| $\in U L$ $\begin{gathered} \because \square \\ \angle \quad 11 \end{gathered}$ | [Auto-tune assign.] [No] (nO): Not assigned [LII] (LI1) [...] (...): See the assignment conditions on page 118. <br> Auto-tuning is performed when the assigned input or bit changes to 1. <br> Note: Auto-tuning causes the motor to start up. | [ No ] ( nO ) |

## [1.7 APPLICATION FUNCT.] (FUn-)

## Zero fluid or zero flow detection via sensor

In the case of a pump, for example, this function can be used to avoid operation when there is no fluid or if the conduits are blocked. Although this function is independent of the "[1.7 APPLICATION FUNCT.] (FUn-)" function on page 162, the two can be used in tandem.

The function uses a fluid sensor assigned to a logic input or a bit, which can be configured for positive or negative logic by [Conf.sensor flow] (LnS).
The fault is triggered if the frequency exceeds an adjustable threshold [Freq. Th. Sensor. Act.] (nFFt) and the input or bit assigned to the sensor changes to 0 or 1 depending on its configuration.
The fault is ignored on startup for an adjustably time delay [Flow Times Ctrl ( nFSt ) in order to avoid untimely triggering due to a transient state.

This fault triggers a freewheel stop.


| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| nF 5- | - [NO FLOW DETECTION] |  |  |
| $n \mathrm{~F} 5$ | $\square$ [No Flow Sensor] |  | [ No ] (nO) |
|  | Assignment of the zero fluid sensor. <br> [No] (nO): Function inactive <br> [LI1] (LI1) to [LI6] (LI6) <br> [LI7] (LI7) to [LI10] (LI10): If VW3A3201 logic I/O card has been inserted [LI11] (LI11) to [LI14] (LI14): If VW3A3202 extended I/O card has been inserted [C101] (C101) to [C115] (C115): With integrated Modbus in [I/O profile] (IO) [C201] (C201) to [C215] (C215): With integrated CANopen in [I/O profile] (IO) [C301] (C301) to [C315] (C315): With a communication card in [//O profile] (IO) [C401] (C401) to [C415] (C415): With a Controller Inside card in [/O profile] (IO) [CD00] (Cd00) to [CD13] (Cd13): In [//O profile] (IO) can be switched with possible logic inputs [CD14] (Cd14) to [CD15] (Cd15): In [I/O profile] (IO) can be switched without logic inputs |  |  |
| $L \sim 5$ | $\square$ [Conf.sensor flow] |  | [Active low] (LO) |
| $\begin{array}{r}\text { L } \\ H \\ \hline 15\end{array}$ | This parameter can be accessed if zero flow detection has been assigned to a logic input or a bit. It d the positive or negative logic of the input or bit assigned to this detection. <br> [Active low] (LO): Detection on falling edge (change from 1 to 0 ) of the assigned input or bit. [Active high] (HIG): Detection on rising edge (change from 0 to 1) of the assigned input or bit. |  |  |
| nFFt | $\square$ [Freq.Th.Sensor. Act.] (1) | 0 to 500 or 599 Hz according to rating | 0 Hz |
| () | Zero fluid detection activation threshold <br> The parameter can be accessed if [No Flow Sensor] (nFS) is not [No] (nO). |  |  |
| nF5t | $\square$ [Flow Times Ctrl] (1) | 0 to 999 s | 10 s |
| () | Zero fluid detection activation time delay <br> The parameter can be accessed if [No Flow Sensor] (nFS) is not [ No ] ( nO ). |  |  |

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

## [1.7 APPLICATION FUNCT.] (FUn-)

## Flow limitation

This function can be used to limit the flow of a fluid, in the case of a pump, for example.
The function uses a flow sensor assigned to an analog input, the "pulse in" input or the encoder input. It limits the frequency reference. In the case of regulation with PID, it affects the PID regulator output reference.


- Before A - The signal on the input assigned to the flow measurement has not reached the activation threshold [Flow.Lim. Th.Active] $(\mathrm{CHt})$ : Flow limitation is not activated and the input reference is applied.
- A - The signal on the input assigned to the flow measurement has reached the threshold [Flow.Lim.Th.Active] (CHt): Flow limitation is activated, the reference is limited to [Low speed] (LSP) and the frequency decelerates along the ramp [Dec. Flow. limit] (dFL).
- B - The signal on the input assigned to the flow measurement has fallen below the hysteresis of the threshold [Flow.Lim.Th.Active] (CHt): The current frequency is copied and applied as the reference.
- C - The input reference has fallen below the reference $\mathbf{B}$ and is continuing to fall: It is applied.
- D - The input reference starts to rise again: The current frequency is copied and applied as the reference.
- E - The signal on the input assigned to the flow measurement has reached the threshold [Flow.Lim.Th.Active] (CHt): The reference is limited to [Low speed] (LSP) and the frequency decelerates along the ramp [Dec. Flow. limit] (dFL).
- F - The signal on the input assigned to the flow measurement has fallen below the hysteresis of the threshold [Flow.Lim. Th.Active] (CHt): The current frequency is copied and applied as the reference.
- After F - The signal on the input assigned to the flow measurement has fallen below the deactivation threshold [Flo.Lim. Thres. Inact.] $(\mathrm{rCHt})$ : Flow limitation is no longer active and the input reference is applied.


## [1.7 APPLICATION FUNCT.] (FUn-)

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| $F L$ - | [ [FLOW LIMITATION] |  |  |
|  | $\square$ [Flow.Sen.Inf] [No] (nO): Not assigned (function inactive) [AI1] (Al1) <br> to <br> [AI4] (AI4): Analog input, if VW3A3202 I/O card has been inserted [RP] (PI): Frequency input, if VW3A3202 I/O card has been inserted [Encoder] (PG): Encoder input, if encoder card has been inserted |  | [ No ] ( nO ) |
| [HE |  | 0 to 100\% | 0\% |
| () | The parameter can be accessed if [Flow.Sen.Inf] (CHI) is not [No] (nO). Function activation threshold, as a \% of the max. signal of the assigned input |  |  |
| r[HE | $\square$ [Flo.Lim.Thres. Inact.] (1) | 0 to 100\% | 0\% |
| $(2)$ | The parameter can be accessed if [Flow.Sen.Inf] (CHI) is not [No] (nO). Function deactivation threshold, as a \% of the max. signal of the assigned input |  |  |
| $d F L$ | $\square$ [Dec. Flow. limit] (1) | 0.01 to $9,000 \mathrm{~s} \mathrm{(2)}$ | 5.0 s |
| ( | The parameter can be accessed if [Flow.Sen.Inf] (CHI) is not [No] (nO). <br> Time to decelerate from the [Rated motor freq.] (FrS) to 0 . Make sure that this value is compatible with the inertia being driven. |  |  |

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2) Range 0.01 to 99.99 s or 0.1 to 999.9 s or 1 to $9,000 \mathrm{~s}$ according to [Ramp increment] (Inr) page 131.

[^11]
## ［1．7 APPLICATION FUNCT．］（FUn－）

## Direct power supply via DC bus

This function is only accessible for ATV61ゃe๐M3 $\geqslant 18.5 \mathrm{~kW}$, ATV61ゃe॰N4 $\geqslant 22 \mathrm{~kW}$ drives and all ratings of ATV61ゃe๐Y drives．

Direct power supply via the DC bus requires a protected direct current source with adequate power and voltage as well as a suitably dimensioned resistor and capacitor precharging contactor．Consult Schneider Electric for information about dimensioning these components．

The＂direct power supply via DC bus＂function can be used to control the precharging contactor via a relay or a logic input on the drive．

Example circuit using R2 relay：



## [1.7 APPLICATION FUNCT.] (FUn-)

## Active Front End connection

This function is not accessible for ATV61HeゃeS6X $\geqslant$ and for ATV61HeゃeY $\geqslant 110 \mathrm{~kW}$ (150 HP). (HHP range)

Direct power supply via Active Front End (AFE) reduces the mains current harmonics to less than 4\% and gives enables the drive to feedback the generative energy to the mains supply.

Example circuit using one AFE for one ATV61



## A CAUTION

## DAMAGED EQUIPMENT

It is absolutely necessary to carry out further parameter setting on all ATV61 drive connnected to Active Front End (AFE). Check the list of parameter on next page.
Failure to follow this instruction can result in equipment damage.

## [1.7 APPLICATION FUNCT.] (FUn-)

## Active Front End connection

It is necessary to carry out the following settings for all frequency inverters connected to an active front end:

- Parameter [Mains voltage] (UrES) : Same setting as the active front end (Thereby the internal voltage levels of the frequency inverter are adapted).
- Parameter [Input phase loss] (IPL) has to be set to [Ignore] (nO).
- Parameter for operation with active front end [Regen. Connection] (AFE) has to be set to [Yes] (YES) (Thereby the undervoltage level of the frequency inverter is adapted to the operation with the active front end).
- Parameter [Dec ramp adapt.] (brA) is set to [nO] to inactivate this function.
- Parameter [Brake res. fault Mgt] (bUb) has to be set to [ignore] (nO) (for HHP range only).
- Parameter [Deceleration] (dEC) has to be increased for applications with high inertia to avoid overload of Active Front End. This can be prevented also by rounding the deceleration ramp with parameter [Begin Dec round] ( $\mathrm{t} A 3$ ).
- Parameter [2 wire type] ( tCt ) has to be set on [Level] (LEL) to ensure an automatic restart after undervoltage detection of the Active Front End. An automatic restart is only possible on 2 wire control.
- The integrated RFI filter has to be always deactivated (position IT, non-grounded mains) for all ATV 61 inverter and also for the Active Infeed Converter (AIC) because there exists no direct mains connection.



## ［1．8 FAULT MANAGEMENT］（FLt－）

## With graphic display terminal：



## With integrated display terminal：



## Summary of functions：

| Code | Name | Page |
| :---: | :---: | :---: |
| Pt［－ | ［PTC MANAGEMENT］ | 191 |
| r 5t－ | ［FAULT RESET］ | 192 |
| Atr－ | ［AUTOMATIC RESTART］ | 193 |
| $F L r^{-}$ | ［CATCH ON THE FLY］ | 194 |
| tHE－ | ［MOTOR THERMAL PROT．］ | 196 |
| $\square P L$－ | ［OUTPUT PHASE LOSS］ | 196 |
| IPL－ | ［INPUT PHASE LOSS］ | 197 |
| ロHL－ | ［DRIVE OVERHEAT］ | 197 |
| 5月t－ | ［THERMAL ALARM STOP］ | 198 |
| $E \in F-$ | ［EXTERNAL FAULT］ | 199 |
| U5ロ－ | ［UNDERVOLTAGE MGT］ | $\underline{200}$ |
| ヒ リ－ | ［IGBT TESTS］ | $\underline{201}$ |
| LFL－ | ［4－20mA LOSS］ | $\underline{202}$ |
| $1 \cap H-$ | ［FAULT INHIBITION］ | $\underline{203}$ |
| ［ L L－ | ［COM．FAULT MANAGEMENT］ | $\underline{204}$ |
| E1d－ | ［TORQUE OR I LIM．DETECT．］ | $\underline{205}$ |
| FタF－ | ［FREQUENCY METER］ | $\underline{207}$ |
| brP－ | ［DB RES．PROTECTION］ | $\underline{208}$ |
| $b \cup F-$ | ［BU PROTECTION］ | $\underline{208}$ |
| $t \cap F-$ | ［AUTO TUNING FAULT］ | $\underline{208}$ |
| PP I－ | ［CARDS PAIRING］ | $\underline{209}$ |
| ULd－ | ［PROCESS UNDERLOAD］ | $\underline{211}$ |
| － d－$^{\text {－}}$ | ［PROCESS OVERLOAD］ | $\underline{212}$ |
| $F d L-$ | ［DAMPER FAULT MGT．］ | $\underline{213}$ |
| LFF－ | ［FALLBACK SPEED］ | $\underline{214}$ |
| F5t－ | ［RAMP DIVIDER］ | $\underline{214}$ |
| d［ 1－ | ［DC INJECTION］ | $\underline{214}$ |

## [1.8 FAULT MANAGEMENT] (FLt-)

The parameters in the [1.8 FAULT MANAGEMENT] (FLt-) menu can only be modified when the drive is stopped and there is no run command, except for parameters with a () symbol in the code column, which can be modified with the drive running or stopped.

## PTC probes

3 sets of PTC probes can be managed by the drive in order to protect the motors:

- 1 on logic input LI6 converted for this use by switch "SW2" on the control card.
- 1 on each of the 2 option cards VW3A3201 and VW3A3202.

Each of these sets of PTC probes is monitored for the following faults:

- Motor overheating
- Sensor break fault
- Sensor short-circuit fault

Protection via PTC probes does not disable protection via $I^{2} t$ calculation performed by the drive (the two types of protection can be combined).




| Code | Name/Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| $F L r^{-}$ | [CATCH ON THE FLY] |
|  | [Catch on the fly] <br> Used to enable a smooth restart if the run command is maintained after the following events: <br> - Loss of line supply or disconnection <br> - Reset of current fault or automatic restart <br> - Freewheel stop <br> The speed given by the drive resumes from the estimated speed of the motor at the time of the restart, then follows the ramp to the reference speed. <br> Rotor speed, estimated during freewheel operation, in order to define the appropriate catch on fly settings is available by [Freq. catch on fly] (FCAO), it can be monitored with PC-Software. <br> This function requires 2 -wire level control. [No] (nO): Function inactive [Yes] (YES): Function active <br> When the function is operational, it activates at each run command, resulting in a slight delay of the current ( 0.5 s max.). <br> [Catch on the fly] (FLr) is forced to [No] (nO) if [Auto DC injection] (AdC) page $137=$ [Continuous] (Ct) <br> Note : This function should not be used with motors in parallel because the speed estimation based on motor current measurement is not possible. |
| U [ b (2) | [Sensitivity] <br> Parameter accessible at and above ATV61HD55M3X, ATV61HD90N4 and ATV61HC11Y. <br> Adjusts the catch-on-the-fly sensitivity around the zero speed. <br> Decrease the value if the drive is not able to perform the catch on the fly, and increase it if the drive locks on a fault as it performs the catch on the fly. |

[^12]
## [1.8 FAULT MANAGEMENT] (FLt-)

## Motor thermal protection

## Function:

Thermal protection by calculating the $I^{2} \mathrm{t}$.
Note: The memory of the motor thermal state is saved when the drive is switched off. The power-off time is used to recalculate the thermal state the next time the drive is switched on.

- Naturally-cooled motors:

The tripping curves depend on the motor frequency.

- Force-cooled motors:

Only the 50 Hz tripping curve needs to be considered, regardless of the motor frequency.

Trip time in seconds


(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.
(2)Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

(1)Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

## [1.8 FAULT MANAGEMENT] (FLt-)

## Deferred stop on thermal alarm

This function can be used in intermittent applications, where it is desirable to avoid any stops for which no command has been given. It prevents untimely stopping if the drive or motor overheats, by authorizing operation until the next stop for which a command is given. At the next stop, the drive is locked until the thermal state falls back to a value which undershoots the set threshold by $20 \%$. Example: A trip threshold set at $80 \%$ enables reactivation at $60 \%$.
One thermal state threshold must be defined for the drive, and one thermal state threshold for the motor(s), which will trip the deferred stop.


0 Parameter that can be modified during operation or when stopped.

| Code | Name／Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| $E \in F-$ | ［［EXTERNAL FAULT］ |
| $E \in F$ $\begin{array}{rr} n \\ L & 1 \\ & - \\ & - \\ & - \end{array}$ | ［External fault ass．］ ［No］（nO）：Function inactive ［LII］（LI1） ［．．．］（．．．）：See the assignment conditions on page 118. <br> If the assigned bit is at 0 ，there is no external fault． <br> If the assigned bit is at 1 ，there is an external fault． <br> Logic can be configured via［External fault config］（LEt）if a logic input has been assigned． |
| $\begin{array}{rlr}\text { LEE } & \\ \\ \text { H } & \\ \text { L I }\end{array}$ | ［External fault config］ <br> Parameter can be accessed if the external fault has been assigned to a logic input．It defines the positive or negative logic of the input assigned to the fault． ［Active low］（LO）：Fault on falling edge（change from 1 to 0 ）of the assigned input ［Active high］（HIG）：Fault on rising edge（change from 0 to 1 ）of the assigned input |
|  | ［External fault mgt］ <br> Type of stop in the event of an external fault ［Ignore］（nO）：Fault ignored ［Freewheel］（YES）：Freewheel stop． ［Per STT］（Stt）：Stop according to configuration of［Type of stop］（Stt）page 135，without fault tripping． In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears， according to the restart conditions of the active command channel（e．g．，according to［ $2 / 3$ wire control］ （ tCC ）and［ 2 wire type］（ tCt ）page 82 if control is via the terminals）．Configuring an alarm for this fault is recommended（assigned to a logic output，for example）in order to indicate the cause of the stop． ［fallback spd］（LFF）：Switch to fallback speed，maintained as long as the fault is present and the run command is not disabled（1）． ［Spd maint．］（rLS）：The drive maintains the speed being applied when the fault occurred，as long as the fault is present and the run command is not disabled（1）． ［Ramp stop］（rMP）：Stop on ramp ［Fast stop］（FSt）：Fast stop ［DC injection］（dCl）：DC injection stop．This type of stop cannot be used with certain other functions． <br> See table on page 124. |

（1）Because，in this case，the fault does not trigger a stop，it is essential to assign a relay or logic output to its indication．

() Parameter that can be modified during operation or when stopped.

| Code | Name／Description ${ }^{\text {adjustment range }}$ | Factory setting |
| :---: | :---: | :---: |
| U5b－ | －［UNDERVOLTAGE MGT］ |  |
| ヒ 5n | $\square$［UnderV．restart tm］ 1.0 s to 999.9 s | 1.0 s |
|  | Time delay before authorizing the restart after a complete stop for［UnderV．prevention］（StP）$=[$ Ramp stop］ （rMP），if the voltage has returned to normal． |  |
| $U P L$ | $\square$［Prevention level］ |  |
|  | Undervoltage fault prevention level setting in V ，which can be accessed if［UnderV．prevention］（StP）is not $[\mathrm{No}](\mathrm{nO})$ ．The adjustment range and factory setting are determined by the drive voltage rating and the ［Mains voltage］（UrES）value． |  |
| 5ヒп | $\square$［Max stop time］ 0.01 to 60.00 s | 1.00 s |
|  | Ramp time if［UnderV．prevention］（StP）＝［Ramp stop］（rMP）． |  |
| ヒロ 5 | $\square\left[\right.$［DC bus maintain tm］${ }^{\square}$ ］to 9，999 s | 9，999 s |
|  | DC bus maintain time if［UnderV．prevention］（StP）＝［DC Maintain］（MMS）． |  |
| t1t－ | －［IGBT TESTS］ |  |
| Strt | $\square$［IGBT test］ | ［Yes］（YES） |
| $\begin{array}{r} n \square \\ \text { YE } \end{array}$ | ［ No ］（ nO ）： No test <br> ［Yes］（YES）：The IGBTs are tested on power up and every time a run command is sent．These tests cause a slight delay（a few ms）．In the event of a fault，the drive will lock．The following faults can be detected： <br> －Drive output short－circuit（terminals U－V－W）：SCF display <br> －IGBT faulty：$x$ tF，where $x$ indicates the number of the IGBT concerned <br> －IGBT short－circuited：x2F，where $x$ indicates the number of the IGBT concerned |  |

\begin{tabular}{|c|c|}
\hline Code \& Name/Description $\quad$ Adjustment range $\quad$ Factory setting <br>
\hline LFL - \& 4-20mA LOSS] <br>
\hline LFL
nロ
yE5
5tE

LFF
rL5
rחP
F5t

dLI \& | [AI2 4-20mA loss] |
| :--- |
| $\square$ [Ignore] ( nO ): Fault ignored. This configuration is the only one possible if [AI2 min. value] (CrL2) page 88 is not greater than 3 mA or if [AI2 Type] (Al2t) page $\underline{88}=[$ Voltage (10U). [Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt) page 135, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [ $2 / 3$ wire control] ( tCC ) and [ 2 wire type] ( tCt ) page 82 if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Switch to fallback speed, maintained as long as the fault is present and the run command is not disabled (1). [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command is not disabled (1). [Ramp stop] (rMP): Stop on ramp [Fast stop] (FSt): Fast stop [DC injection] (dCI): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 124. | <br>

\hline  \& [AI3 4-20mA loss] Can be accessed if a VW3A3202 option card has been inserted.
[Ignore] ( nO ): Fault ignored. This configuration is the only one possible if [Al3 min. value] (CrL3) page 89 is not greater than 3 mA .
[Freewheel] (YES): Freewheel stop.
[Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt) page 135, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [ $2 / 3$ wire control] ( tCC ) and [ 2 wire type] ( tCt ) page $\underline{82}$ if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop.
[fallback spd] (LFF): Switch to fallback speed, maintained as long as the fault is present and the run command is not disabled (1).
[Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command is not disabled (1).
[Ramp stop] (rMP): Stop on ramp
[Fast stop] (FSt): Fast stop
[DC injection] (dCl): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 124. <br>

\hline  \& | [AI4 4-20mA loss] Can be accessed if a VW3A3202 option card has been inserted. [Ignore] ( nO ): Fault ignored. This configuration is the only one possible if [Al4 min. value] (CrL4) page 90 is not greater than 3 mA or if [AI4 Type] (AI4t) page $\underline{90}=[$ Voltage] (10U). [Freewheel] (YES): Freewheel stop. [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt) page 135, without fault tripping. |
| :--- |
| In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [ $2 / 3$ wire control] ( tCC ) and [ 2 wire type] ( tCt ) page $\underline{82}$ if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. [fallback spd] (LFF): Switch to fallback speed, maintained as long as the fault is present and the run command is not disabled (1). [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command is not disabled (1). [Ramp stop] (rMP): Stop on ramp [Fast stop] (FSt): Fast stop [DC injection] (dCl): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 124. | <br>

\hline
\end{tabular}

(1) Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

## Parameter can be accessed in [Expert] mode.

\begin{tabular}{|c|c|}
\hline Code \& Name/Description \(\quad\) Adjustment range \({ }^{\text {F }}\) Factory setting \\
\hline \(\mathrm{InH}-\) \& [FAULT INHBITION] \\
\hline  \& \begin{tabular}{l}
[Fault inhibit assign.] \\
To assign fault inhibit, press the "ENT" key for 2 s . \\
CAUTION \\
Inhibiting faults results in the drive not being protected. This invalidates the warranty. \\
Check that the possible consequences do not present any risk. \\
Failure to follow these instructions can result in equipment damage.
[No] (nO): Function inactive, thereby preventing access to other function parameters.
[LII] (LII)
[...] (...): See the assignment conditions on page 118. \\
If the assigned input or bit is at 0 , fault monitoring is active. If the assigned input or bit is at 1 , fault monitoring is inactive. Active faults are reset on a rising edge (change from 0 to 1 ) of the assigned input or bit. \\
Note: The "Power Removal" function and any faults that prevent any form of operation are not affected by this function. \\
A list of faults affected by this function appears on pages \(\underline{242}\) to \(\underline{247}\).
\end{tabular} \\
\hline \(\mathrm{InH5}\)

nab
Frad

rra \& | [Forced Run] |
| :--- |
| This parameter causes the run command to be forced in a specific direction when the input or bit for fault inhibition is at 1 , with priority over all other commands with the exception of "Power Removal". To assign forced run, press and hold down the "ENT" key for 2 s . [No] (nO): Function inactive [Fw.For.Run] (Frd): Forced forward run. [Rev.For.Run] (rrS): Forced reverse run. |
| ! DANGER |
| UNINTENDED EQUIPMENT OPERATION |
| - Check that it is safe to force the run command. |
| Failure to follow these instructions will result in death or serious injury. | <br>

\hline InHr \& | [Forced Run Ref.] |
| :--- |
| The parameter can be accessed if [Forced Run] (InHS) is not [ No ] (nO) |
| This parameter causes the reference to be forced to the configured value when the input or bit for fault inhibition is at 1 , with priority over all other references. Value $0=$ function inactive. |
| The factory setting changes to 60 Hz if [Standard mot. freq] (bFr) $=[60 \mathrm{~Hz}$ NEMA] (60). | <br>

\hline
\end{tabular}


(1)Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

| Code | Name/Description | Adjustment rang | Factory setting |
| :---: | :---: | :---: | :---: |
| t1d- | - [TORQUE OR I LIM. DETECT.] |  |  |
|  | - [Trq/I limit. Stop] <br> Behavior in the event of switching to torque or current limitation <br> - [Ignore] (nO): Fault ignored <br> - [Freewheel] (YES): Freewheel stop. <br> $\square$ [Per STT] (Stt): Stop according to configuration of [Type of stop] (Stt) page 135, without fault tripping. In this case the fault relay does not open and the drive is ready to restart as soon as the fault disappears, according to the restart conditions of the active command channel (e.g., according to [ $2 / 3$ wire control] (tCC) and [2 wire type] (tCt) page $\underline{82}$ if control is via the terminals). Configuring an alarm for this fault is recommended (assigned to a logic output, for example) in order to indicate the cause of the stop. <br> $\square$ [fallback spd] (LFF): Switch to fallback speed, maintained as long as the fault is present and the run command is not disabled (1). <br> $\square$ [Spd maint.] (rLS): The drive maintains the speed being applied when the fault occurred, as long as the fault is present and the run command is not disabled (1). <br> $\square$ [Ramp stop] (rMP): Stop on ramp <br> - [Fast stop] (FSt): Fast stop <br> $\square$ [DC injection] (dCI): DC injection stop. This type of stop cannot be used with certain other functions. See table on page 124. |  |  |
|  | [Trq/I limit. time out] <br> (If fault has been configured) <br> Time delay for taking SSF "Limitation" fault into account | 0 to 9,999 ms | 1,000 ms |

(1)Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

## Use of the "Pulse input" to measure the speed of rotation of the motor

This function uses the "Pulse input" from the VW3A3202 extension card and can, therefore, only be used if this card has been inserted and if the "Pulse input" is not being used for another function.

## Example of use

A notched disc driven by the motor and connected to a proximity sensor can be used to generate a frequency signal that is proportional to the speed of rotation of the motor.


When applied to the "Pulse input", this signal supports:

- Measurement and display of the motor speed: signal frequency $=1 / \mathrm{T}$. This frequency is displayed by means of the [Pulse in. work. freq.] (FqS) parameter, page 45 or 47 .
- Overspeed detection (if the measured speed exceeds a preset threshold, the drive will trip on a fault).
- Detection of a speed threshold that can be adjusted using [Pulse warning thd.] (FqL) page $\underline{60}$ and is assignable to a relay or logic output, see page 96 .

| Code | Name/Description $\quad$ Adjustment range $\quad$ Factory setting |
| :---: | :---: |
| F 9F- | - [FREQUENCY METER] <br> Can be accessed if a VW3A3202 option card has been inserted |
| $\text { F } 9 F$ $\begin{array}{r} \cap \square \\ y E S \end{array}$ | [Frequency meter] <br> Activation of the speed measurement function. [No] (nO): Function inactive [Yes] (YES): Function active, assignment only possible if no other functions have been assigned to the "Pulse input". |
| F 7 [ | $\square$ [Pulse scal. divisor] <br> Scaling factor for the "Pulse input" (divisor). The frequency measured is displayed by means of the [Pulse in. work. freq.] (FqS) parameter, page 45 or 47. |
| F Я 月 | [Overspd. pulse thd.] <br> Activation and adjustment of overspeed monitoring: [Overspeed] (SOF) fault. [No] (nO): No overspeed monitoring 1 Hz to 30.00 kHz : Adjustment of the frequency tripping threshold on the "Pulse input" divided by [Pulse scal. divisor] (FqC) |
| td5 | 0.0 s to 10.0 s 0.0 s <br> Time delay for taking overspeed fault into account |
| $F d t$ | [Level fr. pulse ctrl] <br> Activation and adjustment of monitoring for the Pulse input (speed feedback): [Speed fdback loss] (SPF) fault <br> $\square$ [No] (nO): No monitoring of speed feedback 0.1 Hz to 500.0 Hz : Adjustment of the motor frequency threshold for tripping a speed feedback fault (difference between the estimated frequency and the measured speed) |

\begin{tabular}{|c|c|c|}
\hline Code \& Name／Description \(\quad\) Adjustment range \& Factory setting \\
\hline \(b r P-\) \& \multicolumn{2}{|l|}{－［DB RES．PROTECTION］} \\
\hline \[
\begin{array}{r}
\text { br } \square \\
\\
\quad \cap \square \\
y E S \\
F L E
\end{array}
\] \& \multicolumn{2}{|l|}{\begin{tabular}{l}
\(\square\)［DB res．protection］
［No］（ nO ）：No braking resistor protection（thereby preventing access to the other function parameters）．
［Alarm］（YES）：Alarm．The alarm may be assigned to a logic output or a relay（see page 96）．
［Fault］（FLt）：Switch to fault（bOF）with locking of drive（freewheel stop）． \\
Note：The thermal state of the resistor can be displayed on the graphic display terminal． It is calculated for as long as the drive control remains connected to the power supply．
\end{tabular}} \\
\hline \[
\begin{gathered}
b r P \\
\text { Cl }
\end{gathered}
\] \& \multicolumn{2}{|l|}{The parameter can be accessed if［DB res．protection］（brO）is not［ No ］（ nO ）． Rated power of the resistor used．} \\
\hline \[
\begin{gathered}
b r u \\
()
\end{gathered}
\] \& \begin{tabular}{l}
［DB Resistor value］ \\
The parameter can be accessed if［DB res．protection］（brO）is not［ No ］（ nO ）． Rated value of the braking resistor in Ohms．
\end{tabular} \& 0．1 Ohm \\
\hline bUF－ \& \multicolumn{2}{|l|}{\begin{tabular}{l}
［BU PROTECTION］ \\
Parameter accessible at and above ATV61HD55M3X，ATV61HD90N4 and ATV61HC11Y．
\end{tabular}} \\
\hline டリレ
\[
\begin{gathered}
n \square \\
\text { YE } 5
\end{gathered}
\] \& \begin{tabular}{l}
［Brake res．fault Mgt］ \\
Management of short－circuit［DB unit sh．circuit］（bUF）and overheating［Internal－th the braking unit．
［Ignore］（nO）：Fault ignored．Configuration to be used if there is no braking connected to the drive．
［Freewheel］（YES）：Freewheel stop
\end{tabular} \& ［Freewheel］（YES） sensor］（InFb）faults in nit or resistor \\
\hline \(t \cap F-\) \& AUTO TUNING FAULT］ \& \\
\hline E \(\cap L\)

пロ
YES \& $\square$［Autotune fault mgt］
［Ignore］（nO）：Fault ignored．
［Freewheel］（YES）：Freewheel stop． \& ［Freewheel］（YES） <br>
\hline
\end{tabular}

## Card pairing

## Function can only be accessed in [Expert] mode.

This function is used to detect whenever a card has been replaced or the software has been modified in any way.
When a pairing password is entered, the parameters of the cards currently inserted are stored. On every subsequent power-up these parameters are verified and in the event of a discrepancy the drive locks in HCF fault mode. Before the drive can be restarted you must revert to the original situation or re-enter the pairing password.

The following parameters are verified:

- The type of card for: all cards
- The software version for: the two control cards, the VW3A3202 extension card, the Controller Inside card and the communication cards
- The serial number for: both control cards

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| PP I - | - [CARDS PAIRING] |  |  |
| PP I | $\square$ [Pairing password] | OFF to 9,999 | [OFF] (OFF) |
|  | The [OFF] (OFF) value signifies that the card pairing function is inactive. <br> The [ON] (On) value signifies that card pairing is active and that an access code must be entered in order to start the drive in the event of a card pairing fault. <br> As soon as the code has been entered the drive is unlocked and the code changes to [ON] (On). <br> - The PPI code is an unlock code known only to Schneider Electric Product Support. |  |  |

## [1.8 FAULT MANAGEMENT] (FLt-)

## Process underload fault

A process underload is detected when the next event occurs and remains pending for a minimum time (ULt), which is configurable:

- The motor is in steady state and the torque is below the set underload limit (LUL, LUn, rMUd parameters).

The motor is in steady state when the offset between the frequency reference and motor frequency falls below the configurable threshold (Srb).


A relay or a logic output can be assigned to the signaling of this fault in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu.

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.

0 Parameter that can be modified during operation or when stopped.

## [1.8 FAULT MANAGEMENT] (FLt-)

## Process overload fault

A process overload is detected when the next event occurs and remains pending for a minimum time (tOL), which is configurable:

- The drive is in current limitation mode.
- The motor is in steady state and the current is above the set overload threshold (LOC).

The motor is in steady state when the offset between the frequency reference and motor frequency falls below the configurable threshold (Srb).
A relay or a logic output can be assigned to the signaling of this fault in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu.

(1)The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) menu.


[^13]| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| LFF - | [FALLBACK SPEED] |  |  |
| LFF | $\square$ [Fallback speed] <br> 0 to 500 or 599 Hz according to rating |  | 0 Hz |
|  | Selection of the fallback speed |  |  |
| F5t- | [RAMP DIVIDER] |  |  |
| $d[F$ | $\square$ [Ramp divider] (1) | 0 to 10 | 4 |
|  | The ramp that is enabled ( dEC or dE 2 ) is then divided by this coefficient when stop requests are sent. Value 0 corresponds to a minimum ramp time. |  |  |
| $d[1-$ | [DC INJECTION] |  |  |
| $\begin{aligned} & 1 d[ \\ & \mathbf{1} \end{aligned}$ | $\square$ [DC inject. level 1] | 0.1 to 1.1 or $1.2 \ln (2)$ according to rating | $0.64 \ln (2)$ |
|  | Level of DC injection braking current activated via logic input or selected as stop mode. |  |  |
|  | CAUTION |  |  |
|  | Check that the motor will withstand this current without overheating. Failure to follow these instructions can result in equipment damage. |  |  |
| td 1 | $\square$ [DC injection time 1] (1) (3) | 0.1 to 30 s | 0.5 s |
|  | Maximum current injection time [DC inject. level 1] (IdC). After this time the injection current becomes [DC inject. level 2] (IdC2). |  |  |
| Id[己 () | $\square[$ [DC inject. level 2] (1) (3) | $0.1 \ln (2)$ to [DC inject. level 1] (IdC) | $0.5 \ln (2)$ |
|  | Injection current activated by logic input or selected as stop mode, once period of time [DC injection time 1] (tdI) has elapsed. |  |  |
|  | CAUTION |  |  |
|  | Check that the motor will withstand this current without overheating. Failure to follow these instructions can result in equipment damage. |  |  |
| $t d[$ | $\square$ [DC injection time 2] (1) (3) | 0.1 to 30 s | 0.5 s |
| 0 | Maximum injection time [DC inject. level 2] (IdC2) (Can be accessed if [Type of stop] (Stt) = [DC injec | on, selected as stop m ()). | de only. |

(1) The parameter can also be accessed in the [1.3 SETTINGS] (SEt-) and [1.7 APPLICATION FUNCT.] (FUn-) menus.
(2) In corresponds to the rated drive current indicated in the Installation Manual and on the drive nameplate.
(3)Warning: These settings are independent of the [AUTO DC INJECTION] (AdC-) function.

## [1.9 COMMUNICATION] (COM-)

With graphic display terminal:


## With integrated display terminal:



## ［1．9 COMMUNICATION］（COM－）

| Code | Name／Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
|  | －［COM．SCANNER INPUT］ <br> Only accessible via graphic display terminal |  |  |
| пПН І | ［Scan．IN1 address］ <br> Address of the $1^{\text {st }}$ input word |  | 3201 |
| пПН己 | $\square$［Scan．IN2 address］ <br> Address of the $2^{\text {nd }}$ input word |  | 8604 |
| пПНヨ | ［Scan．IN3 address］ <br> Address of the $3^{\text {rd }}$ input word |  | 0 |
| пПА | ［Scan．IN4 address］ <br> Address of the $4^{\text {th }}$ input word |  | 0 |
| пПН5 | ［Scan．IN5 address］ <br> Address of the $5^{\text {th }}$ input word |  | 0 |
| пПАБ | ［Scan．IN6 address］ <br> Address of the $6^{\text {th }}$ input word |  | 0 |
| пПН 7 | ［Scan．IN7 address］ <br> Address of the $7^{\text {th }}$ input word |  | 0 |
| пПค日 | ［Scan．IN8 address］ <br> Address of the $8^{\text {th }}$ input word |  | 0 |
|  | ［COM．SCANNER OUTPUT］ <br> Only accessible via graphic display terminal |  |  |
|  | ［Scan．Out1 address］ <br> Address of the $1^{\text {st }}$ output word |  | 8501 |
| п「月己 | ［Scan．Out2 address］ <br> Address of the $2^{\text {nd }}$ output word |  | 8602 |
| п［月 | ［Scan．Out3 address］ <br> Address of the $3^{\text {rd }}$ output word |  | 0 |
| п［ 月 4 | ［Scan．Out4 address］ <br> Address of the $4^{\text {th }}$ output word |  | 0 |
| п 1 月5 | ［Scan．Out5 address］ <br> Address of the $5^{\text {th }}$ output word |  | 0 |
| п［ F E | ［Scan．Out6 address］ <br> Address of the $6^{\text {th }}$ output word |  | 0 |
|  | ［Scan．Out7 address］ <br> Address of the $7^{\text {th }}$ output word |  | 0 |
| п［ A日 | ［Scan．Out8 address］ <br> Address of the $8^{\text {th }}$ output word |  | 0 |


| Code | Name／Description ${ }^{\text {a }}$ Adjustment range | Factory setting |
| :---: | :---: | :---: |
| Пd己－ | ［MODBUS HMI］ <br> Communication with the graphic display terminal |  |
| ヒbr己 | ［HMI baud rate］ <br> 9.6 or 19.2 kbps via the integrated display terminal． <br> 9,600 or 19，200 bauds via the graphic display terminal． <br> The graphic display terminal only operates if［HMI baud rate］（tbr2）$=19,200$ bau In order for any change in the assignment of［HMI baud rate］（tbr2）to be taken in <br> －Provide confirmation in a confirmation window if using the graphic display termi <br> －Press the ENT key for 2 s if using the integrated display terminal | 19.2 kbps <br> （19．2 kbps）． account you must： |
| ヒFロ己 | ［HMI format］ <br> Read－only parameter，cannot be modified． | 8E1 |
| Пd I－ | －［MODBUS NETWORK］ |  |
| Fdd | $\square$［Modbus Address］ OFF to 247 | OFF |
| АПロ | ［Modbus add Prg C．］ <br> Modbus address of the Controller Inside card OFF at 247 <br> The parameter can be accessed if the Controller Inside card has been inserted and configuration（please consult the specific documentation）． | OFF <br> depending on its |
| АПロ | ［Modbus add Com．C．］ <br> Modbus address of the communication card <br> OFF to 247 <br> The parameter can be accessed if a communication card has been inserted and configuration（please consult the specific documentation）． | OFF <br> pending on its |
| Ebr | ［Modbus baud rate］ <br> 4．8－9．6－19．2－38．4 kbps on the integrated display terminal． $4,800,9,600,19,200$ or 38,400 bauds on the graphic display terminal． | $19.2 \text { kbps }$ |
| EFO | $\square$［Modbus format］ $801 \text { - 8E1 - 8n1, 8n2 }$ | 8E1 |
| ヒヒロ | ［Modbus time out］ $0.1 \text { to } 30 \text { s }$ | $10.0 \mathrm{~s}$ |
| ［ п ロ－ | －［CANopen］ |  |
| Fd［ | $\square$［CANopen address］ OFF to 127 | OFF |
| bd［口 | $\square$［CANopen bit rate］ <br> $50-125-250-500 \mathrm{kbps}-1 \mathrm{Mbps}$ | $125 \text { kbps }$ |
| Erco | ［Error code］ <br> Read－only parameter，cannot be modified． |  |



## [1.10 DIAGNOSTICS]

This menu can only be accessed with the graphic display terminal:




Output frequency
Elapsed time
Mains voltage
Motor thermal state
Command Channe
Channel ref. active

| RUN $\quad$ Term | +0.00 Hz |
| :--- | :--- |
| MORE FAULT INFO |  |
| Network fault | 0 |
| Application fault | 0 |
| Internal link fault 1 | 0 |
| Internal link fault 2 | 0 |
|  |  |
| Code | T/K |

This screen indicates the number of communication faults, for example, with the option cards.
Number: 0 to 65,535

## ［1．10 DIAGNOSTICS］

［TEST THYRISTORS］is only accessible for ATV61 $\bullet \bullet M 3 \geqslant 18.5 \mathrm{~kW}$ ，ATV61ゃゃゃN4 drives＞ 18.5 kW ，and all ratings of ATV61ゃeゃY drives．



|  | RDY Term | +50.00 Hz REM |
| :---: | :---: | :---: |
|  | TRANSISTOR RESULT |  |
| The result for each IGBT is displayed on 2 lines： <br> －The first line shows whether or not it has short－circuited <br> －The second line shows whether or not it is open | IGBT 1 | OK |
|  | IGBT 1 | OK |
|  | IGBT 2 | OK |
|  | IGBT 2 | Open |
|  | IGBT 3 | OK |
|  |  | T／K |
|  | IGBT 3 | OK |
|  | IGBT 4 | OK |
|  | IGBT 4 | OK |
|  | IGBT 5 | OK |
|  | IGBT 5 | OK |
|  | IGBT 6 | short－circuit |
|  | IGBT 6 | OK |
|  | IGBT 1B（1） | OK |
|  | IGBT 1B（1） | Open |
|  | IGBT 2B（1） | OK |
|  | IGBT 2B（1） | OK |
|  | ．．．（1） |  |
|  | IGBT 6B（1） | short－circuit |
|  | IGBT 6B（1） | OK |

Note：To start the tests，press and hold down（2s）the ENT key．
（1）Test results for Thyristor $4 \ldots 12$ and IGBT 1B ．．．6B are only accessible for ATV61EC90N4 to M14N4 and ATV61EM15Y to M24Y


The [1.11 IDENTIFICATION] menu can only be accessed on the graphic display terminal.
This is a read-only menu that cannot be configured. It enables the following information to be displayed:

- Drive reference, power rating and voltage
- Drive software version
- Drive serial number
- Type of options present, with their software version


## With graphic display terminal:



## With integrated display terminal:



The [1.12 FACTORY SETTINGS] (FCS-) menu is used to:

- Replace the current configuration with the factory configuration or a configuration saved previously. All or part of the current configuration can be replaced: Select a group of parameters in order to select the menus you wish to load with the selected source configuration.
- Save the current configuration to a file.

| RUN | Term | 1250A | +50.00 | ENT | RUN | Term | 1250A | $+50.00 \mathrm{~Hz}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.12 FACTORY SETTINGS |  |  |  |  | Config. Source |  |  |  |
| Config | ource | : Ma | ro-Conf |  | Macro | onf |  | $\checkmark$ |
| PARAMETER GROUP LIST Goto FACTORY SETTINGS Save config |  |  | No |  | Config 1 Config 2 |  |  |  |
|  |  |  |  |  |  |  |  |
| Code | << | >> |  | T/K |  |  |  |  | T/K |

Selection of source configuration

Selection of the menus to be replaced

Note: In factory configuration and after a return to "factory settings", [PARAMETER GROUP LIST] will be empty.

Command to return to "factory settings"

This window appears if no group of parameters is selected.

\begin{tabular}{|c|c|}
\hline Code \& Name／Description \\
\hline F[5 I
\[
\begin{array}{rll}
\ln \& 1 \\
C \& F \& 1 \\
C \& F \& 1 \\
\hline
\end{array}
\] \& \begin{tabular}{l}
［Config．Source］ \\
Choice of source configuration．The parameter cannot be accessed if the drive has locked on an ［Incorrect config．］（CFF）fault．
［Macro－Conf］（Inl）Factory configuration，return to selected macro configuration．
［Config 1］（CFG1）
［Config 2］（CFG2） \\
If the configuration switching function is configured，it will not be possible to access［Config 1］（CFG1）and ［Config 2］（CFG2）．
\end{tabular} \\
\hline  \& \begin{tabular}{l}
［PARAMETER GROUP LIST］ \\
Selection of menus to be loaded
［AII］（ALL）：All parameters．
［Drive configuration］（drV）：The［1 DRIVE MENU］menu without［1．9 COMMUNICATION］and［1．14 PROGRAMMABLE CARD］．In the［7 DISPLAY CONFIG．］menu，［Return std name］page 236 returns to［No］．
［Settings］（SEt）：The［1．3 SETTINGS］menu without the［IR compensation］（UFr），［Slip compensation］（SLP） and［Mot．therm．current］（ItH）parameters．
［Motor param］（MOt）：Motor parameters，see list below． \\
The following selections can only be accessed if［Config．Source］（FCSI）＝［Macro－Conf．］（InI）： \\
\(\square\)［Comm．menu］（COM）：The［1．9 COMMUNICATION］menu without either［Scan．IN1 address］（nMA1）to ［Scan．IN8 address］（nMA8）or［Scan．Out1 address］（nCA1）to［Scan．Out8 address］（nCA8）． \\
\(\square\)［Prog．card menu］（PLC）：the［1．14 PROGRAMMABLE CARD］menu． \\
\(\square\)［Monitor config．］（MOn）：The［6 MONITORING CONFIG．］menu． \\
\(\square\)［Display config．］（dIS）：the［7 DISPLAY CONFIG．］menu． \\
See the multiple selection procedure on page \(\underline{26}\) for the integrated display terminal and page \(\underline{17}\) for the graphic display terminal． \\
Note：In factory configuration and after a return to＂factory settings＂，［PARAMETER GROUP LIST］will be empty．
\end{tabular} \\
\hline LF 5

n
YE

S \& | ［Goto FACTORY SETTINGS］ |
| :--- |
| It is only possible to revert to the factory settings if at least one group of parameters has previously been selected． |
| With the integrated display terminal： |
| －No |
| －Yes：The parameter changes back to nO automatically as soon as the operation is complete． |
| With the graphic display terminal：See the previous page． | <br>

\hline \[
$$
\begin{aligned}
& 5[51 \\
& n 0 \\
& 5 t r \square \\
& 5 t r r \\
& 5 t r e
\end{aligned}
$$

\] \& | ［Save config］ ［No］（nO）： ［Config 0］（Stro）：Press the＂ENT＂key for 2 s ． ［Config 1］（Str1）：Press the＂ENT＂key for 2 s ． ［Config 2］（Str2）：Press the＂ENT＂key for 2 s ． |
| :--- |
| The active configuration to be saved does not appear for selection．For example，if the active configuration is ［Config 0］（Str0），only［Config 1］（Str1）and［Config 2］（Str2）appear．The parameter changes back to［ No ］（ nO ） automatically as soon as the operation is complete． | <br>

\hline
\end{tabular}

## List of motor parameters

## ［1．4 MOTOR CONTROL］（drC－）menu：

［Rated motor power］（nPr）－［Rated motor volt．］（UnS）－［Rated mot．current］（nCr）－［Rated motor freq．］（FrS）－［Rated motor speed］（nSP）－ ［Auto tuning］（tUn）－［Auto tuning status］（tUS）－［U／F Profile］（PFL）－［U0］（U0）to［U5］（U5）－［F1］（F1）to［F5］（F5）－［V．constant power］ （UCP）－［Freq．Const Power］（FCP）－［Nominal I sync．］（nCrS）－［Nom motor spdsync］（nSPS）－［Pole pairs］（PPnS）－［Syn．EMF constant］ （PHS）－［Autotune L d－axis］（LdS）－［Autotune L q－axis］（LqS）－［Cust．stator R syn］（rSAS）－［IR compensation］（UFr）－［Slip compensation］ （SLP）－motor parameters that can be accessed in［Expert］mode，page 74.
［1．3 SETTINGS］（SEt－）menu：
［Mot．therm．current］（ItH）

## Example of total return to factory settings

1．$[$ Config．Source］（FCSI）$=[$ Macro－Conf（InI）
2．［PARAMETER GROUP LIST］（FrY－）$=[$ All］ （ALL）
3．［Goto FACTORY SETTINGS］（GFS＝YES）

## [1.13 USER MENU] (USr-)

This menu contains the parameters selected in the [7 DISPLAY CONFIG.] menu on page 235 .

## With graphic display terminal:



## With integrated display terminal:



## [1.14 PROGRAMMABLE CARD] (PLC-)

This menu can only be accessed if a Controller Inside card has been inserted. Please refer to the documentation specific to this card.

## With graphic display terminal:



## With integrated display terminal:



## [3. OPEN / SAVE AS]

This menu can only be accessed with the graphic display terminal.

[OPEN]: To download one of the 4 files from the graphic display terminal to the drive. [SAVE AS]: To download the current configuration from the drive to the graphic display terminal.


Various messages may appear when the download is requested:

- [IN PROGRESS]
- [DONE]
- Error messages if download not possible
- [Motor parameters are NOT COMPATIBLE. Do you want to continue?]: In this case the download is possible, but the parameters will be restricted.


## [DOWNLOAD GROUP]

| [None]: |  | No parameters |
| :---: | :---: | :---: |
| [AII]: |  | All parameters in all menus |
| [Drive configuration]: |  | The entire [1 DRIVE MENU] without [1.9 COMMUNICATION] and [1.14 PROGRAMMABLE CARD]. |
| [Motor parameters]: | [Rated motor power] (nPr) | in the [1.4 MOTOR CONTROL] (drC-) menu |
|  | [Rated motor volt.] (UnS) |  |
|  | [Rated mot. current] ( nCr ) |  |
|  | [Rated motor freq.] (FrS) |  |
|  | [Rated motor speed] (nSP) |  |
|  | [Auto tuning] (tUn) |  |
|  | [Auto tuning status] (tUS) |  |
|  | [U/F Profile] (PFL) |  |
|  | [U0] (U0) to [U5] (U5) |  |
|  | [F1] (F1) to [F5] (F5) |  |
|  | [V. constant power] (UCP) |  |
|  | [Freq. Const Power] (FCP) |  |
|  | [Nominal I sync.] (nCrS) |  |
|  | [Nom motor spdsync] (nSPS) |  |
|  | [Pole pairs] (PPnS) |  |
|  | [Syn. EMF constant] (PHS) |  |
|  | [Autotune L d-axis] (LdS) |  |
|  | [Autotune L q-axis] (LqS) |  |
|  | [Cust. stator R syn] (rSAS) |  |
|  | [IR compensation] (UFr) |  |
|  | [Slip compensation] (SLP) |  |
|  | The motor parameters that can be accessed in [Expert] mode, page 74 |  |
|  | [Mot. therm. current] (ItH) | in the [1.3 SETTINGS] (SEt-) menu |
| [Communication]: |  | All the parameters in the [1.9 COMMUNICATION] menu |
| [Prog. control. inside card]: |  | All the parameters in the [1.14 PROGRAMMABLE CARD] menu |

## With graphic display terminal:



## With integrated display terminal:



Enables the configuration to be protected with an access code or a password to be entered in order to access a protected configuration.
Example with graphic display terminal:

| RUN Term | +50.00 | Hz REM |
| :---: | :---: | :---: |
| 4 PASSWORD |  |  |
| Status | : | Unlocked |
| PIN code 1 | : | Unlocked |
| PIN code 2 | : | Unlocked |
| Upload rights | : | Permitted |
| Download rights | : | Unlock. drv |
| Code << | >> | T/K |

- The drive is unlocked when the PIN codes are set to [Unlocked] (OFF) (no password) or when the correct code has been entered. All menus are visible.
- Before protecting the configuration with an access code, you must:
- Define the [Upload rights] (ULr) and [Download rights] (dLr).
- Make a careful note of the code and keep it in a safe place where you will always be able to find it.
- The drive has 2 access codes, enabling 2 access levels to be set up.
- PIN code 1 is a public unlock code: 6969.
- PIN code 2 is an unlock code known only to Schneider Electric Product Support. It can only be accessed in [Expert] mode.
- Only one PIN1 or PIN2 code can be used - the other must remain set to [OFF] (OFF).

Note: When the unlock code is entered, the user access code appears.
The following items are access-protected:

- Return to factory settings ( [1.12 FACTORY SETTINGS] (FCS-) menu.
- The channels and parameters protected by the [1.13 USER MENU] as well as the menu itself.
- The custom display settings ([7 DISPLAY CONFIG.] menu).

| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| [5t | [Status] <br> Information parameter, cannot be modified. [Locked] (LC): The drive is locked by a password. [Unlocked] (ULC): The drive is not locked by a password. |  |  |
| [ पd | $1^{\text {st }}$ access code. The value [OFF] (OFF) indicates that no password has been set [Unlocked]. The value [ON] (On) indicates that the drive is protected and an access code must be entered in order to unlock it. Once the correct code has been entered, it remains on the display and the drive is unlocked until the next time the power supply is disconnected. <br> - PIN code 1 is a public unlock code: 6969. |  |  |
| [口d己 | [PIN code 2] <br> Parameter can only be accessed in [Expert] mode. $2^{\text {nd }}$ access code. The value [OFF] (OFF) indicates that no pas [ON] (On) indicates that the drive is protected and an access the correct code has been entered, it remains on the display power supply is disconnected. <br> - PIN code 2 is an unlock code known only to Schneider <br> When [PIN code 2] (COd2) is not set to OFF, the [1.2 MONITOR if [PIN code 2] (COd2) is set to OFF (drive unlocked), all men <br> If the display settings are modified in [7 DISPLAY CONFIG.] OFF, the visibility configured is kept. Then if [PIN code 2] (CO configured in [7 DISPLAY CONFIG.] menu is kept. | OFF to 9,999 <br> word has been set [U de must be entered and the drive is unlock <br> ectric Product Suppo <br> RING] (SUP-) menu is s are visible. <br> enu, and if [PIN code d2) is set to OFF (driv | [OFF] (OFF) <br> cked]. The value rder to unlock it. Once until the next time the <br> only one visible. Then <br> (COd2) is not set to unlocked), the visibility |
| $U L r$ ULr ULr | $\square$ [Upload rights] <br> Read or copy the current configuration to the drive [Permitted] (ULrO): The current drive configuration can al or PC-Software. [Not allowed] (ULr1): The current drive configuration can or PC-Software if the drive is not protected by an access code | s be uploaded to <br> ly be uploaded to th or if the correct cod | [Permitted] (ULr0) <br> raphic display terminal <br> raphic display terminal s been entered. |
| $\begin{aligned} & d L r \\ & d L r \square \\ & d L r \quad 1 \\ & d L r e \\ & d L r \exists \end{aligned}$ | [Download rights] <br> Writes the current configuration to the drive or downloads a [Locked drv] (dLr0): A configuration file can only be down access code, which is the same as the access code for the [Unlock. drv] (dLr1): A configuration file can be download be modified if the drive is unlocked (access code entered) or [not allowed] (dLr2): Download not authorized. [Lock/unlock] (dLr3): Combination of [Locked drv] (dLrO) | nfiguration to the drive aded to the drive if nfiguration to be dow d to the drive or a co not protected by a | [Unlock. drv] (dLr1) <br> rive is protected by an aded. uration in the drive can cess code. |

## [6 MONITORING CONFIG.]

This menu can only be accessed with the graphic display terminal.


This can be used to configure the information displayed on the graphic display screen during operation.

[6.1 PARAM. BAR SELECT]: Selection of 1 to 2 parameters displayed on the top line (the first 2 cannot be modified).
[6.2. MONITOR SCREEN TYPE]: Selection of parameters displayed in the centre of the screen and the display mode (values in digita or bar graph format).
[6.3. COM. MAP CONFIG.]: Selection of the words displayed and their format.

## Name/Description

## [6.1 PARAM. BAR SELECT]

[Alarm groups]
[Frequency ref.]
[Output frequency]
[Motor current]
[Motor speed]
[Motor voltage]
[Motor power]
[Motor torque]
[Mains voltage]
[Motor thermal state]
[Drv. thermal state]
[DBR thermal state]
[Input Power]
[Consumption]
[Run time]
[Power on time]
[IGBT alarm counter]
[PID reference]
[PID feedback]
[PID error][PID Output][--- - 2] to[--- - 6][Config. active]
[Utilised param. set][Local / Remote]
in Hz : parameter displayed in factory configuration
in Hz
in A
in rpm
in V
in W
as a \%
in V
as a \%
as a \%
as a \%
in W or kW depending on drive rating
in Wh or kWh depending on drive rating
in hours (length of time the motor has been switched on)
in hours (length of time the drive has been switched on)
in seconds (total time of IGBT overheating alarms)
as a \%
as a \%
as a \%
in Hz
Word generated by the Controller Inside card (can be accessed if the card has been inserted)
Word generated by the Controller Inside card (can be accessed if the card has been inserted)
CNFO, 1 or 2 (see page 178)
SET1, 2 or 3 (see page 176)
Display factory configuration. "LOC" appears if the command and reference are set via the graphic display terminal; otherwise, "REM" appears. This corresponds to the state selected by the [T/K] function key, page 122.

[^14]Example:


## Name/Description

## [6.2. MONITOR SCREEN TYPE]

## - [Display value type]

$\square$ [Digital]: Display of one or two digital values on the screen (factory configuration).

[Bar graph]: Display of one or two bar graphs on the screen.
$\square$ [List]: Display a list of between one and five values on the screen.
$\square$ [PARAMETER SELECTION]

[Frequency ref.]
[Output frequency]
[Motor current]
[Mot speed][Motor power]
[Motor torque]
[Mains voltage]
[Motor thermal state]
[Div. thermal state]
[DBR thermal state]
[Input Power]
[Run
time][IGBT alarm counter]
[PID reference]
[PID feedback]
[PID error]
[
to
[-- - 6]
[Config. active]
[Utilised param. set]
Select the parameters) using ENT (athen appears next to the parameter). Parameter(s) can also be deselected using ENT

Examples:

Display of 2 digital values

| RUN | Term +35.00 Hz REM |  |
| :---: | :---: | :---: |
| Motor speed |  |  |
| $1,250 \mathrm{rOm}$ |  |  |
| Motor current |  |  |
| 80 A |  |  |
|  | T/K |  |

Display of 2 bar graphs


Display of a list of 5 values

| RUN | Term | +35.00 Hz |
| :--- | :---: | ---: |
| MONITORING |  |  |
| Frequency ref. | $:$ | 50.1 Hz |
| Motor current | $:$ | 80 A |
| Motor speed | $:$ | $1,250 \mathrm{rpm}$ |
| Motor thermal state | $:$ | $80 \%$ |
| Dry thermal state | $:$ | $80 \%$ |
|  |  | $\mathrm{~T} / \mathrm{K}$ |

## [6.3. COM. MAP CONFIG.]

## [Word 1 add. select.]

Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.

## [Format word 1]

Format of word 1.

- 

$\square$ [Signed]: Decimal with sign
$\square$ [Unsigned]: Decimal without sign

## [Word 2 add. select.]

Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.

## [Format word 2]

Format of word 2.
$\square$ [Hex](Hexadecimal): Hexadecimal
$\square$ [Signed]: Decimal with sign
$\square$ [Unsigned]: Decimal without sign

## [Word 3 add. select.]

Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.

## - [Format word 3]

Format of word 3.[Hex](Hexadecimal): Hexadecimal[Signed]: Decimal with sign
$\square$ [Unsigned]: Decimal without sign

## [Word 4 add. select.]

Select the address of the word to be displayed by pressing the <<, >> (F2 and F3) keys and rotating the navigation button.

## - [Format word 4]

Format of word 4.[Hex](Hexadecimal): Hexadecimal[Signed]: Decimal with sign
$\square$ [Unsigned]: Decimal without sign
It will then be possible to view the selected words in the [COMMUNICATION MAP] submenu of the [1.2 MONITORING] menu. Example:

| RUN | Term | +35.00 Hz | REM |
| :---: | :---: | :---: | :---: |
| COMMUNICATION MAP |  |  |  |
| --------- |  |  |  |
| W3141 | : F230 Hex |  |  |
|  | << |  | T/K |

## [7 DISPLAY CONFIG.]

This menu can only be accessed with the graphic display terminal. It can be used to customize parameters or a menu and to access parameters.

7.1 USER PARAMETERS: Customization of 1 to 15 parameters.
7.2 USER MENU: Creation of a customized menu.
7.3 PARAMETER ACCESS: Customization of the visibility and protection mechanisms of menus and parameters.
7.4 KEYPAD PARAMETERS: Adjustment of the contrast and stand-by mode of the graphic display terminal (parameters stored in the terminal rather than in the drive). Choice of the menu displayed on power up.

If [Return std name] = [Yes] the display reverts to standard but the custom settings remain stored.


Once you have entered the unit, if you press ENT, the Ramp increment screen will re-appear in order to display the name. Press ESC to return to Unit.


| RDY | Term | $+0.00 \mathrm{~Hz}$ | REM |
| :---: | :---: | :---: | :---: |
| USER MENU NAME |  |  |  |
| FLOW REFERENCE |  |  |  |
| Nb characters max. |  | 18 |  |
| ABC | << | >> | T/K |

Names (USER MENU NAME, DRIVE NAME, configuration, serial no., lines of messages, names of units, etc.) are customized as in the example of the parameter name shown opposite. If no custom settings have been made, the standard value appears (names, units, etc.). Display on 1 or 2 lines of characters.
Use F1 to change to ABC, abc, 123, *[-.
Use the navigation selector button to increment the character (alphabetical order) and << and >> (F2 and F3) to switch to the next or previous character respectively.


Use the F2 and F3 keys to arrange the parameters in the list (example below using F3).

| RDY | Term | +0.00 Hz | REM |
| :--- | :--- | :--- | :--- |
| SELECTED LIST |  |  |  |
| Acceleration |  |  |  |
| Ramp increment |  |  |  |
| Speed prop. gain |  |  |  |
|  |  |  |  |
| Delete | Up | Down |  |



No selections can be made in this screen if there are no parameters.


Note: The protected parameters are no longer accessible and are not, therefore, displayed for the selected channels.

| RDY | Term | +0.00 Hz | REM |
| :--- | :--- | ---: | ---: |
| 7.4 KEYPAD PARAMETERS |  |  |  |
| Keypad contrast |  |  |  |
| Keypad stand-by <br> Power up menu |  |  |  |
|  |  |  |  |
| Code | << | $\gg$ | T/K |


| Name/Description | Adjustment range | Factory setting |
| :--- | :--- | :--- |
| $\square$[Keypad contrast] <br> Adjustment of contrast on the graphic display unit | 0 to $100 \%$ | $50 \%$ |
|  |  |  |

## [Keypad stand-by]

Configures and adjusts the stand-by mode of the graphic display unit.
$\square$ [No]: No stand-by mode.
$\square$ [1] to [10]: Adjusts the time during which the terminal is to remain idle before stand-by mode is triggered, in minutes. After this idle time, the display backlight turns off and the contrast is reduced. The screen returns to normal operation when a key or the navigation button is pressed. It also returns to normal operation if the terminal exits the normal display mode, for example, if a fault occurs.

## - [Power up menu]

[Main menu]

Choice of menu which appears on the product on power-up
$\square$ [Drive configuration]: Displays the drive configuration.
$\square$
[Sim. start]: Displays the simply start menu.[Monitoring]: Displays the monitoring menu.[Settings]: Displays the settings menu.[Mot. Ctrl]: Displays the control motor menu.
$\square$ [I/O Conf.]: Displays the inputs / outputs configuration menu.[Command]: Displays the command menu.[Appli. fun.]: Displays the application function menu.[Fault mgt]: Displays the fault management menu.[Com.]: Displays the communication menu.[Diagnostics]: Displays the diagnostics menu.[Ident.]: Displays the identification menu.[Factory Set.]: Displays the factory settings menu.
[User menu]: Displays the user menu.
[Cl menu]: Displays the card Cl menu.
[Main menu]: Displays the main menu.

Communication is possible between a graphic display terminal and a number of drives connected on the same bus. The addresses of the drives must be configured in advance in the [1.9 COMMUNICATION] menu using the [Modbus Address] (Add) parameter, page 217 .

When a number of drives are connected to the same display terminal, the terminal automatically displays the following screens:


In multipoint mode, the command channel is not displayed. The state, then the 2 selected parameters and the drive address appear from left to right.

All menus can be accessed in multipoint mode. Only drive control via the graphic display terminal is not authorized, apart from the Stop key, which locks all the drives.
If there is a fault on a drive, this drive is displayed.

## Servicing

The Altivar 61 does not require any preventive maintenance. It is nevertheless advisable to perform the following regularly:

- Check the condition and tightness of the connections.
- Ensure that the temperature around the unit remains at an acceptable level and that ventilation is effective (average service life of fans: 3 to 5 years depending on the operating conditions).
- Remove any dust from the drive.


## Assistance with maintenance, fault display

If a problem arises during setup or operation, first check that the recommendations relating to the environment, mounting and connections have been observed.

The first fault detected is saved and displayed, and the drive locks.
The drive switching to fault mode can be indicated remotely via a logic output or a relay, which can be configured in the [1.5 INPUTS / OUTPUTS CFG] (I-O-) menu, see, for example, [R1 CONFIGURATION] (r1-) page $\underline{96}$.

## [1.10 DIAGNOSTICS] menu

This menu can only be accessed with the graphic display terminal. It displays faults and their cause in plain text and can be used to carry out tests, see page $\underline{219}$.

## Clearing the fault

Disconnect the drive power supply in the event of a non-resettable fault. Wait for the display to disappear completely.
Find the cause of the fault in order to correct it.
The drive is unlocked after a fault:

- By switching off the drive until the display disappears completely, then switching on again
- Automatically in the scenarios described for the [AUTOMATIC RESTART] (Atr-) function, page 193
- By means of a logic input or control bit assigned to the [FAULT RESET] (rSt-) function, page 192
- By pressing the STOP/RESET button on the graphic display terminal


## [1.2 MONITORING] (SUP-) menu:

This is used to prevent and find the causes of faults by displaying the drive state and its current values. It can be accessed with the integrated display terminal.

## Spares and repairs:

Consult Schneider Electric product support.

## Starter does not start，no fault displayed

－If the display does not light up，check the power supply to the drive．
－The assignment of the＂Fast stop＂or＂Freewheel＂functions will prevent the drive starting if the corresponding logic inputs are not powered up．The ATV61 then displays［Freewheel］（nSt）in freewheel stop and［Fast stop］（FSt）in fast stop．This is normal since these functions are active at zero so that the drive will be stopped safely if there is a wire break．
－Make sure that the run command input or inputs are activated in accordance with the selected control mode（［2／3 wire control］（tCC） and［2 wire type］（tCt）parameters，page 82）．
－If the reference channel or command channel is assigned to a communication bus，when the power supply is connected，the drive will display［Freewheel］（nSt）and remain in stop mode until the communication bus sends a command．

## Faults，which cannot be reset automatically

The cause of the fault must be removed before resetting by turning off and then back on．
Al2F，EnF，SOF，SPF，and tnF faults can also be reset remotely by means of a logic input or control bit（［Fault reset］（rSF）parameter， page 192）．
EnF，InFA，InFb，SOF，SPF，and tnF faults can be inhibited and cleared remotely by means of a logic input or control bit（［Fault inhibit assign．］（ InH ）parameter，page 203）．

| Fault | Name | Probable cause | Remedy |
| :---: | :---: | :---: | :---: |
| －İF | ［AI2 input］ | －Non－conforming signal on analog input AI2 | －Check the wiring of analog input Al2 and the value of the signal <br> －If necessary，modify the fault configuration via［AI2 4－20mA loss］（LFL2），page 202 |
| bロF | ［DBR overload］ | －The braking resistor is under excessive stress | －Check the size of the resistor and wait for it to cool down <br> －Check the［DB Resistor Power］（brP）and［DB Resistor value］ （brU）parameters，page 208. |
| bUF | ［DB unit sh．Circuit］ | －Short－circuit output from braking unit <br> －Braking unit not connected | －Check the wiring of the braking unit and the resistor <br> －Check the braking resistor <br> －The monitoring of this fault must be disabled by the［Brake res．fault Mgt］（bUb）parameter，page 208 if there is no braking unit or resistor connected to the drive，at and above $55 \mathrm{~kW}(75 \mathrm{HP})$ for ATV61HeeゃM3X and at and above 90 kW （120 HP）for ATV61HeeeN4． |
| ［rFl | ［Precharge］ | －Load relay control fault or charging resistor damaged | －Switch the drive off and then back on again <br> －Check the internal connections <br> －Inspect／repair the drive |
| ［rF己 | ［Thyr．soft charge］ | －DC bus charging fault（thyristors） |  |
| $d[F$ | ［Differential curent Fault］ | －Current difference between power block A and B（ATV61EC60 ．．．M14N4 or ATVEM15．．．M24Y only） | －Check thyristor with［TEST THYRISTORS］ <br> －Check IGBT with［TRANSISTOR TEST］ <br> －Check current transformer |
| EEFI | ［Control Eeprom］ | －Internal memory fault，control card | －Check the environment（electromagnetic compatibility） <br> －Turn off，reset，return to factory settings <br> －Inspect／repair the drive |
| EEF己 | ［Power Eeprom］ | －Internal memory fault，power card |  |
| $E \cap F$ | ［Encoder］ | －Encoder feedback fault | －Check［Number of pulses］（PGI）and［Encoder type］（EnS） page 75 <br> －Check that the encoder＇s mechanical and electrical operation，its power supply and connections are all correct <br> －If necessary，reverse the direction of rotation of the motor （［Output Ph rotation］（PHr）parameter，page 68）or the encoder signals |
| F［FI | ［Out．contact． stuck］ | －The output contactor remains closed although the opening conditions have been met | －Check the contactor and its wiring <br> －Check the feedback circuit |
| $F$ d | ［Damper open］ | －The damper remains open although the closing conditions have been met | －Check the damper and its wiring <br> －Check the feedback circuit <br> －Check the time delay for the function，page 174 |
| $H d F$ | [IGBT desaturation］ | －Short－circuit or grounding at the drive output | －Check the cables connecting the drive to the motor，and the insulation of the motor <br> －Perform the diagnostic tests via the［1．10 DIAGNOSTICS］ menu． |

Faults, which cannot be reset automatically (continued)

| Fault | Name | Probable cause | Remedy |
| :---: | :---: | :---: | :---: |
| ILF | [internal com. link] | - Communication fault between option card and drive | - Check the environment (electromagnetic compatibility) <br> - Check the connections <br> - Check that no more than 2 option cards (max. permitted) have been installed on the drive <br> - Replace the option card <br> - Inspect/repair the drive |
| $1 n F \mid$ | [Rating error] | - The power card is different from the card stored | - Check the reference of the power card |
| $\operatorname{InF} 2$ | [Incompatible PB] | - The power card is incompatible with the control card | - Check the reference of the power card and its compatibility |
| $1 \mathrm{FF} \mathrm{\exists}$ | [Internal serial link] | - Communication fault between the internal cards | - Check the internal connections <br> - Inspect/repair the drive |
| $\operatorname{InF} 4$ | [Internal MFG area] | - Internal data inconsistent | - Recalibrate the drive (performed by Schneider Electric Product Support) |
| $1 n F 6$ | [Internal-option] | - The option installed in the drive is not recognized | - Check the reference and compatibility of the option |
| $\operatorname{lnF} 7$ | [Internal-hard init.] | - Initialization of the drive is incomplete | - Turn off and reset |
| $1 \cap F B$ | [Internal-ctrl supply] | - The control power supply is incorrect | - Check the control section power supply |
| 1 nF 9 | [InternalI measure] | - The current measurements are incorrect | - Replace the current sensors or the power card <br> - Inspect/repair the drive |
| 1 nFR | [Internal-mains circuit] | - The input stage is not operating correctly | - Perform the diagnostic tests via the [1.10 DIAGNOSTICS] menu. <br> - Inspect/repair the drive |
| 1 nFb | [Internal- th. sensor] | - The drive temperature sensor is not operating correctly <br> - The braking unit's temperature sensor is not operating correctly | - Replace the temperature sensor <br> - Inspect/repair the drive <br> - Replace the braking unit's temperature sensor <br> - Inspect/repair the braking unit <br> - The monitoring of this fault must be disabled by the [Brake res. fault Mgt] (bUb) parameter, page 208 if there is no braking unit connected to the drive |
| $1 \cap F C$ | [Internal-time meas.] | - Fault on the electronic time measurement component | - Inspect/repair the drive |
| $\operatorname{InFE}$ | [internal- CPU] | - Internal microprocessor fault | - Turn off and reset. Inspect/repair the drive |
| $\square[F$ | [Overcurrent] | - Parameters in the [SETTINGS] (SEt-) and [1.4 MOTOR CONTROL] (drC-) menus are not correct <br> - Inertia or load too high <br> - Mechanical locking | - Check the parameters <br> - Check the size of the motor/drive/load <br> - Check the state of the mechanism |
| PrF | [Power removal] | - Fault with the drive's "Power removal" safety function | - Inspect/repair the drive |
| $5[F 1$ | [Motor short circuit] | - Short-circuit or grounding at the drive output <br> - Significant earth leakage current at the drive output if several motors are connected in parallel | - Check the cables connecting the drive to the motor, and the insulation of the motor <br> - Perform the diagnostic tests via the [1.10 DIAGNOSTICS] menu. <br> - Reduce the switching frequency <br> - Connect chokes in series with the motor <br> - Check the adjustment of speed loop and brake <br> - If [Energy Sav.] (nLd) motor control type is used, change to an U/F type. |
| 5[F2 | [Impedant sh. circuit] |  |  |
| $5[F \exists$ | [Ground short circuit] |  |  |
| $5 \square F$ | [Overspeed] | - Instability or driving load too high | - Check the motor, gain and stability parameters <br> - Add a braking resistor <br> - Check the size of the motor/drive/load <br> - Check the parameter settings for the [FREQUENCY METER] (FqF-) function, page 207, if it is configured |

Faults - Causes - Remedies

## Faults, which cannot be reset automatically (continued)

| Fault | Name | Probable cause | Remedy |
| :---: | :---: | :---: | :---: |
| $5 P F$ | [Speed fdback loss] | - Encoder feedback signal missing <br> - No signal on "Pulse input", if the input is used for speed measurement | - Check the wiring between the encoder and the drive <br> - Check the encoder <br> - Check the wiring of the input and the detector used |
| $t \cap F$ | [Auto-tuning] | - Special motor or motor whose power is not suitable for the drive <br> - Motor not connected to the drive | - Check that the motor/drive are compatible <br> - Check that the motor is present during auto-tuning <br> - If an output contactor is being used, close it during autotuning |

## Faults that can be reset with the automatic restart function，after the cause has disappeared

These faults can also be reset by turning on and off or by means of a logic input or control bit（［Fault reset］（rSF）parameter，page 192）． APF，CnF，COF，EPF1，EPF2，FCF2，Fd1，LFF2，LFF3，LFF4，nFF，ObF，OHF，OLC，OLF，OPF1，OPF2，OSF，OtF1，OtF2，OtFL，PHF， PtF1，PtF2，PtFL，SLF1，SLF2，SLF3，SPIF，SSF，tJF，and ULF faults can be inhibited and cleared remotely by means of a logic input or control bit（［Fault inhibit assign．］（InH）parameter，page 203）．

| Fault | Name | Probable cause | Remedy |
| :---: | :---: | :---: | :---: |
| APF | ［Application fault］ | －Controller Inside card fault | －Please refer to the card documentation |
| $[\cap F$ | ［Com．network］ | －Communication fault on communication card | －Check the environment（electromagnetic compatibility） <br> －Check the wiring <br> －Check the time－out <br> －Replace the option card <br> －Inspect／repair the drive |
| C DF | ［CAN com．］ | －Interruption in communication on the CANopen bus | －Check the communication bus <br> －Check the time－out <br> －Refer to the CANopen User＇s Manual |
| EPFI | ［External flt－LI／Bit］ | －Fault triggered by an external device， depending on user | －Check the device，which caused the fault，and reset |
| EPF己 | ［External fault com．］ | －Fault triggered by a communication network | －Check for the cause of the fault and reset |
| $F[F]$ | ［Out．contact． open．］ | －The output contactor remains open although the closing conditions have been met． | －Check the contactor and its wiring <br> －Check the feedback circuit |
| F d I | ［Damper stuck］ | －The damper remains closed although the opening conditions have been met | －Check the damper and its wiring <br> －Check the feedback circuit <br> －Check the time delay for the function，page 174 |
| $L[F$ | ［input contactor］ | －The drive is not turned on even though ［Mains V．time out］（LCt）has elapsed． | －Check the contactor and its wiring <br> －Check the time－out <br> －Check the line／contactor／drive connection |
| $\begin{aligned} & \text { LFFE } \\ & \text { LFFヨ } \\ & \text { LFFY } \end{aligned}$ | ［Al2 4－20mA loss］ <br> ［Al3 4－20mA loss］ <br> ［AI4 4－20mA loss］ | －Loss of the 4－20 mA reference on analog input Al2，Al3 or Al4 | －Check the connection on the analog inputs <br> －If necessary，modify the fault configuration via［Alx $4-20 \mathrm{~mA}$ loss］（LFLx），page 202 |
| $n F F$ | ［No Flow Fault］ | －Zero fluid | －Check and rectify the cause of the fault． <br> －Check the zero fluid detection parameters page 183. |
| ロレF | ［Overbraking］ | －Braking too sudden or driving load | －Increase the deceleration time <br> －Install a braking resistor if necessary <br> －Activate the［Dec ramp adapt．］（brA）function，page 134， if it is compatible with the application． |
| －HF | ［Drive overheat］ | －Power board－PCB over temperature <br> －Braking unit over temperature <br> －Phase module over temperature <br> －Rectifier over temperature | －Check the motor load，the drive ventilation and the ambient temperature．Wait for the drive to cool down before restarting |
| －L L | ［Proc．Overload FIt］ | －Process overload | －Check and remove the cause of the overload． <br> －Check the parameters of the［PROCESS UNDERLOAD］ （OLd－）function，page 212. |
| $\square L F$ | ［Motor overload］ | －Triggered by excessive motor current | －Check the setting of the motor thermal protection，check the motor load．Wait for the drive to cool down before restarting |
| DPF I | ［1 motor phase loss］ | －Loss of one phase at drive output | －Check the connections from the drive to the motor |

Faults that can be reset with the automatic restart function，after the cause has disappeared （continued）

| Fault | Name | Probable cause | Remedy |
| :---: | :---: | :---: | :---: |
| $\triangle P F 2$ | ［3 motor phase loss］ | －Motor not connected or motor power too low <br> －Output contactor open <br> －Instantaneous instability in the motor current | －Check the connections from the drive to the motor <br> －If an output contactor is being used，parameterize［Output Phase Loss］（OPL）＝［Output cut］（OAC），page 196 <br> －Test on a low power motor or without a motor：In factory settings mode，motor phase loss detection is active［Output Phase Loss］（OPL）＝［Yes］（YES）．To check the drive in a test or maintenance environment，without having to use a motor with the same rating as the drive（in particular for high power drives），deactivate motor phase loss detection［Output Phase Loss］（OPL）$=[\mathrm{No}](\mathrm{nO})$ <br> －Check and optimize the［IR compensation］（UFr）page 73， ［Rated motor volt．］（UnS）and［Rated mot．current］（nCr） parameters，page 65，and perform［Auto tuning］（tUn）， page 67 ． |
| －5 F | ［Mains overvoltage］ | －Line voltage too high <br> －Disturbed line supply | －Check the line voltage |
| ロtFI | ［PTC1 overheat］ | －Overheating of the PTC1 probes detected | －Check the motor load and motor size <br> －Check the motor ventilation <br> －Wait for the motor to cool before restarting <br> －Check the type and state of the PTC probes |
| ロ FF 己 | ［PTC2 overheat］ | －Overheating of the PTC2 probes detected |  |
| ロ 6 F L | ［LI6＝PTC overheat］ | －Overheating of PTC probes detected on input LI6 |  |
| PtFl | ［PTC1 probe］ | －PTC1 probes open or short－ circuited | －Check the PTC probes and the wiring between them and the motor／drive |
| PtFE | ［PTC2 probe］ | －PTC2 probes open or short－ circuited |  |
| Pt FL | ［LI6＝PTC probe］ | －PTC probes on input LI6 open or short－circuited |  |
| 5 ［F4 | ［IGBT short circuit］ | －Power component fault | －Perform a test via the［1．10 DIAGNOSTICS］menu． <br> －Inspect／repair the drive |
| 5 ［F5 | ［Motor short circuit］ | －Short－circuit at drive output | －Check the cables connecting the drive to the motor，and the motor＇s insulation <br> －Perform tests via the［1．10 DIAGNOSTICS］menu． <br> －Inspect／repair the drive |
| 5LFI | ［Modbus com．］ | －Interruption in communication on the Modbus bus | －Check the communication bus <br> －Check the time－out <br> －Refer to the Modbus User＇s Manual |
| 5LF 己 | ［PC com．］ | －Fault communicating with PC－ Software | －Check the PC－Software connecting cable <br> －Check the time－out |
| 5LFヨ | ［ HMI com．］ | －Fault communicating with the graphic display terminal | －Check the terminal connection <br> －Check the time－out |
| 5P IF | ［PI Feedback］ | －PID feedback below lower limit | －Check the PID function feedback． <br> －Check the PID feedback supervision threshold and time delay， page 157. |
| 55 F | ［Torque／current lim］ | －Switch to torque limitation | －Check if there are any mechanical problems <br> －Check the parameters of［TORQUE LIMITATION］ （tLA－）page 166 and the parameters of the ［TORQUE OR I LIM．DETECT．］（tld－）fault，page 205）． |
| $t\lrcorner F$ | ［IGBT overheat］ | －Drive overheated | －Check the size of the load／motor／drive <br> －Reduce the switching frequency <br> －Wait for the motor to cool before restarting |
| $U L F$ | ［Proc．Underload FIt］ | －Process underload | －Check and remove the cause of the underload． <br> －Check the parameters of the［PROCESS OVERLOAD］（ULd－） function，page 211 ． |

## Faults that can be reset as soon as their causes disappear

The USF fault can be inhibited and cleared remotely by means of a logic input or control bit ([Fault inhibit assign.] (InH) parameter, page 203).

| Fault | Name | Probable cause | Remedy |
| :---: | :---: | :---: | :---: |
| [FF | [Incorrect config.] | - changed or removed <br> - The current configuration is inconsistent | - Check that there are no card errors. <br> - In the event of the option card being changed/removed deliberately, see the remarks below <br> - Return to factory settings or retrieve the backup configuration, if it is valid (see page 224) |
| [FI | [Invalid config.] | - Invalid configuration The configuration loaded in the drive via the bus or communication network is inconsistent. <br> - [Max frequency] (tFr) has been set at a value higher than 599 Hz | - Check the configuration loaded previously <br> - Load a compatible configuration <br> - Set [Max frequency] (tFr) at a value lower or equal to 599 Hz |
| HCF | [Cards pairing] | - The [CARDS PAIRING] (PPI-) function, page 209, has been configured and a drive card has been changed | - In the event of a card error, reinsert the original card <br> - Confirm the configuration by entering the [Pairing password] (PPI) if the card was changed deliberately |
| PHF | [Input phase loss] | - Drive incorrectly supplied or a fuse blown <br> - Failure of one phase <br> - 3-phase ATV61 used on a singlephase line supply <br> - Unbalanced load <br> This protection only operates with the drive on load | - Check the power connection and the fuses. <br> - Use a 3-phase line. <br> - Disable the fault by [Input phase loss] (IPL) $=[\mathrm{No}](\mathrm{nO})$. (page 197) |
| PrtF | [Power Ident] | - The [Power Identification] (Prt) parameter, page 74, is incorrect. <br> - Control card replaced by a control card configured on a drive with a different rating | - Enter the correct parameter (reserved for Schneider Electric product support). <br> - Check that there are no card errors. <br> - In the event of the control card being changed deliberately, see the remarks below |
| U 5 F | [Undervoltage] | - Line supply too low <br> - Transient voltage dip <br> - Damaged pre-charge resistor <br> - This protection only operates with the drive running in motor mode | - Check the voltage and the parameters of [UNDERVOLTAGE MGT] (USb-), page 200 <br> - Replace the pre-charge resistor <br> - Inspect/repair the drive |

## Option card changed or removed

When an option card is removed or replaced by another, the drive locks in [Incorrect config.] (CFF) fault mode on power-up. If the card has been deliberately changed or removed, the fault can be cleared by pressing the ENT key twice, which causes the factory settings to be restored (see page 224) for the parameter groups affected by the card. These are as follows:

## Card replaced by a card of the same type

- I/O cards: [Drive configuration] (drV)
- Encoder cards: [Drive configuration] (drV)
- Communication cards: Only the parameters that are specific to communication cards
- Controller Inside cards: [Prog. card menu] (PLC)


## Card removed (or replaced by a different type of card)

- I/O card: [Drive configuration] (drV)
- Encoder card: [Drive configuration] (drV)
- Communication card: [Drive configuration] (drV) and parameters specific to communication cards
- Controller Inside card: [Drive configuration] (drV) and [Prog. card menu] (PLC)


## Control card changed

When a control card is replaced by a control card configured on a drive with a different rating, the drive locks in [Power Ident] (PrtF) fault mode on power-up. If the card has been deliberately changed, the fault can be cleared by modifying the [Power Identification] (Prt) parameter, page $\underline{74}$, which causes all the factory settings to be restored.

## User settings tables

[1.1 SIMPLY START] (SIM-) menu

| Code | Name | Factory setting | Customer setting |
| :---: | :---: | :---: | :---: |
| EL [ | [2/3 wire control] | [2 wire] (2C) |  |
| LFE | [Macro configuration] | [Start/Stop] (StS) |  |
| $b$ Fr | [Standard mot. freq] | [ 50 Hz ] (50) |  |
| $I P L$ | [Input phase loss] | According to drive rating |  |
| $n \mathrm{Pr}_{5}$ | [Rated motor power] | According to drive rating |  |
| Un5 | [Rated motor volt.] | According to drive rating |  |
| nLr | [Rated mot. current] | According to drive rating |  |
| Fr 5 | [Rated motor freq.] | 50 Hz |  |
| $\square 5 P$ | [Rated motor speed] | According to drive rating |  |
| t Fr | [Max frequency] | 60 Hz |  |
| PHr | [Output Ph rotation] | ABC |  |
| It H | [Mot. therm. current] | According to drive rating |  |
| R [ [ | [Acceleration] | 3.0 s |  |
| $d E[$ | [Deceleration] | 3.0 s |  |
| L 5 P | [Low speed] | 0 |  |
| H 5 P | [High speed] | 50 Hz |  |

## Functions assigned to I/O

| Inputs <br> Outputs | Functions assigned |
| :--- | :--- |
| LI1 |  |
| LI2 |  |
| LI3 |  |
| LI4 |  |
| LI5 |  |
| LI6 |  |
| LI7 |  |
| LI8 |  |
| LI9 |  |
| LI10 |  |
| LI11 |  |
| LI12 |  |
| LI13 |  |
| LI14 |  |


| Inputs <br> Outputs | Functions assigned |
| :--- | :--- |
| LO1 |  |
| LO2 |  |
| LO3 |  |
| LO4 |  |
| AI1 |  |
| AI2 |  |
| AI3 |  |
| AI4 |  |
| R1 |  |
| R2 |  |
| R3 |  |
| R4 |  |
| RP |  |
| Encoder |  |

## User settings tables

Other parameters (table to be created by the user)

| Code | Name | Customer setting | Code | Name | Customer setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

## Index of functions

| +/- speed | 143 |
| :---: | :---: |
| +/- speed around a reference | 145 |
| [2 wire] (2C) | $\underline{35}$ |
| [2nd CURRENT LIMIT.] | 168 |
| [3 wire] (3C) | 35 |
| [AUTO DC INJECTION] | 137 |
| [Auto tuning] | 37 |
| [AUTO TUNING BY LI] | 181 |
| [AUTOMATIC RESTART] | 193 |
| [CATCH ON THE FLY] | 194 |
| Command and reference channels | 111 |
| Damper control | 173 |
| Deferred stop on thermal alarm | $\underline{198}$ |
| Direct power supply via DC bus | 186 |
| [DRIVE OVERHEAT] | 197 |
| [ENCODER CONFIGURATION] | 94 |
| [1.12 FACTORY SETTINGS] (FCS-) | $\underline{222}$ |
| [FAULT RESET] | 192 |
| Flow limitation | 184 |
| [FLUXING BY LI] | 148 |
| [JOG] | 139 |
| [1.7 APPLICATION FUNCT.] (FUn-) | 169 |
| [1.4 MOTOR CONTROL] (drC-) | 75 |
| Motor or configuration switching [MULTIMOTORS/CONFIG.] | 178 |
| Motor thermal protection | 195 |
| [Noise reduction] | 78 |
| Output contactor command | 171 |
| Parameter set switching [PARAM. SET SWITCHING] | 175 |
| [4. PASSWORD] (COd-) | $\underline{229}$ |
| PID feedback supervision | 156 |
| PID regulator | 149 |
| Preset speeds | 140 |
| Process overload fault | $\underline{212}$ |
| Process underload fault | $\underline{\underline{210}}$ |
| PTC probes | 190 |
| [RAMP] | 131 |
| Reference saving: | 147 |
| [REFERENCE SWITCH.] | 129 |
| [REGEN CONNECTION] | 187 |
| [RP CONFIGURATION] | $\underline{92}$ |
| Skip frequencies | 62 |
| Sleep/Wake-up | 159 |
| [1.7 APPLICATION FUNCT.] (FUn-) | 162 |
| [STOP CONFIGURATION] | 135 |
| Summing input/Subtracting input/Multiplier | 128 |
| Torque limitation | 165 |
| Use of the "Pulse input" to measure the speed of rotation of the motor | $\underline{206}$ |
| Zero fluid or zero flow detection via sensor | 182 |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N v E $E$ $\omega$ w w iun |  |  | 0 2 0 $\sum_{0}^{1}$ 0 0 0 0 $i$ |  |  |  |  |  |
| A IL－ |  |  |  |  | 109 |  |  |  |  |  |  |
| A己－ |  |  |  |  | 109 |  |  |  |  |  |  |
| คヨ－ |  |  |  |  | 109 |  |  |  |  |  |  |
| 月5 2 |  |  | 49 |  |  |  | $\frac{133146}{155}$ |  |  |  |  |
| AL［ | 38 |  | $\underline{49}$ |  |  |  | 131 |  |  |  |  |
| 月 $\boldsymbol{H}_{\text {L }}$ |  |  |  |  |  |  | 137 |  |  |  |  |
| Ad［ |  |  |  |  |  |  |  |  | $\underline{217}$ |  |  |
| Add |  |  |  |  |  |  |  |  | $\underline{217}$ |  |  |
| A I I ${ }^{\text {A }}$ |  | 46 |  |  | 87 |  |  |  |  |  |  |
| A I IE |  |  |  |  | 87 |  |  |  |  |  |  |
| A I IF |  |  |  |  | 87 |  |  |  |  |  |  |
| H 115 |  |  |  |  | 87 |  |  |  |  |  |  |
| A IIt |  |  |  |  | 87 |  |  |  |  |  |  |
| －12月 |  | 46 |  |  | 88 |  |  |  |  |  |  |
| A I2E |  |  |  |  | 88 |  |  |  |  |  |  |
| A İF |  |  |  |  | 88 |  |  |  |  |  |  |
| （12L |  |  |  |  | 88 |  |  |  |  |  |  |
| － 125 |  |  |  |  | 88 |  |  |  |  |  |  |
| －12t |  |  |  |  | 88 |  |  |  |  |  |  |
| 月 1 ヨ |  | 46 |  |  | 89 |  |  |  |  |  |  |
| A I ヨE |  |  |  |  | 89 |  |  |  |  |  |  |
| A I ヨF |  |  |  |  | 89 |  |  |  |  |  |  |
| \＆1 ヨ |  |  |  |  | 89 |  |  |  |  |  |  |
| －1 ヨ 5 |  |  |  |  | 89 |  |  |  |  |  |  |
| －1ヨ |  |  |  |  | 89 |  |  |  |  |  |  |
| A 14月 |  | 46 |  |  | $\underline{90}$ |  |  |  |  |  |  |
| A 14E |  |  |  |  | $\underline{90}$ |  |  |  |  |  |  |
| A 14 F |  |  |  |  | $\underline{90}$ |  |  |  |  |  |  |
| A 14 L |  |  |  |  | $\underline{90}$ |  |  |  |  |  |  |
| A 145 |  |  |  |  | $\underline{90}$ |  |  |  |  |  |  |
| A 14t |  |  |  |  | $\underline{90}$ |  |  |  |  |  |  |
| A IL I |  |  |  |  | 91 |  | 153 |  |  |  |  |
| ALEr |  | 47 |  |  |  |  |  |  |  |  |  |
| Апロ |  |  |  |  |  |  |  |  | $\underline{217}$ |  |  |
| АПロ |  |  |  |  |  |  |  |  | $\underline{217}$ |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 10 \\ & \hline 1 \\ & \hline 1 \end{aligned}$ | 0 2 2 $i$ 0 0 0 0 0 $i$ $i$ |  |  |  |  |  |
| คロ 1 |  |  |  |  | 105 |  |  |  |  |  |  |
| AD IF |  |  |  |  | 106 |  |  |  |  |  |  |
| Aロ It |  |  |  |  | 105 |  |  |  |  |  |  |
| 月ロ己 |  |  |  |  | 107 |  |  |  |  |  |  |
| FロこF |  |  |  |  | 107 |  |  |  |  |  |  |
| 月ロご |  |  |  |  | 107 |  |  |  |  |  |  |
| トロヨ |  |  |  |  | 108 |  |  |  |  |  |  |
| ーロヨF |  |  |  |  | 108 |  |  |  |  |  |  |
| カロヨヒ |  |  |  |  | 108 |  |  |  |  |  |  |
| HロH I |  |  |  |  | 105 |  |  |  |  |  |  |
| FロH己 |  |  |  |  | 107 |  |  |  |  |  |  |
| HロHヨ |  |  |  |  | 108 |  |  |  |  |  |  |
| H0L 1 |  |  |  |  | 105 |  |  |  |  |  |  |
| FロL己 |  |  |  |  | 107 |  |  |  |  |  |  |
| FロLヨ |  |  |  |  | 108 |  |  |  |  |  |  |
| H5 H |  |  |  |  | 106 |  |  |  |  |  |  |
| 月5 H 己 |  |  |  |  | 107 |  |  |  |  |  |  |
| H5H ${ }^{\text {¢ }}$ |  |  |  |  | 108 |  |  |  |  |  |  |
| H5L |  |  |  |  | 106 |  |  |  |  |  |  |
| H5L |  |  |  |  | 107 |  |  |  |  |  |  |
| A5Lヨ |  |  |  |  | 108 |  |  |  |  |  |  |
| Atr |  |  |  |  |  |  |  | 193 |  |  |  |
| RUt |  |  |  | 67 |  |  |  |  |  |  |  |
| Ьロ ${ }^{\text {b }}$ |  |  |  | 80 |  |  |  |  |  |  |  |
| $b d[\square$ |  |  |  |  |  |  |  |  | $\underline{217}$ |  |  |
| $b F r$ | 36 |  | 65 |  |  |  |  |  |  |  |  |
| br ${ }^{\text {b }}$ |  |  |  |  |  |  | 134 |  |  |  |  |
| brb |  |  |  |  |  |  |  | $\underline{208}$ |  |  |  |
| $b r P$ |  |  |  |  |  |  |  | $\underline{208}$ |  |  |  |
| bru |  |  |  |  |  |  |  | $\underline{208}$ |  |  |  |
| b $5 P$ |  |  |  |  | 85 |  |  |  |  |  |  |
| レリレ |  |  |  |  |  |  |  | $\underline{208}$ |  |  |  |
| CLFL | 35 |  |  |  |  |  |  |  |  |  |  |
| ［［5 |  |  |  |  |  | 120 |  |  |  |  |  |
| ［d 1 |  |  |  |  |  | 120 |  |  |  |  |  |
| ［de |  |  |  |  |  | 120 |  |  |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 5 <br> 0 <br> 0 <br> 10 <br> 1 <br> $\vdots$ | 0 2 $\sum_{1}^{4}$ $\sum_{0}$ 0 0 0 $i$ $i$ |  |  |  |  |  |
| ［FL | 35 |  |  |  |  |  |  |  |  |  |  |
| ［FP5 |  | 47 |  |  |  |  |  |  |  |  |  |
| ［ HA I |  |  |  |  |  |  | 176 |  |  |  |  |
| ᄃ Н月己 |  |  |  |  |  |  | 176 |  |  |  |  |
| ［ H［ F |  |  |  |  |  | 119 |  |  |  |  |  |
| ［ H I |  |  |  |  |  |  | 185 |  |  |  |  |
| ᄃ H П |  |  |  |  |  |  | 181 |  |  |  |  |
| ［Ht |  |  | $\underline{63}$ |  |  |  | 185 |  |  |  |  |
| ［L 2 |  |  | 55 |  |  |  | 168 |  |  |  |  |
| ［L I |  |  | 55 | $\underline{77}$ |  |  | 168 |  |  |  |  |
| ［LL |  |  |  |  |  |  |  | 204 |  |  |  |
| ［ L－ |  | 47 |  |  |  |  |  |  |  |  |  |
| ［ $\cap$ F 1 |  |  |  |  |  |  | 181 |  |  |  |  |
| ［nF |  |  |  |  |  |  | 181 |  |  |  |  |
| LnFs |  | 47 |  |  |  |  |  |  |  |  |  |
| cod |  |  |  |  |  |  |  |  |  |  | $\underline{230}$ |
| C0d己 |  |  |  |  |  |  |  |  |  |  | 230 |
| C口L |  |  |  |  |  |  |  | $\underline{204}$ |  |  |  |
| ᄃロP |  |  |  |  |  | 121 |  |  |  |  |  |
| ［rHz |  |  |  |  | 88 |  |  |  |  |  |  |
| ［rHヨ |  |  |  |  | 89 |  |  |  |  |  |  |
| ［rH4 |  |  |  |  | $\underline{90}$ |  |  |  |  |  |  |
| ［rL己 |  |  |  |  | 88 |  |  |  |  |  |  |
| LrLヨ |  |  |  |  | 89 |  |  |  |  |  |  |
| ［rL4 |  |  |  |  | $\underline{90}$ |  |  |  |  |  |  |
| ［5t |  |  |  |  |  |  |  |  |  |  | $\underline{230}$ |
| ctd |  |  | 60 |  |  |  |  |  |  |  |  |
| ［tdL |  |  | 60 |  |  |  |  |  |  |  |  |
| ［ヒt |  |  |  | 69 |  |  |  |  |  |  |  |
| d ¢ $^{\text {c }}$ |  |  |  |  |  |  | 130 |  |  |  |  |
| d月ヨ |  |  |  |  |  |  | 130 |  |  |  |  |
| d $\quad$ П |  |  |  |  |  |  | 174 |  |  |  |  |
| d ${ }^{\text {¢ } 5}$ |  |  |  |  |  |  | 172 |  |  |  |  |
| db 5 |  |  |  |  |  |  | 172 |  |  |  |  |
| $d[F$ |  |  | 53 |  |  |  | 135 | $\underline{214}$ |  |  |  |
| d［ I |  |  |  |  |  |  | 136 |  |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\square$ 2 $i$ $i$ 0 0 0 0 0 $i$ $i$ |  |  | $\sum$ <br> 0 <br> 1 <br> 1 <br> 0 <br> 0 <br> 0 <br> $\sum 1$ <br> 0 <br> 0 <br> 0 <br> 0 <br> $i$ <br> $i$ |  |  |
| d［ 0 |  |  |  |  |  |  | 186 |  |  |  |  |
| dE |  |  | 49 |  |  |  | $\frac{133,}{146}$ |  |  |  |  |
| $d E L$ | 38 |  | 49 |  |  |  | 131 |  |  |  |  |
| dFb |  |  |  |  |  |  | 174 |  |  |  |  |
| $d F L$ |  |  | 63 |  |  |  | 185 |  |  |  |  |
| $d L r$ |  |  |  |  |  |  |  |  |  |  | $\underline{230}$ |
| d $\square_{1}$ |  |  |  |  | 102 |  |  |  |  |  |  |
| dロId |  |  |  |  | 102 |  |  |  |  |  |  |
| dロ1H |  |  |  |  | 102 |  |  |  |  |  |  |
| dロ 15 |  |  |  |  | 102 |  |  |  |  |  |  |
| dロtd |  |  | 136 |  |  |  |  |  |  |  |  |
| d 51 |  |  |  |  |  |  | 146 |  |  |  |  |
| d5P |  |  |  |  |  |  | 144 |  |  |  |  |
| EFI |  |  |  |  | $\underline{95}$ |  |  |  |  |  |  |
| EFr |  |  |  |  | 95 |  |  |  |  |  |  |
| EIL |  |  |  |  | $\underline{95}$ |  |  |  |  |  |  |
| $E \cap L$ |  |  |  | 76 | $\underline{94}$ |  |  |  |  |  |  |
| $E \cap 5$ |  |  |  | 75 | 94 |  |  |  |  |  |  |
| $E \cap U$ |  |  |  | 76 | 95 |  |  |  |  |  |  |
| $E P L$ |  |  |  |  |  |  |  | 199 |  |  |  |
| Ercu |  |  |  |  |  |  |  |  | $\underline{217}$ |  |  |
| Et F |  |  |  |  |  |  |  | 199 |  |  |  |
| F I |  |  |  | 70 |  |  |  |  |  |  |  |
| $F 2$ |  |  |  | 70 |  |  |  |  |  |  |  |
| F2d |  |  | 60 |  |  |  |  |  |  |  |  |
| $F 2 d L$ |  |  | $\underline{60}$ |  |  |  |  |  |  |  |  |
| F $\exists$ |  |  |  | 70 |  |  |  |  |  |  |  |
| F 4 |  |  |  | 71 |  |  |  |  |  |  |  |
| F 5 |  |  |  | 71 |  |  |  |  |  |  |  |
| Fbtd |  |  |  |  |  |  | 174 |  |  |  |  |
| F［P |  |  |  | 71 |  |  |  |  |  |  |  |
| F［5I |  |  |  |  |  |  |  |  |  | $\underline{224}$ |  |
| $F d L$ |  |  |  |  |  |  |  | $\underline{213}$ |  |  |  |
| $F d t$ |  |  |  |  |  |  |  | $\underline{207}$ |  |  |  |
| FFd |  |  | $\underline{63}$ |  |  |  | 164 |  |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 0 0 0 0 0 0 0 $\sum_{n}$ $N$ $i$ $i$ $i$ |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 10 \\ & 1 \\ & i \end{aligned}$ | 0 2 2 $i$ 0 0 0 0 0 d in |  |  |  |  |  |
| FFE |  |  | 61 |  |  |  | 135 |  |  |  |  |
| FL I |  |  |  |  |  |  | 148 |  |  |  |  |
| FL |  |  |  |  |  |  |  |  | $\underline{218}$ |  |  |
| FL ${ }^{\text {c }}$ |  |  |  |  |  |  |  |  | $\underline{218}$ |  |  |
| FLロt |  |  |  |  |  |  |  |  | $\underline{218}$ |  |  |
| FLr |  |  |  |  |  |  |  | 194 |  |  |  |
| $F L U$ |  |  | 56 |  |  |  | 148 |  |  |  |  |
| FP I |  |  |  |  |  |  | 155 |  |  |  |  |
| F 9 月 |  |  |  |  |  |  |  | $\underline{207}$ |  |  |  |
| F ¢ 「 |  |  |  |  |  |  |  | $\underline{207}$ |  |  |  |
| F ¢ F |  |  |  |  |  |  |  | $\underline{207}$ |  |  |  |
| F ¢ |  |  | 60 |  |  |  |  |  |  |  |  |
| F95 |  | 45，47 |  |  |  |  |  |  |  |  |  |
| Fr I |  |  |  |  |  | 119 |  |  |  |  |  |
| Frlb |  |  |  |  |  |  | 129 |  |  |  |  |
| Fr ？ |  |  |  |  |  | 120 |  |  |  |  |  |
| FrH |  | 47 |  |  |  |  |  |  |  |  |  |
| Fr 5 | 36 |  | 65 |  |  |  |  |  |  |  |  |
| Fr 55 |  |  |  | $\underline{72}$ |  |  |  |  |  |  |  |
| Frt |  |  |  |  |  |  | 133 |  |  |  |  |
| Fry－ |  |  |  |  |  |  |  |  |  | $\underline{224}$ |  |
| F5t |  |  |  |  |  |  | 135 |  |  |  |  |
| Ftd |  |  | 60 |  |  |  |  |  |  |  |  |
| $F E d L$ |  |  | 60 |  |  |  |  |  |  |  |  |
| FEロ |  |  | 63 |  |  |  |  | $\underline{212}$ |  |  |  |
| Ftu |  |  | 62 |  |  |  |  | $\underline{211}$ |  |  |  |
| LFS |  |  |  |  |  |  |  |  |  | $\underline{224}$ |  |
| H5P | 38 |  | 50 |  |  |  |  |  |  |  |  |
| $1 d A$ |  |  |  | 74 |  |  |  |  |  |  |  |
| 1dL |  |  | 53 |  |  |  | 136 | $\underline{214}$ |  |  |  |
| 1d［2 |  |  | $\underline{53}$ |  |  |  | 136 | $\underline{214}$ |  |  |  |
| 1ヵワ |  |  |  | 74 |  |  |  |  |  |  |  |
| 1 nH |  |  |  |  |  |  |  | $\underline{203}$ |  |  |  |
| 1 nHr |  |  |  |  |  |  |  | $\underline{203}$ |  |  |  |
| InHS |  |  |  |  |  |  |  | $\underline{203}$ |  |  |  |
| Inr |  |  | 49 |  |  |  | 131 |  |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\square$ 2 $i$ $i$ 0 0 0 0 0 $i$ $i$ |  |  |  |  |  |
| IntP |  |  |  |  |  |  | 166 |  |  |  |  |
| 1 PHr |  | 47 |  |  |  |  |  |  |  |  |  |
| $I P L$ | 36 |  |  |  |  |  |  | 197 |  |  |  |
| IPr |  | 47 |  |  |  |  |  |  |  |  |  |
| It H | 38 |  | 50 |  |  |  |  |  |  |  |  |
| $\lrcorner F$ 己 |  |  | 62 |  |  |  |  |  |  |  |  |
| 」F ${ }^{\text {f }}$ |  |  | 62 |  |  |  |  |  |  |  |  |
| $\lrcorner \mathrm{FH}$ |  |  | 62 |  |  |  |  |  |  |  |  |
| $\lrcorner \square F$ |  |  | 56 |  |  |  | 139 |  |  |  |  |
| 」にt |  |  | 56 |  |  |  | 139 |  |  |  |  |
| 」ロレ |  |  |  |  |  |  | 139 |  |  |  |  |
| $\lrcorner P F$ |  |  | 62 |  |  |  |  |  |  |  |  |
|  |  | 46 |  |  | 83 |  |  |  |  |  |  |
| LId to L 14d |  |  |  |  | 83 |  |  |  |  |  |  |
| LL |  |  |  |  |  |  | 168 |  |  |  |  |
| L Lr |  | 47 |  |  |  |  |  |  |  |  |  |
| LLt |  |  |  |  |  |  | 170 |  |  |  |  |
| L d 5 |  |  |  | $\underline{72}$ |  |  |  |  |  |  |  |
| LES |  |  |  |  |  |  | 170 |  |  |  |  |
| LEt |  |  |  |  |  |  |  | 199 |  |  |  |
| LFA |  |  |  | 74 |  |  |  |  |  |  |  |
| LFd |  |  | 63 |  |  |  | 164 |  |  |  |  |
| LFF |  |  |  |  |  |  | 157 | $\underline{214}$ |  |  |  |
| $\begin{aligned} & L F L 己 \\ & L F L \exists \\ & L F L Y \end{aligned}$ |  |  |  |  |  |  |  | $\underline{202}$ |  |  |  |
| LF $\quad$ ！ |  |  |  | 74 |  |  |  |  |  |  |  |
| L 151 |  | 46 |  |  |  |  |  |  |  |  |  |
| L 152 |  | 46 |  |  |  |  |  |  |  |  |  |
| L L L |  |  |  |  |  |  | 170 |  |  |  |  |
| $L \sim 5$ |  |  |  |  |  |  | 183 |  |  |  |  |
| L－। |  |  |  |  | 100 |  |  |  |  |  |  |
| LロId |  |  |  |  | 100 |  |  |  |  |  |  |
| LロIH |  |  |  |  | 100 |  |  |  |  |  |  |
| LロI5 |  |  |  |  | 100 |  |  |  |  |  |  |
| Lロ己 |  |  |  |  | 100 |  |  |  |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{n} \\ & 5 \\ & 0 \\ & 20 \\ & 10 \\ & 0 \\ & i \end{aligned}$ | 0 2 $\sum_{1}^{1}$ $\sum_{0}$ 0 0 0 $i$ $i$ |  |  | $\sum$ 0 $i$ $i$ 0 0 1 $i$ 0 0 0 0 0 $i$ |  |  |
| Lロこd |  |  |  |  | 100 |  |  |  |  |  |  |
| LロこH |  |  |  |  | 100 |  |  |  |  |  |  |
| Lロこ5 |  |  |  |  | 100 |  |  |  |  |  |  |
| しロヨ |  |  |  |  | 101 |  |  |  |  |  |  |
| Lロヨd |  |  |  |  | 101 |  |  |  |  |  |  |
| LロヨH |  |  |  |  | 101 |  |  |  |  |  |  |
| Lロヨ5 |  |  |  |  | 101 |  |  |  |  |  |  |
| Lロ |  |  |  |  | 101 |  |  |  |  |  |  |
| Lロ4d |  |  |  |  | 101 |  |  |  |  |  |  |
| Lロ4H |  |  |  |  | 101 |  |  |  |  |  |  |
| Lロ45 |  |  |  |  | 101 |  |  |  |  |  |  |
| L ロ［ |  |  | 63 |  |  |  |  | $\underline{212}$ |  |  |  |
| LP I |  |  | 59 |  |  |  | 157 |  |  |  |  |
| L 95 |  |  |  | 72 |  |  |  |  |  |  |  |
| L 5 P | 38 |  | 50 |  |  |  | 160 |  |  |  |  |
| $L U L$ |  |  | 62 |  |  |  |  | $\underline{211}$ |  |  |  |
| LUn |  |  | 62 |  |  |  |  | $\underline{211}$ |  |  |  |
| Пヵ己 |  |  |  |  |  |  | 130 |  |  |  |  |
| Пヵヨ |  |  |  |  |  |  | 130 |  |  |  |  |
| пFr |  | 47 |  |  |  |  |  |  |  |  |  |
| ППF |  | 45，47 |  |  |  |  |  |  |  |  |  |
| ПP I |  |  |  |  |  |  | 157 |  |  |  |  |
| п［ ${ }^{\text {¢ }}$ |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
| п［日2 |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
| п［月ヨ |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
| п［月4 |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
| пL 55 |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
| п［乐 |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
| п［ ${ }_{\text {¢ }} 7$ |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
| п［月日 |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
|  | 36 |  | 65 |  |  |  |  |  |  |  |  |
| nLr 5 |  |  |  | 72 |  |  |  |  |  |  |  |
| $n \mathrm{Fd}$ |  |  |  |  |  |  | 164 |  |  |  |  |
| nFFt |  |  | 63 |  |  |  | 183 |  |  |  |  |
| nF5 |  |  |  |  |  |  | 183 |  |  |  |  |
| nF5t |  |  | 63 |  |  |  | 183 |  |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\square$ 2 $i$ $i$ 0 0 0 0 0 $i$ $i$ |  |  |  |  |  |
| пП（ |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
| пПА己 |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
| пก月ヨ |  |  |  |  |  |  |  |  | 216 |  |  |
| пกค4 |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
| п П ¢ 5 |  |  |  |  |  |  |  |  | 216 |  |  |
| пПАБ |  |  |  |  |  |  |  |  | 216 |  |  |
| пПН 7 |  |  |  |  |  |  |  |  | $\underline{216}$ |  |  |
| п П А日 |  |  |  |  |  |  |  |  | 216 |  |  |
| $n \mathrm{Pr}$ | 36 |  | $\underline{65}$ |  |  |  |  |  |  |  |  |
| nrd |  |  |  | 78 |  |  |  |  |  |  |  |
| n5L |  |  |  | 74 |  |  |  |  |  |  |  |
| n 5 P | 36 |  | 66 |  |  |  |  |  |  |  |  |
| п5P5 |  |  |  | $\underline{72}$ |  |  |  |  |  |  |  |
| п 5t |  |  |  |  |  |  | 135 |  |  |  |  |
| －ロロ |  | 47 |  |  |  |  |  |  |  |  |  |
| －02 |  | 47 |  |  |  |  |  |  |  |  |  |
| －ロヨ |  | 47 |  |  |  |  |  |  |  |  |  |
| －04 |  | 47 |  |  |  |  |  |  |  |  |  |
| $\square 05$ |  | 47 |  |  |  |  |  |  |  |  |  |
| －［［ |  |  |  |  |  |  | 172 |  |  |  |  |
| QdL |  |  |  |  |  |  |  | $\underline{212}$ |  |  |  |
| 口dt |  |  |  |  |  |  |  | 196 |  |  |  |
| － 1 |  |  |  | 77 |  |  |  |  |  |  |  |
| －HL |  |  |  |  |  |  |  | 197 |  |  |  |
| －L L |  |  |  |  |  |  |  | 196 |  |  |  |
| $\square P L$ |  |  |  |  |  |  |  | 196 |  |  |  |
| － $\mathrm{Pr}_{r}$ |  | 47 |  |  |  |  |  |  |  |  |  |
| 昍r |  | 47 |  |  |  |  |  |  |  |  |  |
| －Ir |  |  |  |  |  |  | 187 |  |  |  |  |
| PRH |  |  | 58 |  |  |  | 154 |  |  |  |  |
| PRL |  |  | 58 |  |  |  | 154 |  |  |  |  |
| PRU |  |  |  |  |  |  | 155 |  |  |  |  |
| PEr |  |  | 59 |  |  |  | 154 |  |  |  |  |
| PEt |  | 47 |  |  |  |  |  |  |  |  |  |
| PFI |  |  |  |  | $\underline{92}$ |  |  |  |  |  |  |
| PFL |  |  |  | 70 |  |  |  |  |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\square$ 2 $i$ $i$ 0 0 0 0 0 $i$ $i$ |  |  |  |  |  |
| PFr |  |  |  |  | $\underline{92}$ |  |  |  |  |  |  |
| PG月 |  |  |  |  | 95 |  |  |  |  |  |  |
| PLI |  |  |  | 75 | 95 |  |  |  |  |  |  |
| PHS |  |  |  | 72 |  |  |  |  |  |  |  |
| PHr | 37 |  |  | 68 |  |  |  |  |  |  |  |
| P I ${ }^{\text {P }}$ |  |  |  |  | 92 |  |  |  |  |  |  |
| P IL |  |  |  |  |  |  | 154 |  |  |  |  |
| P IF |  |  |  |  |  |  | 153 |  |  |  |  |
| P IF I |  |  |  |  |  |  | 153 |  |  |  |  |
| PIF 2 |  |  |  |  |  |  | 153 |  |  |  |  |
| P I I |  |  |  |  |  |  | 153 |  |  |  |  |
| $P I L$ |  |  |  |  | 92 |  |  |  |  |  |  |
| P 1 п |  |  |  |  |  |  | 155 |  |  |  |  |
| P IP I |  |  |  |  |  |  | 153 |  |  |  |  |
| PIPZ |  |  |  |  |  |  | 153 |  |  |  |  |
| P 15 |  |  |  |  |  |  | 154 |  |  |  |  |
| PロH |  |  | 58 |  |  |  | 154 |  |  |  |  |
| $P \square L$ |  |  | 58 |  |  |  | 154 |  |  |  |  |
| PP I |  |  |  |  |  |  |  | $\underline{209}$ |  |  |  |
| PPn |  |  |  | 74 |  |  |  |  |  |  |  |
| PPпS |  |  |  | 72 |  |  |  |  |  |  |  |
| Pre |  |  |  |  |  |  | 158 |  |  |  |  |
| Pr 4 |  |  |  |  |  |  | 158 |  |  |  |  |
| Pr $P$ |  |  | $\underline{58}$ |  |  |  | 154 |  |  |  |  |
| Prt |  |  |  | 74 |  |  |  |  |  |  |  |
| P5 1－ |  |  |  |  |  |  | 176 |  |  |  |  |
| P52－ |  |  |  |  |  |  | 177 |  |  |  |  |
| P5ヨ－ |  |  |  |  |  |  | 177 |  |  |  |  |
| P5 2 |  |  |  |  |  |  | 141 |  |  |  |  |
| P54 |  |  |  |  |  |  | 141 |  |  |  |  |
| P5日 |  |  |  |  |  |  | 141 |  |  |  |  |
| P5r |  |  | 59 |  |  |  | 155 |  |  |  |  |
| P5t |  |  |  |  |  | 119 |  |  |  |  |  |
| Pt［1 |  |  |  |  |  |  |  | 191 |  |  |  |
| Ptと |  |  |  |  |  |  |  | 191 |  |  |  |
| Pt［L |  |  |  |  |  |  |  | 191 |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 5 \\ & 0 \\ & \frac{1}{n} \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 10 \\ & \hline i \\ & \hline \end{aligned}$ | $\square$ 2 2 $i$ 0 0 0 0 0 0 $i$ $i$ |  |  |  |  |  |
| Pt H |  | 47 |  |  |  |  |  |  |  |  |  |
| r I |  |  |  |  | $\underline{96}$ |  |  |  |  |  |  |
| r 1 d |  |  |  |  | $\underline{98}$ |  |  |  |  |  |  |
| r IH |  |  |  |  | 98 |  |  |  |  |  |  |
| r 15 |  |  |  |  | 98 |  |  |  |  |  |  |
| $r 2$ |  |  |  |  | 98 |  |  |  |  |  |  |
| red |  |  |  |  | $\underline{98}$ |  |  |  |  |  |  |
| reH |  |  |  |  | $\underline{98}$ |  |  |  |  |  |  |
| re 5 |  |  |  |  | $\underline{98}$ |  |  |  |  |  |  |
| r ${ }^{\text {r }}$ |  |  |  |  | $\underline{99}$ |  |  |  |  |  |  |
| rヨd |  |  |  |  | $\underline{99}$ |  |  |  |  |  |  |
| r $\exists$ H |  |  |  |  | 99 |  |  |  |  |  |  |
| r 35 |  |  |  |  | $\underline{99}$ |  |  |  |  |  |  |
| $r 4$ |  |  |  |  | $\underline{99}$ |  |  |  |  |  |  |
| r4d |  |  |  |  | $\underline{99}$ |  |  |  |  |  |  |
| r 4 H |  |  |  |  | $\underline{99}$ |  |  |  |  |  |  |
| r 45 |  |  |  |  | $\underline{99}$ |  |  |  |  |  |  |
| $r$［ ${ }^{\text {c }}$ |  |  |  |  |  |  | 172 |  |  |  |  |
| r $\square_{\text {b }}$ |  |  |  |  |  |  | 129 |  |  |  |  |
| r LHE |  |  | 63 |  |  |  | 185 |  |  |  |  |
| rdL |  |  | $\underline{58}$ |  |  |  | 154 |  |  |  |  |
| r F［ |  |  |  |  |  | 120 |  |  |  |  |  |
| $r$ Fr |  | 47 |  |  |  |  |  |  |  |  |  |
| r IL |  |  | 58 |  |  |  | 154 |  |  |  |  |
| r 1 n |  |  |  |  |  | 119 |  |  |  |  |  |
| rחUd |  |  | 62 |  |  |  |  | $\underline{211}$ |  |  |  |
| $r P$ |  |  |  |  |  |  |  | 192 |  |  |  |
| $r P 己$ |  |  | $\underline{59}$ |  |  |  | 158 |  |  |  |  |
| rPヨ |  |  | 59 |  |  |  | 158 |  |  |  |  |
| $r P 4$ |  |  | $\underline{59}$ |  |  |  | 158 |  |  |  |  |
| $r P$ A |  |  |  |  |  |  |  | 192 |  |  |  |
| $r P[$ |  | 47 |  |  |  |  |  |  |  |  |  |
| $r P E$ |  | 47 |  |  |  |  |  |  |  |  |  |
| $r P F$ |  | 47 |  |  |  |  |  |  |  |  |  |
| $r P G$ |  |  | $\underline{58}$ |  |  |  | 153 |  |  |  |  |
| rPl |  |  |  |  |  |  | 153 |  |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 0 2 $\sum_{1}^{4}$ $\sum_{0}$ 0 0 0 $i$ $i$ |  |  |  |  |  |
| $r P \square$ |  | 47 |  |  |  |  |  |  |  |  |  |
| rP5 |  |  |  |  |  |  | 133 |  |  |  |  |
| $r P t$ |  |  |  |  |  |  | 131 |  |  |  |  |
| rr 5 |  |  |  |  | 82 |  |  |  |  |  |  |
| r 5 A |  |  |  | 74 |  |  |  |  |  |  |  |
| r 5 月 5 |  |  |  | 72 |  |  |  |  |  |  |  |
| r 5F |  |  |  |  |  |  |  | 192 |  |  |  |
| $r 5 L$ |  |  |  |  |  |  | 160 |  |  |  |  |
| r 5 п |  |  |  | 74 |  |  |  |  |  |  |  |
| r 5 ח 5 |  |  |  | 72 |  |  |  |  |  |  |  |
| rtd |  |  | 61 |  |  |  |  |  |  |  |  |
| $r t d L$ |  |  | 61 |  |  |  |  |  |  |  |  |
| rth |  | 47 |  |  |  |  |  |  |  |  |  |
| 5月己 |  |  |  |  |  |  | 130 |  |  |  |  |
| 5月ヨ |  |  |  |  |  |  | 130 |  |  |  |  |
| 5月t |  |  |  |  |  |  |  | 198 |  |  |  |
| 5［51 |  |  |  |  |  |  |  |  |  | $\underline{224}$ |  |
| 5d［ 1 |  |  | 54 |  |  |  | 137 |  |  |  |  |
| 5d［ |  |  | 54 |  |  |  | 137 |  |  |  |  |
| 5F［ |  |  | 50 |  |  |  |  |  |  |  |  |
| $5 F_{r}$ |  |  | 55 | 77 |  |  |  |  |  |  |  |
| 5 tt |  |  | 50 |  |  |  |  |  |  |  |  |
| SLE |  |  | 56 |  |  |  | 160 |  |  |  |  |
| 5LL |  |  |  |  |  |  |  | 204 |  |  |  |
| 5LP |  |  | $\underline{53}$ | 73 |  |  |  |  |  |  |  |
| $5 \square P$ |  |  |  | 78 |  |  |  |  |  |  |  |
| 5 ¢ 己 |  |  | $\underline{57}$ |  |  |  | 142 |  |  |  |  |
| 5Pヨ |  |  | 57 |  |  |  | 142 |  |  |  |  |
| $5 P 4$ |  |  | $\underline{57}$ |  |  |  | 142 |  |  |  |  |
| $5 P 5$ |  |  | 57 |  |  |  | 142 |  |  |  |  |
| 5Pb |  |  | $\underline{57}$ |  |  |  | 142 |  |  |  |  |
| $5 P 7$ |  |  | 57 |  |  |  | 142 |  |  |  |  |
| 5P日 |  |  | $\underline{57}$ |  |  |  | 142 |  |  |  |  |
| SPd |  | 47 |  |  |  |  |  |  |  |  |  |
| 5PG |  |  | 50 |  |  |  |  |  |  |  |  |
| 5РП |  |  |  |  |  |  | 147 |  |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{n} \\ & 5 \\ & 0 \\ & 20 \\ & 10 \\ & 0 \\ & i \end{aligned}$ | 0 2 $i$ $i$ 0 0 0 0 0 $i$ $i$ |  |  | $\sum$ 0 1 $\vdots$ 0 0 0 $\sum 1$ 0 0 0 0 $i$ $i$ |  |  |
| 5 rb |  |  | $\underline{62}$ |  |  |  |  | $\begin{aligned} & \frac{211,}{212} \\ & \hline \end{aligned}$ |  |  |  |
| $5 r P$ |  |  | 58 |  |  |  | 146 |  |  |  |  |
| 5 rt |  |  |  |  |  |  | 144 |  |  |  |  |
| 55b |  |  |  |  |  |  |  | $\underline{205}$ |  |  |  |
| 5ヒП |  |  |  |  |  |  |  | $\underline{201}$ |  |  |  |
| 5ヒロ |  |  |  |  |  |  |  | $\underline{205}$ |  |  |  |
|  |  |  |  |  |  |  |  | $\underline{200}$ |  |  |  |
| 5tr |  |  |  |  |  |  | 144 |  |  |  |  |
| 5trt |  |  |  |  |  |  |  | $\underline{201}$ |  |  |  |
| 5tt |  |  |  |  |  |  | 135 |  |  |  |  |
| SUL |  |  |  | 78 |  |  |  |  |  |  |  |
| t ${ }^{\text {I }}$ |  |  | 49 |  |  |  | 132 |  |  |  |  |
| ヒ日 |  |  | $\underline{49}$ |  |  |  | 132 |  |  |  |  |
| ヒ日ヨ |  |  | 49 |  |  |  | 132 |  |  |  |  |
| t $\boldsymbol{H}^{\text {4 }}$ |  |  | 50 |  |  |  | 132 |  |  |  |  |
| ヒ 月 $\boldsymbol{r}$ |  |  |  |  |  |  | 166 |  |  |  |  |
| t $\boldsymbol{H}_{\text {L }}$ |  | 47 |  |  |  |  |  |  |  |  |  |
| t $\boldsymbol{A r}_{r}$ |  |  |  |  |  |  |  | 193 |  |  |  |
| tbr |  |  |  |  |  |  |  |  | $\underline{217}$ |  |  |
| ヒbr |  |  |  |  |  |  |  |  | 217 |  |  |
| ヒロ5 |  |  |  |  |  |  |  | $\underline{201}$ |  |  |  |
|  | 35 |  |  |  | 82 |  |  |  |  |  |  |
| $t[d$ |  |  |  |  |  |  | 174 |  |  |  |  |
| $t[t$ |  |  |  |  | 82 |  |  |  |  |  |  |
| $t \pm 1$ |  |  | $\underline{53}$ |  |  |  | 136 | $\underline{214}$ |  |  |  |
| $t d[$ |  |  | 53 |  |  |  | 136 | $\underline{214}$ |  |  |  |
| $t d[1$ |  |  | $\underline{54}$ |  |  |  | 137 |  |  |  |  |
| td［z |  |  | $\underline{54}$ |  |  |  | 138 |  |  |  |  |
| $t d 5$ |  |  |  |  |  |  |  | $\underline{207}$ |  |  |  |
| $t F \square$ |  |  |  |  |  |  |  |  | $\underline{217}$ |  |  |
| EFOZ |  |  |  |  |  |  |  |  | $\underline{217}$ |  |  |
| $t F r$ | 36 |  | 66 |  |  |  |  |  |  |  |  |
| tHR |  |  |  |  |  |  |  | $\frac{197,}{198}$ |  |  |  |
| t H |  | 47 |  |  |  |  |  |  |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| tHd |  | 47 |  |  |  |  |  |  |  |  |  |
| t Hr |  | 47 |  |  |  |  |  |  |  |  |  |
| tHt |  |  |  |  |  |  |  | 196 |  |  |  |
| t 1 月 |  |  |  |  |  |  | 166 |  |  |  |  |
| $t L[$ |  |  |  |  |  |  | 167 |  |  |  |  |
| ELIL |  |  | 60 |  |  |  | 166 |  |  |  |  |
| ヒLIח |  |  | $\underline{60}$ |  |  |  | 166 |  |  |  |  |
| $t L 5$ |  |  | 56 |  |  |  | 160 |  |  |  |  |
| tロd |  |  |  |  |  |  | 174 |  |  |  |  |
| tロL |  |  |  |  |  |  |  | $\underline{212}$ |  |  |  |
| $t P 1$ |  |  | $\underline{59}$ |  |  |  | 157 |  |  |  |  |
| ヒアПL |  |  |  |  |  |  | 167 |  |  |  |  |
| ヒアПП |  |  |  |  |  |  | 167 |  |  |  |  |
| tr月 |  |  |  | $\underline{74}$ |  |  |  |  |  |  |  |
|  |  |  |  | 74 |  |  |  |  |  |  |  |
| t5 $\quad$ ¢ |  |  |  |  |  |  |  | $\underline{201}$ |  |  |  |
| ttd |  |  | 61 |  |  |  |  | $\frac{196,}{\underline{198}}$ |  |  |  |
| ヒヒd己 |  |  |  |  |  |  |  | $\frac{196}{\underline{198}}$ |  |  |  |
| ヒヒdヨ |  |  |  |  |  |  |  | $\frac{196,}{198}$ |  |  |  |
|  |  |  | 60 |  |  |  |  |  |  |  |  |
| ヒヒL |  |  | $\underline{60}$ |  |  |  |  |  |  |  |  |
| ヒヒロ |  |  |  |  |  |  |  | $\underline{217}$ |  |  |  |
| $t U L$ |  |  |  |  |  |  | 181 |  |  |  |  |
| ヒUn | 37 |  |  | 67 |  |  |  |  |  |  |  |
| $t \cup 5$ | $\underline{37}$ |  |  | $\underline{68}$ |  |  |  |  |  |  |  |
| Uロ |  |  |  | $\underline{70}$ |  |  |  |  |  |  |  |
| U I |  |  |  | $\underline{70}$ |  |  |  |  |  |  |  |
| U2 |  |  |  | $\underline{70}$ |  |  |  |  |  |  |  |
| リヨ |  |  |  | $\underline{70}$ |  |  |  |  |  |  |  |
| 44 |  |  |  | 71 |  |  |  |  |  |  |  |
| 45 |  |  |  | 71 |  |  |  |  |  |  |  |
| Ubr |  |  |  | 80 |  |  |  |  |  |  |  |
| U［己 |  |  |  | 71 |  |  |  |  |  |  |  |
| U［ち |  |  |  |  |  |  |  | 194 |  |  |  |

Index of parameter codes

| Code | Page |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 0 2 2 $i$ 0 0 0 0 0 $i$ $i$ |  |  |  |  |  |
| UdL |  |  |  |  |  |  |  | $\underline{211}$ |  |  |  |
| U［P |  |  |  | 71 |  |  |  |  |  |  |  |
| UFr |  |  | $\underline{53}$ | 73 |  |  |  |  |  |  |  |
| U IH I |  |  |  |  | 87 |  |  |  |  |  |  |
| U IH己 |  |  |  |  | 88 |  |  |  |  |  |  |
| U IH4 |  |  |  |  | $\underline{90}$ |  |  |  |  |  |  |
| UIL I |  |  |  |  | 87 |  |  |  |  |  |  |
| UIL 2 |  |  |  |  | 88 |  |  |  |  |  |  |
| UIL 4 |  |  |  |  | $\underline{90}$ |  |  |  |  |  |  |
| $U L$ п |  | 47 |  |  |  |  |  |  |  |  |  |
| ULr |  |  |  |  |  |  |  |  |  |  | $\underline{230}$ |
| ULE |  |  |  |  |  |  |  | $\underline{211}$ |  |  |  |
| UnS | 36 |  | $\underline{65}$ |  |  |  |  |  |  |  |  |
| UロH I |  |  |  |  | 105 |  |  |  |  |  |  |
| UロH己 |  |  |  |  | 107 |  |  |  |  |  |  |
| UロHヨ |  |  |  |  | 108 |  |  |  |  |  |  |
| UQL I |  |  |  |  | 105 |  |  |  |  |  |  |
| UロL |  |  |  |  | 107 |  |  |  |  |  |  |
| UロLヨ |  |  |  |  | 108 |  |  |  |  |  |  |
| UロP |  | 47 |  |  |  |  |  |  |  |  |  |
| $U P L$ |  |  |  |  |  |  |  | $\underline{201}$ |  |  |  |
| $U P P$ |  |  |  |  |  |  | 161 |  |  |  |  |
| Ures |  |  |  |  |  |  |  | 200 |  |  |  |
| －¢ |  |  |  |  |  |  |  | $\underline{200}$ |  |  |  |
| U5 I |  |  |  |  |  |  | 146 |  |  |  |  |
| U5L |  |  |  |  |  |  |  | $\underline{200}$ |  |  |  |
| U 5 P |  |  |  |  |  |  | 144 |  |  |  |  |
| U5t |  |  |  |  |  |  |  | 200 |  |  |  |


[^0]:    WARNING

    ## LOSS OF CONTROL

    - The designer of any control scheme must consider the potential failure modes of control paths and, for critical control functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop, overtravel stop, power outage, and restart.
    - Separate or redundant control paths must be provided for critical control functions.
    - System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link.
    - Observe all accident prevention regulations and local safety guidelines. ${ }^{a}$
    - Each implementation of the product must be individually and thoroughly tested for proper operation before being placed into service.

    Failure to follow these instructions can result in death, serious injury, or equipment damage.
    a. For USA: Additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable Speed Drive Systems.

[^1]:    因
    Note: The parameters of the [1.1 SIMPLY START] (SIM-) menu must be entered in the order in which they appear, as the later ones are dependent on the first ones.
    For example [2/3 wire control] (tCC) must be configured before any other parameters.

[^2]:    Current alarm group numbers in Hz . Frequency reference via the graphic display terminal (can be accessed if the function has been configured) as a process value. PID reference via graphic display terminal (can be accessed if the function has been configured)
    as a \% (can be accessed if [Multiplier ref. -] (MA2,MA3) page 130 has been assigned)
    in Hz
    in Hz
    in Hz : The measured motor speed is displayed if an encoder card has been inserted, otherwise 0 appears. in Hz: Frequency of the "Pulse input" input used by the [FREQUENCY METER] (FqF-) function, page 207 in A
    in rpm
    in V
    as a \% of the rated power
    as a \% of the rated torque
    in V. Line voltage from the point of view of the DC bus, motor running or stopped
    as a \%
    as a \%
    as a \% (can be accessed if [DB res. protection] (brO) has been configured, see page 208) in kW (electrical power consumed by the drive)
    in Wh, kWh or MWh (accumulated electrical consumption of drive)
    in seconds, minutes or hours (length of time the motor has been switched on)
    in seconds, minutes or hours (length of time the drive has been switched on)
    in hours (length of time the process has been switched on) This parameter can be initialized by the user if the drive is replaced, in order to maintain a record of previous times.
    in seconds (length of time the "IGBT temperature" alarm has been active)
    as a process value (can be accessed if the PID function has been configured) as a process value (can be accessed if the PID function has been configured) as a process value (can be accessed if the PID function has been configured) in Hz (can be accessed if the PID function has been configured)
    Current date and time generated by the Controller Inside card (can be accessed if the card has been inserted) Words generated by the Controller Inside card (can be accessed if the card has been inserted)

[^3]:    $\star$ These parameters only appear if the corresponding function has been selected in another menu．When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function，their description is detailed in these menus，on the pages indicated，to aid programming．

[^4]:    

    These parameters only appear if the corresponding function has been selected in another menu. When the parameters can also be accessed and adjusted from within the configuration menu for the corresponding function, their description is detailed in these menus, on the pages indicated, to aid programming.

[^5]:    0 Parameter that can be modified during operation or when stopped．

[^6]:    (1) 0 to 9999 ms then 10.00 to 60.00 s on the integrated display terminal.

[^7]:    （1） 0 to 9999 ms then 10.00 to 60.00 s on the integrated display terminal．

[^8]:    (1) 0 to 9999 ms then 10.00 to 60.00 s on the integrated display terminal.

[^9]:    0
    Parameter that can be modified during operation or when stopped.

[^10]:    な
    Note: The line contactor closes every time a run command (forward or reverse) is sent and opens after every stop.

[^11]:    $\circlearrowright$
    Parameter that can be modified during operation or when stopped.

[^12]:    6 Parameter that can be modified during operation or when stopped.

[^13]:    (1)Because, in this case, the fault does not trigger a stop, it is essential to assign a relay or logic output to its indication.

[^14]:    Select the parameter using ENT (a $\qquad$ then appears next to the parameter). Parameter(s) can also be deselected using ENT. 1 or 2 parameters can be selected.

